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The extracellular protein, transthyretin is responsible for the transport of thyroxin
and retinol binding protein complex to the various parts of the body. In addition
to this transport function, transthyretin has also been involved in cardiovascular
malfunctions, polyneuropathy, psychological disorders, obesity and diabetes, etc.
Recent developments have evidenced that transthyretin has been associated with many
other biological functions that are directly or indirectly associated with the oxidative
stress, the common hallmark for many human diseases. In this review, we have
attempted to address that transthyretin is associated with oxidative stress and could
be an important biomarker. Potential future perspectives have also been discussed.
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INTRODUCTION

Transthyretin (TTR), also known as prealbumin is a 55 kDa homo-tetrameric protein found in
plasma and cerebrospinal fluid. It consists of four identical subunits, with each subunit consisting
of 127 amino acid residues (Gonzalez and Offord, 1971; Kanda et al., 1974). TTR structure is rich
in β-sheets with four binding sites; two for thyroxine and two for retinol-RBP complex (Ingbar,
1958; Naylor and Newcomer, 1999). It is encoded by a 7 kb gene (comprising of four exon and
three introns) located at chromosome 18q11.2– q12.1 (Tsuzuki et al., 1985; Sparkes et al., 1987).
It is primarily responsible for the transport of thyroxin and retinol-retinol binding complex (RBP-
complex) to different parts of the body and brain (Raz and Goodman, 1969; Power et al., 2000). The
major site of serum TTR synthesis is liver with normal concentration in the range of 0.2–0.4 mg/ml
and half-life of 2 days. In central nervous system, TTR is expressed in choroid plexus and is released
into the cerebrospinal fluid with concentration in the range of 0.02–0.04 mg/ml (Soprano et al.,
1985). In addition to plasma and cerebrospinal fluid, it is also expressed in the endothelial cells of
Islets of Langerhans, retinal and ciliary pigment epithelia in trace amounts (Cavallaro et al., 1990;
Kawaji et al., 2005; Westermark and Westermark, 2008). TTR may also undergo oligomerization
and such TTR oligomers are specifically picked up by cardiomyocytes, neuronal and kidney cells
leading to organ malfunctions (Colon and Kelly, 1992). Deficiency of the normal function of
TTR has been known to be associated with obesity and diabetes (Yang et al., 2005). The roles of
TTR in the central nervous system, especially in cognition and memory, psychological health and
emotion have also been widely understood (Fleming et al., 2007; Brouillette and Quirion, 2008).
The oligomeric form of the TTR has been found to be involved in the pathophysiology of various
diseases including atherosclerosis, familial amyloidosis polyneuropathy (Costa et al., 1978), senile
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systemic amyloidosis (Westermark et al., 1990), familial
amyloidosis cardiomyopathy (Jacobson et al., 1997; Yokoyama
et al., 2015; Sant’anna et al., 2017) etc. Although main function
of transthyretin is the transport of thyroxine and retinol bound
to retinol binding protein (RBP), there are many other biological
roles of TTR that are directly or indirectly related to anti-oxidant
and oxidant properties and could be an important oxidative
stress biomarker or therapeutic target. For instance, (i) TTR level
correlates well with reactive oxygen species (ROS) or reactive
nitrogen species (RNS) (Saito et al., 2005; Fong and Vieira,
2013); (ii) TTR gene expression is regulated by stress hormone,
glucocorticoid and sex hormone, estradiol (Li et al., 2011;
Martinho et al., 2012); (iii) Even though TTR is an extracellular
protein, it can induce oxidative stress in endoplasmic stress
(ER) and hence involved in unfolded protein response (UPR)
(Teixeira et al., 2006; Genereux et al., 2015; Chen et al., 2016);
(iv) The oligomeric forms of TTR also plays an important role
in inducing oxidative stress and could be involved in different
pathophysiologies (Hammarström et al., 2002; Zhao et al., 2013).
In the light of these observations, this review article has been
designed to discuss that TTR is associated with oxidative stress
and has implications for potential disease specific biomarker.

TTR IS A NEURONAL STRESS
BIOMARKER

It has already been understood that oxidative stress is one
primary cause of Alzheimer’s disease (AD) and many other
neurodegenerative diseases (Marques et al., 2003). Recent
advances have unveiled that such a cause of oxidative stress has
a good correlation with the role of TTR. This is evident from
various studies. First, TTR level is upregulated in patients with
neurodegenerative disorders (Li et al., 2011) wherein oxidative
stress is the common cause of the pathophysiology. Because
quantitative real time PCR of TTR mRNA and western blot
analysis, have shown that primary neurons from AD mice exhibit
upregulation of TTR level as compared to non-demented age-
matched individuals or control mice (Li et al., 2011). Second,
TTR expression is directly regulated by sex hormones (e.g.,
estradiol) or stress hormones (e.g., glucocorticoids) in neuronal
cells (Martinho et al., 2012). For instance, when rat choroid
plexus and choroid plexus epithelial cell lines were incubated with
varying concentration of hydrocortisone and estradiol (E2) (0,
10, 100, or 1,000 nM) for 6, 12, 18, 24 and 36 h (Martinho et al.,
2012), there was increase in TTR protein and TTR mRNA levels
in a concentration dependent manner of the hormones. Similarly,
incubation of the cells with respective receptor antagonists results
in the suppression of TTR induction. In another experiment,
they also analyzed the level of corticosterone in liver, choroid
plexus and cerebrospinal fluid of adult rats in response to chronic
and acute stress. Stress was induced by increasing the animal
density. It was observed that the given treatments drive the
upregulation of expression of TTR. In another development,
based on in silico study, Wakasugi et al. (1986) demonstrated
that rat TTR gene contains a glucocorticoid-responsive element
in its 3′ region of the first intron (Wakasugi et al., 1986)

and this element is conserved in humans as well (Sasaki
et al., 1985). Thus, it was concluded that upregulation of TTR
expression by glucocorticoid treatments is via glucocorticoid-
responsive element. Taken together, the results indicate that TTR
has a close association with the level of oxidative stress and
hence might consequently contribute to the pathogenicity of
neurodegeneration.

Third, other studies also reported that TTR has the ability to
suppress or remove β-amyloid deposits from neuronal tissues
(Buxbaum et al., 2008) making TTR a crucial target for the
therapeutic intervention of AD. In fact, direct evidence of the
involvement of TTR in AD stems from the identification of
physical interaction between TTR and Aβ (Gimeno et al., 2017).
Mechanistically, TTR present in the cerebrospinal fluid could
sequesters β-amyloid and inhibits the oligomerization and plaque
formation (Schwarzman et al., 1994). It is believed that TTR
uses its cryptic protease activity to proteolyze Aβ into smaller
non-amyloidogenic fragments (Costa et al., 2008; Silva et al.,
2017). In another development, recent study further revealed
that TTR has higher affinity to Aβ aggregates rather than the
fibrils and bind to these pre-toxic aggregates in a chaperon-like
manner in both the extracellular and intracellular environment
(Buxbaum et al., 2008). It has also been understood the higher the
binding affinity between TTR and Aβ, the higher is the inhibitory
potential because stabilizers that increase TTR tetramer stability
augments the inhibitory effect (Costa et al., 2008; Ribeiro et al.,
2012). Similarly, few TTR mutants that is more stable than the
Wt TTR has been shown to exhibit more disaggregating potential
than Wt TTR (Costa et al., 2008).

It has been known that major cytotoxicity of deposition of
β-amyloid is oxidative stress (Butterfield et al., 2001). Since
there exists a good correlation between oxidative stress and
TTR expression, we speculate that oxidative stress induces
glucocorticoids which in turn increase TTR expression via its
action on the glucocorticoid receptors. The increased level of
TTR will further help to deal with the β-amyloid deposits
bringing about its role in preventing AD (Nilsson et al., 2018).
In addition to AD, there are a large number of neuronal
disorders due to oxidative stresses. These include psychological
(e.g., depression), movement disorder (e.g., Parkinson), cognitive
disorders etc. Therefore, possibility of the association between
these diseases and TTR level may be exploited as a potential
biomarker (or therapeutic target) for such disorders.

CRYPTIC PROTEASE ACTIVITY OF
TRANSTHYRETIN INDUCES OXIDATIVE
STRESS BY CLEAVING APO A-1

High-density lipoprotein (HDL) complex is responsible for
reverse cholesterol efflux and cholesterol transport from cells and
tissues back to liver (Gordon et al., 1989). Besides cholesterol
efflux, HDL also exhibit anti-oxidant activity by forming
complex with many anti-oxidant enzymes like paraoxonase,
platelet-activating factor acetylhydrolase, glutathione peroxidase,
lipid transfer proteins like lecithin: cholesterol acyl transferase,
cholesterol ester transfer protein, Apolipoprotein A-I (ApoA-I)
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and 1-palmitoyl-2-oleoyl-phosphatidylcholine. Among these
anti-oxidant enzymes, Apo A-I is the major anti-oxidant and
anti-inflammatory component associated with HDL (Navab et al.,
2000). It employs anti-oxidant activity by eliminating lipid
hydroperoxides from low-density lipoproteins (LDL) and anti-
inflammatory properties by shutting down the expression of
adhesion molecules (Navab et al., 2000).

One important protein that affects the anti-oxidant property
of HDL is the serum protein, TTR 1-2% of serum TTR is
associated with HDL molecules (Sousa et al., 2000). As mentioned
above, TTR transports thyroxine and retinol bound to RBP. In
the absence of retinol-RBP complex, TTR occasionally exhibit
its cryptic protease function (Liz et al., 2004). This activity of
TTR brings about specific cleavage of Apo A-I resulting in the
loss of anti-oxidant function of HDL (Liz et al., 2007; Podrez,
2010). Figure 1 illustrates the mechanism of how TTR acts to
cleave the Apo A-1. Immunologically, the proteolyzed product
of Apo A-I acts as a pro-inflammatory molecule that further adds
in oxidative stress (Navab et al., 2000). In another development,
both the proteolyzed product of apo A-I i.e. N-terminal and
C-terminal domains are observed to be amyloidogenic (de Sousa
et al., 2000). Since, amyloids or proteins aggregates are one
important basic cause of oxidative stress (Abramov et al., 2004),
the formation of the amyloidogenic species will further augment
the magnitude of the oxidative stress.

Interestingly, Sousa and his group (2004) recently reported
that the cryptic protease activity of TTR was seen only when
RBP-retinol complex was not bound to TTR (Liz et al., 2004)
(Figure 1). This indicates that such type of oxidative stress (due
to cryptic protease activity of TTR) may perhaps be related
to the retinol deficiency and hence diseases associated with
it (Basu et al., 1989). Therefore, the protease activity of TTR
can be a potential biomarker for oxidative stress as well as for
diseases associated with retinol deficiency. Furthermore Apo-A
I deficiency (due to the cleavage by TTR) make HDL unable to
remove cholesterol from the tissues. This will eventually result in
the atherosclerotic plaque formation. Thus TTR cryptic protease
activity and associated oxidative stress may further by employed
as a biomarker for cardiovascular disorders.

TTR IS GLUTATHIONYLATED

Glutathiol (GSH) is a low molecular weight thiol group
present in all the cells and serum. GSH also acts as a good
indicator of cellular redox state and anti-oxidant defence (Dalle-
Donne et al., 2009). The antioxidant property of GSH is
mediated by glutathione peroxidase as it oxidizes GSH to GSSG
thereby reducing hydrogen peroxide and lipid hydroperoxides
(Toborek and Hennig, 1994). Protein-glutathionylation is a
redox-mediated post-translational modification, which involves
conjugation of a glutathione with a cysteine thiol group on
the proteins (Ghezzi, 2005). Glutathionylation not only plays a
critical role in many important biological functions (regulation
of metabolic pathways, calcium homeostasis, signal transduction,
cytoskeleton remodeling, inflammation and protein folding)
but also is involved in oxidative stress (Kaplowitz, 1981). The

involvement in oxidative stress may stem from at least in two
viewpoints. Large scale adduct formation with cysteine group in
proteins will eventually lead to deficiency of GSH levels making
the system difficult to handle the oxidative stress. Alternatively,
once GSH has been bound to cysteine residues in proteins,
there is release of free electron (Ghezzi, 2005) that consequently
help to generate free radicals thereby inducing oxidative stress.
Interestingly, TTR has been reported to be glutathionylated
under certain conditions. This was revealed from a study
conducted by Ando and his group (1998) to determine the in vivo
behavior of transthyretin in blood using electrospray ionization
mass spectrometry analysis coupled with high-pressure liquid
chromatography (HPLC) (Terazaki et al., 1998). Purified TTR
from normal subjects was injected into the rats and after 3 h,
blood and the urine were analyzed by measuring free or modified
TTR. Lower level of free TTR in blood and no TTR secretion
into the urine were observed (Terazaki et al., 1998) indicating
that major fraction of TTR have been modified by glutathione.
Inside the cell, glutathionylation is not restricted to TTR alone
but also occurs to many other proteins, the results indicate that
TTR indeed contributes to the oxidative stress generated due to
protein glutathionylation.

Escher et al. (2007) reported that the levels of glutathionylated
form of TTR are inversely correlated in patients with Mycosis
fungoides (MF) or non-Hodgkin’s lymphoma (Escher et al.,
2007). It is worth noting that MF is associated with the
genetic polymorphism in genes involved in the regulation of
oxidative stress (Lightfoot et al., 2006). The results hint that
the development of MF is because of oxidative stress originated
through genetic or post-translational modifications. Therefore,
the glutathionylated forms of TTR may be a potential biomarker
for early diagnosis or therapeutic target for MF.

TTR OLIGOMERS AS MULTIPLE
BIOMARKERS

It has been well understood that dissociation of TTR oligomer
is the rate-limiting step to TTR amyloidosis because dissociation
results in the exposition of important sites for oligomerization
(Colon and Kelly, 1992; Sousa et al., 2001). Similarly, mutations
in TTR disrupt its tetramer and thus form toxic oligomers
(Hammarström et al., 2002). The toxic TTR oligomers are
believed to preferentially deposit in the extracellular matrix
(ECM) of hepatocytes or neuronal cells leading to the
development of familial amyloidosis, which encompass FAP
(Familial Amyloid Polyneuropathy) (Benson and Kincaid,
2007; Saraiva et al., 2012) and FAC (Familial Amyloid
Cardiomyopathy) (Costa et al., 1978). Mechanistically, large
deposition of such TTR oligomers in the cardiac and neuronal
cells results in the tissue injury that ultimately lead to the increase
in inflammatory response (Ton et al., 2014). Since oligomers
are known to induce oxidative stress in cells and inflammatory
response is going to add more impact on oxidative stress,
accumulation of the oligomers eventually results in organ failure
or tissue damage due to massive oxidative stress. Although in
general oligomers are the exact cause or consequences of such
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FIGURE 1 | Cryptic protease activity of TTR and cleavage of Apo A-I. (A) HDL complex associated with the antioxidant enzymes. (B) TTR protein bound to thyroxine
and retinol-RBP complex. (C) HDL complex with TTR. TTR exhibits no cryptic protease activity until it is bound to retinol-RBP complex. (D) Cryptic protease activity
of TTR when retinol-RBP complex is not bound, Apo A-I is cleaved into N and C-terminal. HDL, high density lipoprotein; PON1, paraoxonase; POPC,
1-palmitoyl-2-oleoyl-phosphatidylcholine; RBP, retinol binding protein; TTR, transthyretin.

oxidative stress is not clearly understood, it is certainly possible
that a positive feedback loop is formed wherein oxidation causes
more oligomerization of TTR, which in turn causes more TTR
oxidation. In addition to cardiomyopathy and polyneuropathy,
this feedback loop so formed (in case of TTR oligomers),
may affect following consequences as outlined in Figure 2
leading to involvement of TTR in different pathophysiologies or
various biological processes. Following sections will describe the
involvement of TTR oligomers in each of the consequences.

TTR Oligomer Is Related to Reactive
Nitrogen Species
In addition to the ROS like superoxide radicals, hydrogen
peroxide etc., (RNS) including nitrate and nitrite ions also

plays a major role in oxidative stress. Fong and Vieira (2013)
gave the first evidence for the increased production of RNS
in presence of TTR aggregates in two different human cell
lines, epidermoid (A431) and schwannoma (sNF94.3) (Fong
and Vieira, 2013). Moreover, the authors also observed that the
cells treated with TTR aggregates showed decreased metabolic
activities as compared to TTR non-treated cells (Fong and Vieira,
2013). This indicates that the RNS-induced pro-oxidative effects
could also hamper the metabolic activity of the cells. In a previous
study by Saito et al. (2005), it was established that Wt and V30M
(amyloidogenic variant) undergoes S-nitrosylation and due to
which the proteins become amyloidogenic (Saito et al., 2005).
Nitric oxide is generated in vessels from endothelial cells and
smooth muscle cells. Vessels are the primary site for deposition
of protein oligomers, therefore the nitrosylation of the TTR
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FIGURE 2 | TTR oligomers are linked with various pathophysiological consequences.

oligomers further enhances the ability to form amyloid fibrils
which further contributes to the increased oxidative damage and
vice versa. Since, there is a close correlation between TTR level
and RNS or ROS, determination of TTR oligomeric level may
help to evaluate the extent/magnitude of oxidative stress.

TTR Oligomers Can Be Used to Detect
Endoplasmic Reticulum (ER) Stress
When there is increased generation of misfolded or unfolded
proteins in the ER, UPR initiates (Teixeira et al., 2006; Walter and
Ron, 2011). This UPR is mediated by three signal pathways which
involves inositol-requiring enzyme 1, activating transcription
factor 6 and double-stranded RNA-activated protein kinase-like
ER kinase (Walter and Ron, 2011; Minakshi et al., 2017; Rahman
et al., 2017, 2018). Since TTR is an extracellular protein and it
is unlikely that it may be involved in UPR generation in the
ER. However, when TTR oligomers are deposited in neuronal
cells, cardiomyocytes and kidney cells, there are chances that
the misfolded species or TTR oligomers reach ER and cause
oxidative stress. In a systemic study by Teixeira et al. (2006) the
role of TTR oligomers in ER stress response was investigated
using TTR transgenic mouse, and cell lines models (Teixeira et al.,
2006). It was established that there was increased levels of BiP-
immunoglobulin binding protein (an ER-resident chaperone)

with extracellular TTR amyloid deposits in the brain of transgenic
mouse. Furthermore using mouse neuronal ND7 cell line, it
was also observed that oligomer-induced increased expression of
BiP was mediated by the release of calcium from ER to cytosol
(Teixeira et al., 2006). Because the activity of Caspases-3 was
observed in cells treated with only TTR oligomers and not in
cells treated with dantrolene and xestospongin (inhibitors of
Ca2+ release). The involvement of other secondary messengers
like D-myo inositol 1,4,5-triphosphate which receives signals at
plasma membrane suggests that extracellular TTR oligomers have
the potential to trigger ER stress in the surrounding cells. Taken
together, the results convincingly supported the premise that the
deposited TTR oligomers in tissues helps to induce UPR in the
ER (Sekijima et al., 2005). Since TTR is a serum protein and is
not present in ER, the study links the possibility of invoking UPR
in ER by other extracellular proteins.

Level of TTR Aggregates Negatively
Correlates With the Activity of Catalase
Amyloid deposits consist of proteinaceous fibers which keep
on depositing in tissues and form plaques. In case of AD, it
was observed that these amyloid deposits had a toxic effect on
cells as the cells showed apoptosis both in vitro and in vivo.
Andersson et al. (2002) performed an in vitro study with different
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cell lines like neuroblastoma cell lines, PC12 cells, HeLa cells and
some haematopoietic cell lines to investigate for the toxic effect of
aggregated mutant TTR (Andersson et al., 2002). It was observed
that the toxic effect was not cell specific and further it triggered
the signaling cascade which ultimately led to apoptosis (Macedo
et al., 2008). Interestingly, it has been shown that TTR induced
apoptosis was inhibited by catalase in a concentration-dependent
manner. Since catalase is an enzyme responsible for catalyzing
H2O2 which is a predominant ROS, the results suggest that TTR
oligomer-induced apoptosis is via production of H2O2 or other
ROS.

Oligomers of Different TTR Variants
Exhibit Different Magnitude of Oxidative
Stress
Protein oligomerization or amyloidogenesis has been considered
to be one common hallmark of oxidative stress (Dobson, 1999).
In fact, these protein oligomers are really toxic to the cells
and can affect the integrity and hence function of various cell
organelles (Zampagni et al., 2011). It is also believed that protein
oligomers elevate the production of ROS which causes the
oxidative stress and vice versa causing cell damage (Zempel et al.,
2010). Protein oligomers can also force the release and normal
function of Cytochrome C by directly affecting mitochondrial
potential (Caroppi et al., 2009) or by affecting other pro-apoptotic
molecules (Ott et al., 2007). Despite these developments, how
different protein oligomers (or generated by different variants)
could associate with the magnitude of proteotoxicity has not
been explored yet. In this connection, TTR oligomers represents
an emblemic signature as oligomers generated by different
variants, is related to time of onset of disease pathology and
hence determines the nature of proteotoxicity or oxidative stress
(Quintas et al., 2001; Taguchi et al., 2013). For instance, Wt TTR
oligomerization that leads to systemic senile amyloidosis was
apparent in older individuals at the age of around 60–70 (Zhao
et al., 2013). On the other hand, the pathogenic symptoms due to
oligomers of the mutant variant V122I appeared early in age and
patients die generally 10 years before the onset of senile systemic
cardiomyopathy caused by Wt aggregation. The onset of familial
amyloid polyneuropathy caused by the variant, V30M is around
25–33 years and death occurs 10 years after the onset (Koike
et al., 2012; Takahashi et al., 2014; Arvidsson et al., 2015). L55P
is considered to be most pathogenic variant of TTR and starts
oligomerization at the physiological pH in vitro (as compared
to the other mutants) and patients die at a very young age

(Lashuel et al., 1999; Hammarström et al., 2002). Not only mutant
variants, but Wt TTR has also been reported to undergo oxidation
and carbonylation whose proteotoxicities (and hence oxidative
stress) matches with the age of individuals. Thus, identification
of different variants of TTR may be employed as a biomarker for
the age related oxidative stress. Future research should focus on
identification of newer TTR variants and their related onset of
diseases or magnitude of oxidative stress.

SUMMARY AND FUTURE
PERSPECTIVES

It is clearly evident from this review that different activity
or post-translational modification of TTR is linked to specific
disease pathologies via oxidative stress. The potential of TTR
to cause oxidative stress is not only confined to serum, but also
in ER. Therefore, in-depth insights to the various mechanism
of oxidative stress induced by TTR and its oligomers will
eventually lead to appropriate therapeutic strategies for these
specific diseases. It is also understood that TTR oligomers can
invoke different signaling cascades leading to different biological
consequences (e.g., apoptosis, ROS and RNS generation, UPR
and redox mediated oxidation) resulting in oxidative stress. It
would therefore be important to explore the signaling cascade
in detail by which oligomers help to induce such multiple
consequences. Nevertheless TTR would be a potential biomarker
of several human diseases linked with oxidative stress.
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