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With the advent of personalized medicine, design and development of anti-cancer
drugs that are specifically targeted to individual or sets of genes or proteins has been
an active research area in both academia and industry. The underlying motivation
for this approach is to interfere with several pathological crosstalk pathways in order
to inhibit or at the very least control the proliferation of cancer cells. However, after
initially conferring beneficial effects, if sub-lethal, these artificial perturbations in cell
function pathways can inadvertently activate drug-induced up- and down-regulation
of feedback loops, resulting in dynamic changes over time in the molecular network
structure and potentially causing drug resistance as seen in clinics. Hence, the targets
or their combined signatures should also change in accordance with the evolution of the
network (reflected by changes to the structure and/or functional output of the network)
over the course of treatment. This suggests the need for a “dynamic targeting” strategy
aimed at optimizing tumor control by interfering with different molecular targets, at
varying stages. Understanding the dynamic changes of this complex network under
various perturbed conditions due to drug treatment is extremely challenging under
experimental conditions let alone in clinical settings. However, mathematical modeling
can facilitate studying these effects at the network level and beyond, and also accelerate
comparison of the impact of different dosage regimens and therapeutic modalities prior
to sizeable investment in risky and expensive clinical trials. A dynamic targeting strategy
based on the use of mathematical modeling can be a new, exciting research avenue in
the discovery and development of therapeutic drugs.

Keywords: drug discovery, mathematical modeling, network medicine, signaling pathway, therapeutic target,
translational research

INTRODUCTION

Cancer is a multifactorial and remarkably heterogeneous disease. Its initiation, progression,
invasion, and metastasis processes all involve multiple molecular signaling mechanisms. The
diversity of molecular and cellular properties across tumors from different patients, and even across
cancer cells from the same patient, makes it extremely difficult to find a “one-size-fits-all” solution
for therapeutic targeting of cancer. Thus, tailored targeted therapies based on each individual
tumor’s characteristics are required in order to optimize treatment efficacy, minimize toxicity and
drug side-effects, and ultimately lead to more cost-effective patient management by giving the most
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appropriate drugs at the optimum dose to every patient in need
(Topol, 2014; Ryall and Tan, 2015). This is the essential concept
of precision medicine.

From a systems biology perspective, cancer can be viewed as
a network disease caused by dysregulation of molecular signaling
pathways that determine various physiological cellular processes,
such as growth, division, differentiation, and apoptosis (Creixell
et al., 2012). These signaling pathways are not isolated from
each other, but form a complex, interconnected network with
numerous regulatory feedback loops and redundant pathways
that together confer significant evolutionary robustness. Still,
substantial advances have been made in development of targeted
therapies based on detailed mechanistic understanding of these
signaling networks, and as a result, some targeted drugs are
emerging for clinical use (Yildirim et al., 2007; Hopkins, 2008).
However, despite positive treatment responses in some patients,
a large fraction of patients fail to benefit from these targeted
therapies, even when molecular markers have been used to
stratify patients into groups that are expected to respond to the
therapy. Taking an approved ErbB-targeted drug (Herceptin)
as an example, only about half of all patients with ErbB2-
amplified metastatic breast cancer respond to the drug, and of
those who do respond in the beginning, most eventually develop
resistance (Garrett and Arteaga, 2011). This pattern of initial
response followed by relapse is not unique to ErbB-targeted
therapies, but has been seen for most molecularly targeted
inhibitors (Al-Lazikani et al., 2012).

The disappointing response rate of targeted therapies is
partly due to the resilience of oncogenic signaling networks
that will often bypass a single hit through an abundance of
the highly non-linear built-in feedback loops and alternative
pathways that can compensate for therapeutic impact. To solve
this “escape” problem, multiple therapies can be used together
or in sequence, i.e., combination therapy, which can potentially
block these parallel or alternative pathways activated in cancer
cells (Fitzgerald et al., 2006). Since these therapeutic drugs may
be administered at a smaller dosage for each individual drug,
a combination therapy may stop oncogenic signaling or further
delay resistance to treatments, while simultaneously minimizing
overlapping toxicity. In theory, a combination approach would
seem to have the potential to block alternative pathways, but,
while there have been clinical successes, as with monotherapy
they have not led to cure or long-term control for all patients
(Chong and Janne, 2013; Yap et al., 2013; Sachs et al., 2016;
Lopez and Banerji, 2017). One problem lies in the complexity
of signaling networks, making it difficult to simply guess a priori
which drug combinations are synergistically effective and which
are not. Given the number of targeted drugs currently available
and in clinical development, it is time-consuming and expensive
to do unbiased screening of the large number of possible
drug combinations at their clinically relevant dose and dosing
schedules. Therefore, there is a major need for approaches
that will allow us to identify effective drug combinations
where two or more drugs work synergistically to suppress
malfunctioning signaling.

Testing potentially clinically relevant drug combinations
using mathematical models (see Box 1) offers a reasonable

yet relatively simple and expeditious way to accomplish this
task by computationally examining multiple targets through
extensive parameter perturbation analyses (Araujo et al., 2005;
Iyengar et al., 2012; Barbolosi et al., 2016). This approach
allows for rapid and low-cost examination of the drug and
target combination parameter space, including identification of
potentially optimal drug combinations through mathematical
methods, ultimately providing valuable insights which would
be difficult (if not impossible) to achieve through traditional
experimental and clinical trial methods and techniques. In the
end, these models can help to narrow down and prioritize
different target combinations prior to experimental validation.

NETWORK REWIRING

It has been extensively reported that cancer cells or cell
populations adapt or evolve in response to targeted therapies,
in part by rewiring molecular mechanisms to overcome the
inhibitory effects of initial treatments (Gillies et al., 2012; Logue
and Morrison, 2012; Azad et al., 2015; Kolch et al., 2015;
Stuhlmiller et al., 2015). This rewiring may involve alterations
of signaling pathways, such as addition or deletion of edges
in the network, modification of reaction rates, and changes in
molecular concentrations, all of which may ultimately contribute
to treatment resistance, either directly through rendering the
drug ineffective or indirectly by leading to activation of
alternative pro-survival or anti-apoptotic pathways. There are
many other biological, biochemical, and biophysical factors
[e.g., genetic alteration of individual cells, outgrowth of existing
resistant subclones under selection pressure from treatment,
altered effectors in DNA repair, pathway-independent acquired
resistance, up-regulation of efflux pumps in cellular membranes,
protein level oscillations within cells even in the absence of
treatment, and physical barriers that may limit diffusive and
convective drug transport (Minchinton and Tannock, 2006;
Garraway and Janne, 2012; Brocato et al., 2014; Stewart
et al., 2015; Cristini et al., 2017)] that may also contribute
to cancer resistance to treatment, but rewiring of signaling
pathways very likely plays an important role as a mechanism of
acquired resistance. This implies that pharmacologically targeting
the compensatory mechanisms (which have emerged due to
this rewiring) should help to improve treatment efficacy and
patient outcome (Solit and Rosen, 2011; Akhavan et al., 2013;
Camidge et al., 2014).

Even before treatment, signaling networks are rewired in
cancer cells compared to normal cells. Here, we briefly discuss
several recent studies working toward understanding how
signaling networks are rewired in cancer cells, and discuss
how identification of these alterations can enable more effective
cancer treatment. Creixell et al. (2015) performed systems-
based research to evaluate whether cancer mutations perturb
signaling networks and, if so, by what mechanisms. Using their
collected global exome sequencing and proteomic data on the
same set of cancer cell lines, some mutations were found to
create new phosphorylation sites or destroy existing ones within a
signaling network, or shift the network structure by upstream or
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BOX 1 | Mathematical modeling of cancer treatment. Mathematical modeling is not only useful in providing mechanistic explanations of the observed data and
generating valuable insights into how the molecular signaling network adapts under various perturbed conditions, it can also be used to derive new experimentally
and clinically testable predictions. Data-driven modeling approaches that integrate statistical analysis of large-scale cancer multi-omics (e.g., genomics, proteomics,
and other omics technologies) with clinical data have been used to identify key biological processes underlying cancer pathogenesis, prognostic biomarkers, and
predictive signatures for drug response (Jerby and Ruppin, 2012; Casado et al., 2013; Niepel et al., 2013). On the other hand, mechanistic modeling approaches
have been used to understand the roles of individual proteins in regulating cell fate and how signaling pathways interact to influence cancer progression (Prasasya
et al., 2011; Hass et al., 2017), the dynamic interactions among cancer cells and between cells and the constantly changing microenvironment (Faratian et al., 2009;
Klinger et al., 2013; Almendro et al., 2014; Leder et al., 2014), biophysical drug-cell interactions, and drug transport processes across tissues (Das et al., 2013;
Pascal et al., 2013a,b; Koay et al., 2014; Frieboes et al., 2015; Wang et al., 2016; Brocato et al., 2018). In addition, mechanistic models are being generated to
account for pharmacokinetics and pharmacodynamics to analyze drug action, dose-response relationships, and the time-course effect resulting from a drug dose,
ultimately leading to the discovery of more effective dosing schedules (Swat et al., 2011; Vandamme et al., 2014; Wang et al., 2015a; Dogra et al., 2018).
Furthermore, multiscale models of cancer have been developed to predict responses to treatments (perturbations), explain therapeutic resistance, and identify
potential drug combinations across multiple biological scales, including at the molecular (such as gene regulatory and signal transduction networks), the cell, as well
as at the tissue and whole organism scale (Wang and Deisboeck, 2008; Deisboeck et al., 2011; Wang et al., 2011a, 2015b; Gustafsson et al., 2014; Wolkenhauer
et al., 2014; Wang and Maini, 2017). Overall, mathematical modeling paired with experimentation and clinical data analysis has led to substantial improvements in
our understanding of the mechanistic basis for cancer progression and resistance development, advanced the systems-level interpretation of the pathophysiology
relevant for drug discovery, and had an impact on the implementation and optimization of effective anticancer therapeutic strategies.

downstream rewiring of the mutated signaling node. A variety of
rewiring modes were identified, including constitutive activation
and inactivation of kinase and SH2 domains, upstream and
downstream rewiring of phosphorylation-based signaling, and
the extinction and genesis of phosphorylation sites. Their results
indicate that signaling networks are both dynamically and
structurally rewired in cancer cells. More recently, Latysheva
et al. (2016) investigated the interaction properties and structural
features of more than two thousand fusion-forming proteins,
and provided insight into the genome-scale molecular principles
upon which fusion proteins could escape cell-death regulation
and rewire signaling networks in cancer. Notably, using an
integrated experimental and computational approach, Halasz
et al. (2016) predicted and then validated feedback inhibition
of insulin receptor substrate 1 (IRS1) by the kinase p70S6K in
a zebrafish (Danio rerio) xenograft model to confer resistance
to EGFR inhibition through extensive analysis of a perturbation
data set targeting epidermal growth factor receptor (EGFR) and
insulin-like growth factor 1 receptor (IGF1R) pathways in a
panel of colorectal cancer cells. Some studies (Pandey et al.,
2014) also point to transient or short-term pathway alterations
resulting from one drug as causing increased sensitivity to a
second drug delivered at a later time. Morton et al. (2014)
designed a nanoparticle system that successfully delivered two
different drugs with varying models of action to the tumor
in a sequential manner. The first drug inhibited an oncogenic
pathway through rewiring that sensitized the cells to DNA
damage-induced apoptosis, and the second was a genotoxic drug
that took advantage of the vulnerable state of the cancer cells
to kill them with enhanced efficiency. Their results highlight
how understanding the ways that signaling pathways change or
rewire in response to treatment or drug exposure is essential for
improving current translational and clinical research.

RE-IDENTIFICATION AND
RE-TARGETING

To predict cellular behavior, it is required to assess temporal- and
state-based network dynamics in response to perturbations such

as those induced by targeted drugs. It is thus highly rational to
examine the newly rewired and altered molecular network [or
networks, as some studies have found evidence that the dominant
network is different at different tumor sites (Pestrin et al., 2009;
Bhamidipati et al., 2013; Russo et al., 2017)], which arises after the
first sub-lethal, targeted drug interventions, in order to identify
and then reprioritize the targets. This will likely result in a
new list of prioritized targets in the order of their importance
in driving cancer cell survival and proliferation. The leading
network modulator(s) on this new list should be prioritized as
new drug targets in place of, or more likely in addition to, the
previous top targets. In fact, rebiopsy at the time of progression of
disease to guide changes in treatment has already been advocated
in the literature (Yu et al., 2013; Planchard et al., 2015).

This cascade of drug targeting, network rewiring, followed
by subsequent target re-identification and reprioritization
(potentially for multiple cycles), in our opinion, should be
repeated during the entire course of treatment. Figure 1 shows
a schematic of this process (to illustrate the concept, and not
a specific treatment strategy much less a prediction), where for
simplicity a single molecular intervention strategy is used at
the beginning. While in reality the clinical situation in terms of
signaling and rewiring will undoubtedly be much more complex,
we however address two critical questions here. First, why not just
take out the “important” molecules (e.g., A1, A2, and B1 in our
schematic) at the onset of the therapeutic protocol to completely
block the downstream signaling pathways that contribute to
cell proliferation? The answer is two-fold – one, as discussed,
we do not necessarily know a priori what “top” targets emerge
as (conventional chemo- or radioactive, or advanced targeted)
therapeutic interventions apply selective pressure on the cancer
cells’ molecular network; secondly, this multi-target strategy will
arguably be more toxic, and hence may cause more adverse side
effects for the patient than necessary to achieve tumor control.
Rather, the goal is to deliver optimal therapeutic efficacy at the
minimum necessary level of side effects. As such, our dynamic
targeting approach might just be the right answer in that it
incrementally “probes” the network’s adaptive capabilities by
applying a staggered amount of selective pressure. Also, effective
targeting does not have to “take out” a target completely; it
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FIGURE 1 | Illustration of the dynamic targeting strategy. The molecular signaling network changes or evolves with selective treatment. For instance, in this
schematic, at time point 1, A1 emerges as the most critical node, hence during the first treatment period, A1 will be targeted with anti-A1. Assuming this to be of
sub-lethal impact, the network rewires due to A1 inhibition, but the cell still finds a way to upregulate proliferation, so the treatment continues. At time point 2, A2
emerges as the top target, so the therapeutic regimen will attempt to inhibit A2 (together with A1) for the second treatment period. The network again rewires due to
A2 inhibition, and the cell finds yet another way to bypass the A2 route and continues to proliferate. At time point 3, B1 becomes the top target, so the next
treatment cycle will target B1 (together with A1 and A2). This process will continue until growth control is optimized and relapse to rapid replication does not occur.
For each target at each treatment stage, exactly how much drug (dose) and how often to apply it (frequency) will require careful evaluation and should be different
across patients. That is, other than depicted in the schematic for simplification purposes, the network adaptation is likely not hard-wired or rigidly dependent on
external therapeutic pressure, but rather it undergoes a dynamic transition through an intrinsic optimization process. To manage side effects, a basic strategy could
be to maximize the modulation effects on the top target specific to each treatment iteration, while keeping the “pressure” on prior targets at their respective
“maintenance” minimum yet necessary dosing/frequency levels. Top targets are highlighted in yellow when the target identification process is performed. R: receptor;
A1, A2, B1, B2: signaling molecules of the network.

could instead be intended to modulate it up or down to redirect
the network output. The second question is how frequently
should the tumor system be re-examined in order to identify
new targets or target combinations? While this is generally
cancer type- and treatment-specific, it should also be patient-
specific – yet remaining mindful of operational constraints
and economics involved when translating this concept into a
clinical setting. Still, in our opinion, every time a patient sees
a diminishing therapeutic yield from, let alone fails a particular
targeted treatment, the molecular network should be re-evaluated
to potentially adjust the targeting strategy. We note that the
timeline shown in Figure 1 is merely a schematic, and it follows
that new network configurations (and thus the target hit-list) will
differ in how fast they evolve, as would the drug dose and dosing
schedules (determined uniquely for each drug delivered) for the
individualized patient treatment plan.

In our dynamic approach, targets will emerge sequentially
through “selection” imposed by targeted treatment and the
perturbations it causes and reconfigurations the network
stabilizes to. This is geared toward optimizing tumor growth
control and as such differs from current combinatorics
approaches (Gillies et al., 2012; Logue and Morrison, 2012),

where the “most impactful” target combination is assessed
once and then applied a priori, which should also incur more
unexpected on-target or off-target side effects. We note that based
on current reports on cell signaling (Tanay et al., 2005; Wei et al.,
2016; Young et al., 2017), there are reasons to believe that there
is some form of phase transition for network adaptability or
maximum carrying capacity for the selection pressure or stress
applied by a treatment, beyond which the cell simply dies. Rather
than trying to kill all the cancer cells as efficaciously as possible,
which is often impossible because of, e.g., detection limits and
delivery challenges, our goal is to achieve maximum control
over disease progression with minimal side effects, hence the
sequential probing approach implemented in dynamic targeting.

Admittedly, there are many challenges in implementing this
dynamic targeting strategy in current clinical practice. For
example, immunotherapy is known to not always yield a tumor
response within a time frame that other treatments may have
shown, and some patients may experience initial increased
size of tumor lesions with subsequent decreased tumor burden
[this phenomenon is called pseudoprogression (Hodi et al.,
2016)]. If a molecular targeted therapy is used together with
immunotherapy, then we should give this type of combination
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treatment more time for re-evaluation of the patient; otherwise,
it would prematurely eliminate treatments that might have
been working but more slowly. As another quick example, if
multiple clinical tests (genetic sequencing with high-throughput
techniques, biopsy, imaging, etc.) are required for evaluating the
tumor, then the question is whether it can be done in a reasonable
time frame and at an acceptable risk for the patient, and if these
additional assessments have a favorable cost to benefit ratio.
Lastly, for any type of cancer, it should be kept in mind that
only a subset of patients could benefit from a particular drug
treatment. Hence, molecular diagnostics and imaging markers
(Ransohoff and Gourlay, 2010; Reis-Filho and Pusztai, 2011;
Jafari et al., 2017; Sepulveda et al., 2017) will be critical to
correctly identify patient cohorts that are best suited for different
targeted therapies, in addition to assessing response to therapy
and monitoring patients for adverse drug reactions. Many other
significant challenges related to further understanding tumor
heterogeneity, tumor-host interactions, and immune response,
etc. (Gatenby et al., 2010; Andre et al., 2013; Enriquez-Navas et al.,
2016; Ibrahim-Hashim et al., 2017; Zhang et al., 2017) certainly
exist in translating this strategy to clinical application. Further
discussion of those challenges is beyond the scope of this article,
as we only focus on introduction of a new concept, but it is
worth emphasizing that many details with respect to technology,
clinical care, regulation, and reimbursement need to be addressed
in order to translate this concept into a reality.

To implement the dynamic targeting strategy, it would be
prohibitive to evaluate the sheer number of mathematically
possible drug target combinations multiple times over the
course of treatment in preclinical animal models, let alone
in a clinical setting. We therefore need, and should take
full advantage of, large-scale unbiased methods based on
mathematical modeling to evaluate and prioritize potential drug
target combinations as early as possible. Indeed, mathematical
network modeling has been helpful in identifying promising
targets and effective combinations of existing targets (Wang
et al., 2007, 2008, 2009, 2011b, 2012, 2014; Zhang et al., 2009;
Miller et al., 2013; Wang and Deisboeck, 2014; Schoeberl et al.,
2017). Once proven reliable, these models can be used to
exhaustively test the efficacy of a large number of single drug
and drug combinations by correlating signaling outputs with
corresponding network perturbations in a dynamic fashion.
Computer model simulations can be effectively integrated
with quantitative wet lab studies to facilitate the process of
identifying effective drug target combinations progressively
over the course of treatment when treatment efficacy needs
to be evaluated or a new treatment method is considered
necessary; the mathematically narrowed down selection of
individualized, computationally validated drug targets and
combinations would then be handed over to conventional
preclinical testing.

PILOT EXAMPLES

We here discuss two recent examples to demonstrate the
importance of dynamic targeting in cancer treatment. We note

that both examples do not represent a full implementation of the
dynamic targeting process. However, they reflect the necessity
for novel approaches addressing network rewiring to find new,
complementary drug targets or their combinations in an effort to
truly improve survival and the probability of long-term remission
if not cure in cancer treatment.

Lee et al. (2012) studied three cell lines from triple-
negative breast cancer (i.e., estrogen receptor-, progesterone
receptor-, and HER2 oncogene-negative) for their responses
to seven genotoxic drugs and eight signaling inhibitors in
various combinations and dosing schedules. They found that
combination treatment with EGFR inhibitor (erlotinib) and
DNA-damaging chemotherapy (doxorubicin) led to substantial
killing of cancer cells, but only when the EGFR inhibition was
used before the chemotherapy by at least 4 h. This combination
treatment led to the rewiring of oncogenic signaling pathways,
which has the potential to make cancer cells more susceptible
to death. That is, the observed response relates to the dynamic
effects on the molecular interaction network, which was rewired
in response to EGFR inhibition, during which the cells once
again became susceptible to death triggered by DNA damage.
Since it was challenging to directly examine rewiring pathways
by using wet lab experiments alone, they constructed a data-
driven model based on partial least squares regression which was
then used to correlate cellular responses with different forms of
drug treatment. This study is significant, as it provides strong
evidence that the timed application of signaling inhibitors causes
the rewiring of signaling pathways in tumor cells and renders
them more susceptible to subsequent chemotherapy. Other
studies, such as Huether et al. (2005), also pointed to changes in
apoptotic signaling pathways from a targeted therapy increasing
chemotherapeutic sensitivity, with time dependence. Moreover,
as also shown in other clinical research (Andre et al., 2003, 2004,
2009), this study by Lee et al. (2012) demonstrates that not only
the selection of optimal drug combinations, but also the sequence
and timing of the administration of the multiple therapeutic
drugs were critical to maximize treatment efficacy. Goldman
et al. (2015) also reported that if a chemotherapy drug pair is
administered in the right temporal sequence combinations, the
leading drug could induce a phenotypic cell state transition,
thereby making the cancer vulnerable to the partner agent.
Interestingly, they even proposed the use of mathematical
modeling to optimize sequential treatment with two drugs to take
advantage of rewiring in response to the first drug.

As another example, to understand the dynamic, non-linear
behavior of signaling pathways in cancer, Bernardo-Faura et al.
(2014) developed an adaptive model to study and predict changes
in network architecture (i.e., topology) over time in response
to drug treatment based on fuzzy logic, a method that has
been widely used in computation and engineering. Using the
model, they tested the dynamics of the mitogen-activated protein
kinase (MAPK) pathway (which was composed of 10 signaling
intermediates) against a dataset derived from a melanoma
cell line that was exposed to different pharmacological kinase
inhibitors over 4 days. They found that, although Sorafenib
(an inhibitor) was considered to have the capability to prevent
phosphorylation of MEK1/2, which should in turn suppress
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the activation of ERK1/2, the observed ERK1/2 profile was
not consistently inhibited, suggesting a signaling rearrangement
compared to the original MAPK pathway. While the rewired
interaction could not be specifically identified with the model,
the potential underlying biological mechanisms could range
from genetic mechanisms (such as mutations) to spatiotemporal
pathway regulations. This result also proved an interesting point:
that some biological mechanisms may enable the cell to enhance
certain pathways or prevent some reported interactions from
happening in order to trigger a specific response, depending
on the context or cell type (Jones et al., 2008). This adaptive
modeling approach can be used to characterize dynamic signaling
rearrangements that grant tumors the ability to maintain
proliferation and develop resistance.

CONCLUSION

Using the same drug or drug combinations throughout the
course of treatment has been proven ineffective to overcome
the pathway crosstalk and redundant signaling mechanisms,
which are thought to be responsible (at least in part) for the
modest responses observed in current trials of targeted therapies.
Focusing on long-term tumor control rather than eradication, we
introduce a dynamic targeting strategy, proposing that the target
“signature” should change accordingly as the signaling network
adapts during the course of treatment. Of course, this critically
depends on being able to analyze the molecular networks readily
and sufficiently, and mathematical models present an ideal

platform for testing and optimizing drug combinations whenever
target re-identification is needed. Ultimately, one may be able
to predict the range of emerging target configurations, so that
personalized, multi-tiered treatment can become proactive as
opposed to being reactive to the network’s intrinsic ability to
adapt. Compared to current preclinical and clinical oncology
practice, our concept offers a faster, more effective, and thus
arguably more economic approach to explore a large number
of potential treatment strategies to identify an optimal, patient-
specific therapeutic regimen.
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