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Increased physical activity is an optimal way to maintain a good health. During exercise,
triacylglycerols, an energy reservoir in adipose tissue, are hydrolyzed to free fatty
acids (FAs) which are then released to the circulation, providing a fuel for working
muscles. Thus, regular physical activity leads to a reduction of adipose tissue mass
and improves metabolism. However, the reduction of lipid reservoir is also associated
with many other interesting changes in adipose tissue FA metabolism. For example, a
prolonged exercise contributes to a decrease in lipoprotein lipase activity and resultant
reduction of FA uptake. This results in the improvement of mitochondrial function and
upregulation of enzymes involved in the metabolism of polyunsaturated fatty acids. The
exercise-induced changes in adipocyte metabolism are associated with modifications
of FA composition. The modifications are adipose tissue depot-specific and follow
different patterns in visceral and subcutaneous adipose tissue. Moreover, exercise
affects adipokine release from adipose tissue, and thus, may mitigate inflammation and
improve insulin sensitivity. Another consequence of exercise is the recently described
phenomenon of adipose tissue “beiging,” i.e., a switch from energy-storing white
adipocyte phenotype to thermogenic FA oxidizing beige adipocytes. This process is
regulated by myokines released during the exercise. In this review, we summarize
published evidence for the exercise-related changes in FA metabolism and adipokine
release in adipose tissue, and their potential contribution to beneficial cardiovascular
and metabolic effects of physical activity.

Keywords: exercise, adipose tissue, fatty acid, adipokine, myokine, adipose tissue beiging

INTRODUCTION

In the 21st century, when obesity is recognized as a civilization-related, economic and social burden
and the numbers of obese and overweight individuals still increase, we need new strategies to
prevent and treat those conditions. Since excess body weight results from an imbalance between
energy intake and energy expenditure (Jakicic and Otto, 2005), one way to maintain a correct
body weight is to stimulate lipid catabolism through increased physical activity. Appropriately
designed training simulates lipolysis, i.e., the hydrolysis of triacylglycerols stored in adipose tissue
(AT), which results in the release of free fatty acids (FFAs) to circulation and their oxidation in
muscles and other tissues. Elevated blood concentration of FFAs, observed in obesity and metabolic
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syndrome, is an adverse condition that may lead to lipotoxicity
and ectopic deposition of lipids in other tissues (Mika and
Sledzinski, 2017). Thus, efficient uptake and oxidation of FFAs
in working muscles are critical for maintaining their normal
blood levels. Moreover, exercise contributes to an increase in
the number of mitochondria in white AT (WAT) and stimulates
the expression of brown adipocyte-specific genes, which leads
to “beiging” of WAT and amelioration of glucose intolerance
induced by a high-fat diet (Sutherland et al., 2009; Xu et al.,
2011; Roberts et al., 2014) (Figure 1). These effects of exercise
on AT are associated with significant changes in metabolism
and composition of fatty acids (FAs), the main components of
adipocytes. Aside from the storage of triacylglycerols, AT acts
also as an endocrine organ, releasing many biologically active
substances referred to as adipokines. Exercise may also modulate
the endocrine function of AT. There are three types of AT: WAT,
located subcutaneously and viscerally, brown adipose tissue
(BAT), and beige AT formed as a consequence of white adipocyte
“beiging,” i.e., their phenotypic and metabolic transition to cells
similar to brown adipocytes. WAT, abundant in both humans and
rodents, is primarily responsible for triacylglycerols storage and
release of various adipokines into the blood. While in rodents
BAT forms a large interscapular depot, as well as smaller depots
in other locations, its existence in humans, around the neck,
spine and major blood vessels, has been demonstrated quite
recently. BAT, rich in mitochondria, is primarily responsible for
thermogenesis (Lehnig and Stanford, 2018). Recent studies in
humans and in rodents have identified controversial results in
BAT activity in response to regular physical exercise. In trained
humans, Vosselman et al. (2015) and Motiani et al. (2017) have
observed a decrease in BAT activity (mitochondrial activity,
glucose uptake, and thermogenesis, Figure 1). In this review,
we discuss the exercise-induced changes in the composition and
metabolism of FAs in AT, with particular emphasis on AT depot-
specific differences.

EFFECT OF EXERCISE ON FA
COMPOSITION IN AT

The release of FAs from adipocytes to deliver them to working
muscles contributes to changes in the amount and composition
of AT lipids. However, these effects were shown to depend on
the exercise intensity (Nikolaidis and Mougios, 2004). Some
studies demonstrated that low-intensity endurance training leads
to maximal lipid oxidation, but available evidence in this matter
is inconclusive (Romain et al., 2012). Triacylglycerols are the
major class of lipids, representing up to 90–99% of all AT
lipids (Nikolaidis and Mougios, 2004). WAT in mammalian body
forms a few depots and can generally be classified into visceral
and subcutaneous AT differing in terms of the composition of
triacylglycerols-forming FA (Garaulet et al., 2006). Published
data about the effects of exercise on FA composition in human
AT are limited. An early studies revealed a decrease in oleic
acid (18:1) and increase in linoleic acid (18:2 n−6) content
in subcutaneous AT after chronic training (Allard et al., 1973;
Sutherland et al., 1981). The decrease in the level of 18:1, the

main monounsaturated FA (MUFA), which was observed in
both studies mentioned above, might be associated with reduced
activity of stearoyl-CoA desaturase (SCD1) in AT (Nikolaidis
and Mougios, 2004). Since metabolic disorders were shown to be
associated with enhanced synthesis of 18:1 and other MUFA by
SCD1 (Mika et al., 2015), a post-exercise decrease in AT content
of 18:1 may be considered a favorable change. Published evidence
suggests that physical training may contribute to a preferential
mobilization of some FAs from AT. Already after 2 weeks of the
training in senior oarsmen, the authors observed a significant
decrease in total serum triacylglycerols and cholesterol, along
with changes in the FA profile of AT: a decrease in palmitoleic acid
(16:1) and an increase in stearic acid (18:0) content, comparing
to previously untrained controls (Danner et al., 1984). A more
recent study demonstrated that 6 months of increased physical
activity contributed to a significant increase in 18:2 n−6 in
overweight elderly subjects, while no such effect was observed
in untrained controls (Sjögren et al., 2012). Taken altogether,
this sparse evidence from human suggests that chronic exercise
may contribute to a decrease in 18:1 content, with concomitant
increase in 18:2 n−6 and 18:0. Since 18:1 is the main FA
found in triacylglycerols (Ntambi and Miyazaki, 2003; Liu et al.,
2011), the decrease in its content may contribute to a relative
increase in other FAs. 18:2 n−6 is an essential FA, a substrate
for synthesis of other n−6 PUFA, that in turn may be than
converted into proinflammatory oxylipins, including eicosanoids
(Mika and Sledzinski, 2017). However, regular exercise training
seems to reduce systemic inflammation (Görgens et al., 2015).
More data in this matter originate from rodent models, and based
on this evidence we may compare the effect of exercise on FA
composition in various WAT depots, as well as in BAT (May et al.,
2017). Most of the animal studies demonstrated that chronic
exercise contributed to a decrease in MUFA content, which is
consistent with the observations made in humans (Nikolaidis and
Mougios, 2004). Regarding polyunsaturated FAs (PUFAs), most
animal studies showed an increase in their content, especially
n−6 PUFAs; however, in some studies, the post-exercise levels
of PUFAs were lower than prior to the exercise or remained
unchanged. The chronic exercise-induced changes in PUFA
content in AT are depot-specific (Bailey et al., 1993; Nikolaidis
and Mougios, 2004). Petridou et al. (2005) reported decrease
in MUFA levels after chronic exercise and an increase in n−6
PUFA content in visceral WAT but not in subcutaneous WAT.
Among the MUFAs of visceral fat, chronic exercise contributed
to a decrease in 16:1, but not in 18:1 (Petridou et al., 2005); the
same phenomenon was also observed by Rocha-Rodrigues et al.
(2017b) in a rat model. In recent study conducted by May et al.
(2017) the authors performed a comprehensive analysis of FA
content in phospholipids and triacylglycerols from subcutaneous
WAT and BAT of mice subjected to a 3-week exercise training.
The study demonstrated that while the exercise contributed to a
significant increase in MUFA level and a significant decrease in
PUFA content in WAT phospholipids, an inverse phenomenon,
i.e., a decrease in MUFAs and an increase in PUFAs was
observed in BAT phospholipids. Moreover, a significant decrease
in triacylglycerol content of SFAs, MUFAs and PUFAs in BAT
and triacylglycerol content of PUFAs in WAT was observed
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FIGURE 1 | Exercise-induced adaptations to white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipocytes. Histological sections of WAT and BAT
are stained with haematoxylin and eosin.

(May et al., 2017). However, it should be stressed that in that
study, FA content was expressed in nmol per mg of protein, rather
than as a percentage of total FAs as in previously mentioned
experiments. These findings suggest that post-exercise changes in
FA composition of AT are not only depot- but also lipid molecule-
specific. In both WAT and BAT, physical exercise contributed
to a significant decrease in the total content of triacylglycerols,
but with a concomitant increase in the level of triacylglycerols
containing long-chain FAs (58–60 total carbons) (May et al.,
2017). The effects of exercise on FA composition in AT and other
AT parameters in human and animal studies is summarized in
Table 1.

EFFECT OF EXERCISE ON FA
METABOLISM IN AT

The post-exercise decrease in triacylglycerols content in AT
is with no doubt a consequence of enhanced lipolysis. The
process, initiated by adipose triglyceride lipase (ATGL), is
then continued by hormone-sensitive lipase (HSL), upon
phosphorylation thereof; eventually, the last FA chain is
hydrolyzed by monoacylglycerol lipase (MAGL) (Chen et al.,
2015). While the rate of lipolysis is decreased by obesity and high-
fat diet, chronic exercise was shown to normalize the markers of
this process, phosphorylated HSL and ATGL, in mice that have
been previously maintained on a high-fat diet (Chen et al., 2015).
Surprisingly, however, Holland et al. (2016) demonstrated that
voluntary wheel running for 42 days contributed to a decrease
in phosphorylated HSL level in rats. In contrast, chronic exercise
was shown to stimulate the activity of lipolytic enzymes in the
adipocytes of obese mice (Woo and Kang, 2016), and a recent

study demonstrated that endurance exercise contributed to an
increase in triacylglycerol lipase activity in human AT, especially
during the first 10 min of the training (Petridou et al., 2017). An
upregulation of HSL after chronic exercise was also mentioned in
a review paper published by Steinberg (2009). Moreover, irisin,
an adipokine released by working muscles, was shown to induce
the expression of ATGL and HSL in 3T3L1 adipocytes (Gao et al.,
2016). Thus, the results of most published studies suggest that
physical exercise may stimulate lipolytic activity within AT, that
may contribute to more efficient reduction of AT mass and/or
prevent accumulation thereof.

Physical activity may also modulate FA synthesis, desaturation
and elongation. The reduction of MUFA content after chronic
exercise reported by many authors might be a consequence of a
decrease in FA desaturation by SCD1 (Nikolaidis and Mougios,
2004). However, this conclusion is based on the desaturation
indices calculated from SFA and MUFA contents in AT. Thus,
it cannot be excluded that those parameters were also influenced
by preferential uptake and release of certain FAs in AT during
exercise (Halliwell et al., 1996). One study demonstrated that
chronic exercise did not affect the expression of SCD1 in mice
subcutaneous WAT, but contributed to lesser activity of this
enzyme in BAT (May et al., 2017). Also in human subcutaneous
AT, the expression of SCD1 gene remained unchanged after
the chronic exercise (Sjögren et al., 2012). Published data about
the exercise-induced changes in the activity of other lipogenic
enzymes are inconclusive. According to May et al. (2017), 3-week
exercise contributed to an increase in acetyl-CoA carboxylase
(ACC) mRNA level in mice subcutaneous WAT, but not in BAT
whereby mRNA level for this enzyme was reduced. Similarly,
a 6-week exercise resulted in an increase in ACC protein level
in visceral WAT of rats (Holland et al., 2016). In contrast,
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TABLE 1 | The summary of effects of exercise on adipose tissue metabolism and adipokine secretion.

The effect of exercise on: Subcutaneous WAT Visceral WAT BAT Reference

Fatty acid profile 18:0 ↑
h DNF DNF Danner et al., 1984

16:1 ↓
h

↓
r DNF Danner et al., 1984; Petridou et al., 2005;

Rocha-Rodrigues et al., 2017b

18:1 ↓
h NCr DNF Allard et al., 1973; Sutherland et al., 1981; Petridou

et al., 2005; Rocha-Rodrigues et al., 2017b

MUFA ↓
h, NC or ↓r

↓
r DNF Bailey et al., 1993; Nikolaidis and Mougios, 2004;

Petridou et al., 2005; Rocha-Rodrigues et al., 2017b

MUFA in TG NCm DNF ↓
m May et al., 2017

MUFA in PL ↑
m DNF ↓

m May et al., 2017

18:2 n−6 ↑
h, ↑r NCr DNF Sutherland et al., 1981; Bailey et al., 1993; Sjögren

et al., 2012

n−6 PUFA ↑
h, ↑r DNF DNF Nikolaidis and Mougios, 2004

PUFA in TG ↓
m DNF ↓

m May et al., 2017

PUFA in PL ↓
m DNF ↑

m May et al., 2017

Expression/activity
of enzymes of lipid
metabolism

HSL NCm
↑

m, ↓r DNF Chen et al., 2015; Holland et al., 2016; Woo and Kang,
2016

ATGL NCm
↑

m DNF Chen et al., 2015; Woo and Kang, 2016

SCD1 NCh, NCm DNF ↓
m Sjögren et al., 2012; May et al., 2017

ACC ↑
m

↑
m, ↓r

↓
m May et al., 2017; Holland et al., 2016;

Rocha-Rodrigues et al., 2017a

FADS1 DNF ↑
r DNF Rocha-Rodrigues et al., 2017a

ELOVL5 DNF ↑
r DNF Rocha-Rodrigues et al., 2017a

Expression/
secretion of
adipokines

Adiponectin NCr, ↑ or NCh
↑

r, ↑h DNF Görgens et al., 2015; Kato et al., 2018

Leptin NCh DNF DNF Görgens et al., 2015

IL-6 ↓ or NCh DNF DNF Bruun et al., 2006; Klimcakova et al., 2006

Apelin DNF ↑
r DNF Kazemi and Zahediasl, 2018

Adipose tissue beiging ↑
r, ↑m DNF – Lehnig and Stanford, 2018

WAT, white adipose tissue; BAT, brown adipose tissue; ↑, increased; ↓, decreased; NC, not changed significantly; h, in human; r, in rat; m, in mouse; DNF, data not
found; TG, triacylglycerols; PL phospholipids; HSL, hormone-sensitive lipase; ATGL, adipose triglyceride lipase; SCD1, stearoyl-CoA desaturase 1; ACC, acetyl-CoA
carboxylase; FADS1, fatty acid desaturase 1; ELOVL5, fatty acid elongase 1; Il6, interleukin 6.

Rocha-Rodrigues et al. (2017a) found reduced activity of ACC in
visceral AT of rats subjected to an 8-week endurance training.
The same study demonstrated a post-exercise increase in the
expressions of enzymes involved in PUFA metabolism, FA
desaturase 1 and elongase 5 (Rocha-Rodrigues et al., 2017a);
these findings are consistent with the results published by other
authors who observed a chronic exercise-induced increase in
PUFA content and elongase indices (Nikolaidis and Mougios,
2004). In line with those findings, May et al. (2017) found elevated
levels of mRNA for elongase 3 and 4 in AT from chronically
exercised mice. Taken altogether, the abovementioned findings
suggest that the effect of exercise on the expression of enzymes
involved in lipid metabolism may vary depending on FA group
and AT depot.

IMPACT OF EXERCISE ON ADIPOKINE
SECRETION IN AT

Muscle work during the exercise may activate a signaling cascade;
specifically, myokines released from the muscle cells may trigger a

release of adipokines, signaling molecules synthesized in the AT.
Aside from the production of adipokines, AT can also synthesize
many myokines, among others IL-6, MCP1, TNFα, visfatin and
myostatin, which are collectively referred to as adipomyokines
(Görgens et al., 2015). Thus, plasma level of adipomyokines
does not necessarily reflect solely the pool which is synthesized
in the AT and acts on the muscles, and the origin of each
molecule should be identified at a cellular level. Adiponectin is
an insulin-sensitizing hormone that enhances FA oxidation in the
muscles and downregulates the synthesis of lipids and glucose
in the liver (Swierczynski and Sledzinski, 2012). The evidence
from both human and animal studies analyzing the effects of
exercise on serum adiponectin level is inconclusive; chronic
exercise was either shown to increase the serum concentration
or expression in AT of this adipokine or did not affect it at
all (Kato et al., 2018; Lehnig and Stanford, 2018). Available
data imply that the release of adiponectin from human AT may
depend on exercise intensity (Görgens et al., 2015). Another
adipokine, leptin, is synthesized primarily in the AT, regulates
appetite and boosts peripheral metabolism (Swierczynski and
Sledzinski, 2012). Chronic exercise was shown to contribute to
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a decrease in serum leptin concentration, but this effect was
associated with the reduction of AT mass (Lehnig and Stanford,
2018). However, previous studies demonstrated that excess
body weight was associated with leptin resistance (Swierczynski
and Sledzinski, 2012), and chronic exercise might improve
leptin sensitivity (Kang et al., 2013). Thus, the simultaneous
reduction of serum leptin level and AT mass does not necessarily
correspond to a decrease in the activity of this adipokine.
Serum concentration of IL-6, acting as an anti-inflammatory
myokine, was shown to increase substantially after acute exercise,
and this effect was demonstrated to result from local synthesis
of IL-6 by the working muscles. However, the level of IL-6
after chronic exercise was decreased or remained unchanged
(Görgens et al., 2015). Also, the expression of IL-6 in the AT
did not change or was reduced, depending on the type of
chronic exercise (Bruun et al., 2006; Klimcakova et al., 2006).
Generally, moderate chronic exercise seems to be associated with
a decrease in the release of pro-inflammatory cytokines, such as
TNF-α, leptin and MCP-1, from the AT and working muscles;
this may contribute to attenuation of systemic inflammation
(Görgens et al., 2015). A recent study demonstrated that
chronically exercised rats showed enhanced expression of apelin,
an adipomyokine that decreases insulin resistance (Kazemi and
Zahediasl, 2018). Apelin induced glucose uptake by AT, but at
the same time decreases triglyceride amounts in mouse AT and
lipid storage in 3T3-L1 preadipocytes (Indrakusuma et al., 2015).
Also, serum concentration of resistin, an adipokine promoting
insulin resistance, was shown to decrease in rats subjected to
an chronic exercise (Shirvani and Arabzadeh, 2018). Altogether,
these findings suggest that chronic exercise may improve the
profile of adipokines released from the AT, and thus, may be
beneficial for health.

EXERCISE LEADS TO AT “BEIGING” — A
PROCESS MEDIATED BY MYOKINES

Aside from the metabolic processes discussed above (lipolysis, FA
uptake, FA synthesis), FAs are also oxidized in mitochondria, in a
process referred to as β-oxidation. A number of previous studies
demonstrated that chronic exercise enhanced mitochondrial
activity in visceral and subcutaneous AT, in both rodents
(Stallknecht et al., 1991; Sutherland et al., 2009; Vernochet
et al., 2012; Wu et al., 2012; Stanford et al., 2015a,b) and
humans (Ruschke et al., 2010; Rönn et al., 2014). The process
of mitochondrial β-oxidation in the AT is not as intensive as
in the muscles but still can provide an extra pool of energy
for adipocytes after the exercise. Furthermore, there is one AT
depot that shows greater mitochondrial activity than visceral
and subcutaneous WAT; this is BAT which contains numerous
mitochondria whereby FAs undergo oxidization, becoming a
source of energy for thermogenesis. The main protein involved
in thermogenesis is uncoupling protein 1 (UCP1), mediating
proton leakage across the inner mitochondrial membrane into
the mitochondrial matrix, and thus, playing a role in heat
production (Lehnig and Stanford, 2018). Recent research showed
that chronic exercise may contribute to “beiging” of subcutaneous

WAT, a process which is also referred to as the “browning” of AT.
During the process of “beiging,” a phenotype and metabolism of
white adipocytes in the AT change and resemble the respective
characteristics of brown adipocytes in the BAT (Lehnig and
Stanford, 2018). This phenotypic and functional switch includes
an increase in mitochondrial respiration and enhancement of
UCP1 protein expression, as well as the upregulation of other
genes characteristic for BAT (Wu et al., 2012). In one study,
ablation of beige adipocytes resulted in the development of
obesity and insulin resistance in mice; this implies that these cells
may play a role in the regulation of systemic energy metabolism
(Stanford and Goodyear, 2016). While the exercise-induced
adipocyte “beiging” has been well documented in rodents, still
little is known about this phenomenon in humans (Lehnig and
Stanford, 2018). However, it needs to be stressed that BAT in
adult humans resembles murine beige AT, rather than the BAT
(Wu et al., 2012). A number of potential mechanisms responsible
for AT “beiging” have been proposed thus far. According to one
hypothesis, the process may be mediated by myokines and small
molecules released from working muscles (Lehnig and Stanford,
2018), specifically by irisin (Boström et al., 2012), myostatin
(Feldman et al., 2006), meteorin-like 1 (Metrnl) (Rao et al.,
2014), lactate (Carriere et al., 2014) and/or β-aminoisobutyric
acid (BAIBA) (Roberts et al., 2014).

CONCLUSION

Physical exercise stimulates lipolysis, decreases FA uptake by
the adipocytes, exerts an effect on FA composition within
the AT and modulates the expression of enzymes involved in
FA synthesis, elongation and desaturation. Moreover, exercise
promotes “beiging” of AT and contributes to an increase in
mitochondrial activity, which leads to enhanced FA oxidation in
the AT. As a result of all those metabolic processes, physically
active persons can maintain adequate volume of AT. Chronic
exercise influences the release of adipokines, which may attenuate
systemic inflammation and prevent insulin resistance. Moreover,
transplantation of AT from trained to untrained mice was
shown to improve glucose tolerance (Stanford et al., 2015b).
Taken altogether, these findings imply that the exercise-induced
changes in AT metabolism may exert a beneficial effect on global
metabolic health.
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