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The prefrontal cortex (PFC), which plays key roles in many higher cognitive processes, is a

hierarchical system consisting of multi-scale organizations. Optimizing the working state

at each scale is essential for PFC’s information processing. Typical optimal working states

at different scales have been separately reported, including the dopamine-mediated

inverted-U profile of the working memory (WM) at the system level, critical dynamics at

the network level, and detailed balance of excitatory and inhibitory currents (E/I balance)

at the cellular level. However, it remains unclear whether these states are scale-specific

expressions of the same optimal state and, if so, what is the underlying mechanism

for its regulation traversing across scales. Here, by studying a neural network model,

we show that the optimal performance of WM co-occurs with the critical dynamics at

the network level and the E/I balance at the level of individual neurons, suggesting the

existence of a unified, multi-scale optimal state for the PFC. Importantly, such a state

could be modulated by dopamine at the synaptic level through a series of U or inverted-U

profiles. These results suggest that seemingly different optimal states for specific scales

are multi-scale expressions of one condition regulated by dopamine. Our work suggests

a cross-scale perspective to understand the PFC function and its modulation.

Keywords: optimal states, working memory, criticality, E/I balance, dopamine, the PFC

INTRODUCTION

The brain is consisting of structures at different scales that are hierarchically organized, ranging
from synapses and cells all the way to networks of brain areas (Park and Friston, 2013; Betzel and
Bassett, 2017). Incorporating regularities for different levels to give a coherent, cross-scale account
for brain functions is a significant challenge for systems neuroscience. The prefrontal cortex
(PFC), which is involved in many higher cognitive processes, such as working memory (WM),
planning, and multi-tasking (Yang and Raine, 2009; Diamond, 2013), has been intensively studied
at different scales, revealing diverse scale-specific optimal states that can benefit the information
processing occurring at corresponding scales. Firstly, at the system level, WM, which refers to
the ability to temporarily hold and manipulate information in the brain (Baddeley, 1992, 2012),
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is strongly modulated by dopamine (DA) according to a well-
established “inverted-U” profile. That is, too strong or too weak
of dopamine D1 activation is detrimental for WM, with optimal
performance achieved at an intermediate level (Zahrt et al., 1997;
Vijayraghavan et al., 2007). Deficits in this modulation can lead
to severe impairment in WM, which is a key symptom in various
brain disorders (Austin et al., 2001; Steele et al., 2007), such
as schizophrenia (Lett et al., 2014). Secondly, at the network
level, it has been discovered that the state of PFC networks in
vitro could be affected by DA. That is, intermediate dopamine
D1 receptor activation led to a so-called critical state (Stewart
and Plenz, 2006), which has been suggested as the optimal
state for neuronal information processing (Beggs and Plenz,
2003; Kinouchi and Copelli, 2006; Levina et al., 2007; Millman
et al., 2010; Yu et al., 2017). Thirdly, at the cellular level, the
balance between the excitation and inhibition, reflected by the
close tracking of the inhibitory inputs to the excitatory ones for
individual neurons (Okun and Lampl, 2008), has been suggested
as an important factor that modulates the overall working state of
the network (Vogels et al., 2011). Although diverse biological and
computational approaches (Cools and D’Esposito, 2011; Barak
and Tsodyks, 2014) have been used to study the working state
regulation in the PFC, it remains unclear whether the optimal
states manifested at individual scales mentioned above are just
different expressions of the same unified, cross-scale optimal state
at the PFC.

In addition, if a unified optimal state indeed exists, what
could be the underlying mechanism modulating it at all
scales simultaneously? Anatomical studies indicated that the
PFC contains many DA receptors (Goldman-Rakic, 1995)
and receives diffuse projections from midbrain dopaminergic
neurons (Robbins, 2000). Thus, a potential candidate for the
cross-scale modulation of the optimal state is the dopamine
modulation. Previous studies have shown that different degrees
of dopamine D1 receptor activation act differentially on
glutamatergic synapses between the excitatory and inhibitory
neurons. Specifically, with low doses of DA, the inputs to
both excitatory and inhibitory neurons are unaffected; with
moderate doses of DA, the enhancement of glutamatergic input
to excitatory neurons is more pronounced; and with high doses
of DA, the inputs to both excitatory and inhibitory neurons are
strongly enhanced (Muly et al., 1998; Gao et al., 2001). However,
how such a mechanism could give rise to the modulation across
different scales in order to adjust the working state of the PFC
remains unclear.

Here we address these two issues by studying a network
model. We found that the optimal performance of WM at
the system level co-occurs with critical neuronal dynamics
at the network level and the most balanced excitation and
inhibition at the cellular level. Importantly, such a unified
optimal state is obtained through an intermediate level of
dopamine D1 activation at the synaptic level. These results
suggest that empirically observed, seemingly different optimal
states at individual scales are different expressions of one
condition regulated by dopamine. These results shed new light
on the multi-scale state optimization for information processing
in the PFC.

RESULTS

The State Transition of Neuronal Dynamics
in the Network
Our network model is adapted from a biologically plausible WM
model (Mongillo et al., 2008). In this model, the external input
for the network first activates one of the excitatory-selective
neuronal populations (Es, cf. Figure 1A), whose activities form
the internal representation of the input. These activities trigger
short-term synaptic facilitation, resulting in the strengthening of
the synaptic connections within this population. Consequently, a
strongly interconnected neuronal group is temporarily formed.
Through recurrent excitation, this group can maintain its
activity as the internal representation of the recent input,
even after the input is removed, thereby forming WM. To
investigate how network’s WM performance can be modulated,
we examined its behavior within a 2-D parameter space (the
EE–EI plane). The two dimensions represent synaptic strength
among excitatory neurons (JEE) and strength of synapses from
excitatory to inhibitory neurons (JEI), respectively. Driven by
weak background noise, the average firing rate of the neuronal
populations changed as a function of JEE and JEI (Figure 1B).
In this EE-EI plane, we found phase transition from a low
(phase1) to high activity regime (phase2). In phase1, the
neuronal activities were very sparse, with weak responses evoked
by background noise (Figure 1C), whereas in phase2, high-
frequency reverberating activities within one population were
maintained without external inputs (Figure 1D). Note that the
active population in this case was stochastically chosen by the
dynamics. This population activates the inhibitory group (I, cf.
Figure 1A), resulting in the suppression of activities of other
populations. Network behavior analysis within the EE-EI plane
provided a clear view of how WM can be achieved. That is,
in normal condition, the network resides in phase1 at rest
(i.e., without external input). When the external input triggers
activities leading to short-term increases in JEE, the network
state moves along a trajectory parallel to the JEE axis and
toward the phase transition border. If the input is sufficiently
strong to push the system across the transition border into
phase2, the reverberating activities are self-maintained and WM
is formed. Contrastingly, if the network resides in phase2 at rest,
the maintained reverberating activities have no corresponding
sensory event (“imaginary memory”), which is reminiscent of
hallucination in brains disorders, e.g., schizophrenia (Horga
et al., 2014; Llorca et al., 2016).

Dopamine Modulation at the Synaptic
Level in the Model
We next study how to model the dopamine modulation at
the synaptic level and introduce it into the model. Previous
studies have indicated that activation of the dopamine D1
receptor can have different effects on the excitatory inputs
between excitatory to excitatory and excitatory to inhibitory
synapses. Specifically, glutamatergic input of excitatory neurons
may increase at low D1 activation and, such a strengthening
effect saturates relatively early; however, glutamatergic input of
inhibitory neurons is less sensitive to D1 activation, resulting
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FIGURE 1 | Structure and dynamic behavior of the WM model, and its DA modulation. (A) Network architecture. ES1, …, ES5, Ens and I denote five selective

excitatory populations, one non-selective excitatory population, and one inhibitory population, respectively. Jij (where i, j is I or E) denotes the synaptic connection from

i population to j population. The E–E synapse can be a potentiated value (Jp), baseline value (Jb), or potentiated value with a certain probability (Jb/p). JEI and JEE (Jb,

Jp, Jb/p ) are modulated by DA (see Materials and Methods). (B) Firing rate of the most active Es population at rest (i.e., without external stimulus) changes with

synaptic strength among excitatory neurons (JEE ) and from the excitatory to inhibitory neurons (JEI ). AEE and AEI are the scaling factors for JEE and JEI, respectively.

(C,D) Spiking patterns corresponding to the two different phases (phase1 and phase2) in (B). Different colors represent five Es populations (only 10% neurons are

shown), with each dot denoting a spike. (E) Scaling factors AEE and AEI change as a function of dopamine D1 activation level. The strength difference

(1A = AEE − AEI ) reaches its maximum at DA = 1.0. (F) Trajectories represent how the corresponding system state changes with DA. The system represented by the

white trajectory is analyzed in the main text. Similar results can also be obtained through the gray trajectory (with a different synaptic strength range), demonstrating

the robustness of the results. Arrows mark the intermediate level of DA = 1.0.

in “delayed” onset and saturation of strengthening effects (Muly
et al., 1998; Dash et al., 2007). Therefore, in our model, the effects
of increasing the dopamine D1 activation level were simulated
by changing the strengths of JEE and JEI through multiplying
corresponding scaling factors AEE and AEI , according to the

functions shown in Figure 1E. For each level of D1 activation,
we deduced the corresponding values of JEE (AEE) and JEI (AEI),
providing coordinates to pinpoint the network state in the EE-EI
plane. Eventually, a continuous trajectory representing how the
network state changed was obtained (Figure 1F, white curve).
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With the increases in D1 activation level, the network initially
approached and then deviated from the transition border, with
the shortest distance achieved by an intermediate D1 activation
level. This analysis was not sensitive to specific positions at which
the trajectory met the phase transition border (determined by
different strength range, see Materials and Methods), as similar
results can be obtained with different trajectories (Figure 1F,
gray curve).

WM Performance at the System Level
Regulated by Dopamine
We then examined how WM performance at the system
level changed along the regulation trajectory of dopamine D1
activation mentioned above. As shown in Figure 2A, a memory
item could be loaded into WM when the network was in
the resting state. Importantly, the content of WM could also
be updated if another item need to be memorized. At the
“behavioral” level, these two measures were applied to evaluate
the performance of WM, including the sensitivity of loading
items and the flexibility of updating memory. Specifically, at
each level of D1 activation, stimuli with a fixed strength
were applied to one item-selective excitatory population (Es)
with different durations. As shown in Figure 2B, we found
that regardless of the input strength, the shortest time (Tsens)
needed for successfully loading an item into WM exhibited a
U-shaped profile. As a result, the sensitivity of WM, defined
as the reciprocal of Tsens, had an inverted-U profile, with the
maximal sensitivity achieved with the intermediate D1 activation
(Figure 2C). Similarly, when we defined the shortest time needed
to update a memory item as Tflexi (normalized by the smallest
Tflexi obtained in the whole DA modulation curve), and used
its reciprocal as the measure of the flexibility of WM, we
found that the flexibility of WM also exhibited an inverted-U
profile (Figure 2D).

Next we studied the network mechanisms underlying these
WM behaviors. As WM is formed by the system jumping from
phase1 to phase2 in response to an external input, the closer
the original state is to the transition border, the easier it is for
the system to go through the transition. Closer examination of
the system’s behavior revealed that intermediate D1 activation
was associated with the highest firing rates f (Figure 2E) and
maximal neural transmitter utilization parameter u (Figure 2F).
Accordingly, in such a state, the total amount of available
transmitter in presynaptic neurons, x, was lowest (Figure 2G).
Interestingly, as the increase in u was less pronounced compared
with the decrease in x, the amount of neural transmitter released
per spike (ux) reached the minimum (Figure 2H), reflecting a
more efficient use of transmitter to produce individual spikes
in the network. However, as the increase in firing rates was
more pronounced under an intermediate D1 activation, the
overall use of neural transmitter in the entire network (uxf )
was maximized in such a state (Figure 2I). This observation
indicates the price the system needs to pay for increased
sensitivity and flexibility of WM—the accelerated pace of
consuming neurotransmitter and, consequently, more energy
used to refill the reservoir. Note that the U or inverted-U
profiles in Figure 2 are non-symmetrical. Although the difference
of connecting strengths (1A) could be the same for lower

and higher dopamine concentrations, the absolute connecting
strengths (AEE, AEI) with higher D1 activations were larger than
those with lower D1 activations (Figures 1E,F), which led to
different network dynamics.

Critical State at the Network Level
Regulated by Dopamine
To bridge the state modulation regularity of WM performance at
the system level with the corresponding regulation processes and
characteristics at the network level, we examined the relationship
between the maximal WM sensitivity/flexibility and features
of network’s dynamics. Specifically, we analyzed two indicators
of so-called critical dynamics: avalanche size distribution and
branching parameter. Avalanches are activity cascades within the
system and avalanche size is how many neurons are involved
in the corresponding cascade (Figure 3A). A hallmark of the
critical state is that avalanche size distribution exhibits a power-
law with the exponent close to −1.5 (Beggs and Plenz, 2003).
Consistently, we found the network dynamics exhibited a power-
law distribution with exponent closest to −1.5 under the
intermediate D1 activation (Figures 3B,C). Another indicator of
critical dynamics is the branching parameter, which is defined as
how many neurons, on average, can be activated by one active
neuron. It measures how quickly the activities in a recurrent
network are amplified or attenuated. Stable activity propagation
of the critical state is associated with a branching parameter
close to 1 (Beggs and Plenz, 2003; Shew and Plenz, 2013).
Here, we found that the branching parameter estimated from
the network dynamics was closest to 1 under the intermediate
D1 activation (Figure 3D). Importantly, with too strong or
too weak D1 activation, the system deviated from the critical
state in the same direction. Specifically, large avalanches were
formed less frequently and the branching parameter was <1,
indicating a subcritical state in which the propagation of activities
was over-attenuated. Such a phenomenon is in line with the
previous finding that high or low D1 activation resulted in
a subcritical state in brain slices (Stewart and Plenz, 2006),
reflected by the deeper slopes of avalanche size distributions
and branching parameters being smaller than one. Further, to
provide an overview of the network state regarding the distance
from criticality (Figure 3E), we plotted the branching parameter
for all possible states within the EE-EI plane. We found a
phase transition in the branching parameter corresponding to
the transition in terms of network activity level, and the self-
sustained activities in the top left part was associated with a
branching parameter close to 1. The trajectory of DAmodulation
(Figure 3E) provides a direct assessment of how the distance
from the critical state was modulated by different levels of D1
activation. Compared with Figure 2, it is clear that the critical
state jointly emerged with the optimal WM performance when
the intermediate degree of dopamine D1 activation (DA = 1.0)
was set at the synaptic level.

Criticality at the Network Level Maintained
by E/I Balance at the Cellular Level
We next addressed how critical dynamics at the network
level could be maintained with the intermediate degree of D1
activation. Specifically, given the short-term synaptic facilitation
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FIGURE 2 | Dopamine modulation and the optimal working memory performance. (A) One item is loaded into memory from the resting state and updated to another

item by applying item-specific stimuli (green shading) with a durations of Tsens and Tflexi , respectively. Black dots are neural spikes (only 10% neurons are shown). u

and x donates average utilization parameter and available resource in corresponding populations, respectively. (B) The shortest stimulation time (Tsens) needed for the

model to load the stimulus into WM from resting state at each D1 activation level. Results for two stimulus strengths (strength1 < strength2) are shown. (C) Sensitivity

of WM, defined as the reciprocal of Tsens, exhibits an inverted-U profile with dopamine D1 modulation. (D) The shortest time (Tflexi ) needed to update a memory item

and corresponding flexibility were also shaped by the U and inverted-U profiles, respectively. (E–I) Internal parameters that determine the system’s dynamics change

as a function of D1 activation, including firing rate f (average firing rate), u (utilization parameter), x (available resources), ux (transmitters used per spike), and uxf (total

transmitters used) of the population receiving memory stimuli (strength1, and in total 200ms long), which was Es1 for all analyses presented in this paper. Data are

represented as mean ± S.D. across all the neurons in the population.
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FIGURE 3 | Intermediate D1 activation corresponds to a state close to criticality. (A) Schematic diagram showing the identification of neuronal avalanches. Solid

circles represent individual neurons, with red donating active state and gray donating quiescence. Neurons that fire in the same time bin or consecutive bins of length

1t form an activity cascade, i.e., an avalanche. Avalanche size, s, is defined as the number of active neurons in the cascade. Two avalanches (s = 6 and 3) are shown.

(B) Avalanche size distribution obtained with three different levels of D1 activation, with the intermediate level (DA = 1.0) associated with distribution closest to a

power-law exponent of −1.5 (red dashed line). (C,D) The exponent (α) and the branching parameter (σ ) change as a function of the D1 activation level. Red dotted

lines represent α = −1.5 and σ = 1 in (C,D), respectively. States corresponding to DA = 0.6, 1.0, and 1.4 are marked by arrows with the same color as in (B). α and

σ estimated with different D1 activation levels are statistically significant (one-way ANOVA, p < 0.05; post-hoc test among DA = 0.6, 1.0, and 1.4, p < 0.05; Data are

represented as mean ± S.D. across fifteen trials at each DA level). (E) Branching parameter (σ ) exhibits a phase transition similar to the firing rate shown in Figure 1F.

mechanisms built in the network, and that the intermediate
D1 activation leads to the most active network state, what
mechanism can prevent the system from a runaway excitation,
i.e., being supercritical, under such a condition? One possible
mechanism is the balance between the excitation and inhibition,
i.e., E/I balance, at the cellular level. Reflected by the close
tracking of the inhibitory inputs to the excitatory ones, E/I
balance is well-documented (Okun and Lampl, 2008) and is

suggested as an important factor modulating the overall network
state (Vogels et al., 2011). This balance is essential to maintain the
states of neuronal networks, demonstrated by both experimental
(Shew et al., 2009) and modeling studies (Lombardi et al., 2012;
Poil et al., 2012). Under the intermediate D1 activation, the
correlation between the total inhibitory and excitatory currents in
the network was maximized (Figure 4), reflecting a higher level
of E/I balance. This effect was global to the entire network, as
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FIGURE 4 | Dopamine modulates the balance between excitatory and inhibitory currents to individual neurons. (A–D) The average correlation coefficient of excitatory

and inhibitory currents received by individual neurons in different populations during stimulus presentation, including stimulus-targeted selective population (Es1), Es

population without stimulation (results for Es2 are shown as an example), non-selective population (Ens), and inhibitory population (I). Data are means ± SD across the

corresponding population. (E–H) Similar to (A–D) but the correlation coefficient is computed based on only recurrent currents, excluding external inputs and leaky

currents. (I) The correlation coefficient of Es1 (to save space, Es2, Ens, and I are omitted.) in (A) increases with stronger stimulation strengths. DA = 1 is associated

with the largest correlation across all strengths. For visual clarity, only the means of the correlation coefficients across the corresponding population are shown. (J) CV

(coefficient of variation) of the inter-spike interval changes as a function of DA modulation, with DA = 1 corresponding to the highest CV (Data are represented as

mean ± S.D. across fifteen trials at each DA level). The group differences between low, high, and intermediate DA in (A–J) are statistically significant (one-way ANOVA

with multiple comparison tests under Tukey’s criterion, p < 0.05).
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it was manifested in all neuronal populations (Figures 4A–D).
Furthermore, the correlation between the E and I currents
was higher when we only analyzed the recurrent inputs (i.e.,
without external inputs, background inputs, and membrane
leakages; seeMethods) (Figures 4E–H), suggesting that recurrent
dynamics dominated the E/I balance. To further verify this,
we examined how the E/I currents correlation changed as a
function of recurrent activity levels induced by external inputs
with different strengths. As shown in Figure 4I, this correlation
increased monotonically as a function of the strength of external
inputs, with the intermediate D1 activation associated with the
highest correlation, reconfirming the casual role of recurrent
activities in determining the E/I balance. Besides the highly
correlated E and I currents, a large coefficient of variation (CV)
of neuronal activities is also an important indicator of the E/I
balance (van Vreeswijk and Sompolinsky, 1996). Consistently,
we found that the CV of network activities was maximized with
the intermediate D1 activation (Figure 4J). These results imply
that the network state under the intermediate D1 activation is
associated with the highest level of E/I balance, which allows the
inhibition to track the excitatory drive within the network and to
avoid the supercritical state.

Multi-Scale Expressions of One Optimal
State Regulated by Dopamine
Finally, based on all the results described above, we propose a
framework incorporating the optimal states from the perspectives
of WM, network dynamics and the E/I balance, as shown in
Figure 5. At the synaptic level, different levels of dopamine D1
activation have different enhanced efficacy to the glutamatergic
input of the excitatory and inhibitory neurons, i.e., JEE and
JEI. This changes the relative strength of the excitation and
inhibition in the system. As a result, the measures of WM,
critical dynamics and the E/I balance at different scales are all
shaped by a series of U or inverted-U profiles. The extrema
of these U or inverted-U profiles suggest optimal working
states for corresponding scales, which simultaneously obtained
by the intermediate level of D1 activation. According to such
a framework, the optimal states in the PFC, including the
best WM performance at the system level, critical neuronal
dynamics at the network level, and detailed E/I balance at the
cellular level are multi-scale expressions of one state modulated
by dopamine.

DISCUSSION

When interpreting the results, several limitations need to
be clarified. Firstly, we did not consider the lags between
the excitatory and inhibitory currents in calculating their
correlations. From previous current-clamp recordings in single
neurons, the inhibitory currents lag about a few milliseconds
behind the excitatory currents (Okun and Lampl, 2008). Such
values are smaller than the sampling interval of currents in
our simulation. Therefore, neglecting the lags in calculating
the correlation between excitatory and inhibitory currents
would not have a strong effect on the results. Secondly, in

our simulation, we chose a specific range of AEE and AEI,
however, the main results obtained can be well-replicated
by other choices of the range of AEE and AEI, e.g., the
results (cf., Supplementary Figure S1) obtained from the gray
modulation curve in Figure 1F, suggesting that our results are
generalizable for different dopamine baseline and modulation
range. Thirdly, many different computational models of WM
have been proposed (Wang, 2002; Goldman et al., 2003;Machens,
2005; Barak and Tsodyks, 2014). Here we built our system
by adapting a biophysically realistic model of WM (Mongillo
et al., 2008), which is agreed well with various empirically
observed electrophysiological properties (Rainer and Miller,
2002; Shafi et al., 2007). It awaits future studies to investigate
if the same results can be obtained in other WM models.
Fourthly, in the present model, the neural noise was modeled
as stable Gaussian white noises, as in many other computational
models of WM (Brunel and Wang, 2001; Mongillo et al., 2008).
Recently, it was reported that the variance of neural noise is
related to environmental factors, such as body temperature (Dvir
et al., 2018), which has not been considered here. Our results
demonstrated that it was the recurrent currents rather than the
background noise primarily determined the detailed E/I balance
for individual neurons (Figures 4A–I). Thus, as long as the noise
variance level is within a normal range (i.e., the noise currents
do not suppress the recurrent currents), the optimal state would
not change.

In our results, the optimal working memory performance is
regulated by dopamine by a typical U or inverted-U profiles,
which are in line with many previous empirical (Dash et al., 2007;
Vijayraghavan et al., 2007; Kroener et al., 2009; Van Snellenberg
et al., 2016) and computational (Brunel and Wang, 2001; Dash
et al., 2007; Lew and Tseng, 2014) studies . On top of that,
our results provide a possible link between the system level
characteristics and underlying synaptic mechanisms. We show
that not only the measures at the system level like sensitivity
and flexibility but also the measures at the synaptic level, such
as available resources (x), are shaped by dopamine-mediated U
or inverted-U profiles. These results indicate that the modulation
of WM performance at the system level is an aggregated effect of
modulations occurring at the finer scales of neural networks.

A neural network operating close to a critical state has
various functional advantages in terms of information encoding,
storage, transmission, and processing (Kinouchi and Copelli,
2006; Beggs, 2008; Kello, 2013). Along with the empirical
evidence that biological neural networks were indeed exhibited
typical behavioral hallmarks of criticality in their dynamics, it
has been long expected that critical neural networks can play
an essential role in various brain functions, and the deviation
from such a state may lead to functional deficits as seen in many
brain disorders. However, so far there is nomechanism to directly
link the critical neural network and well-characterized brain
functions. Our results demonstrate that the optimal performance
of working memory at the system level was achieved when the
neural network was operating most close to a critical state at the
network level, and deviation from the critical state would impair
WMperformance. Because the basal dopamine levels are variable
across individuals (Mattay et al., 2000; Gibbs and D’Esposito,
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FIGURE 5 | Multi-scale expressions of the same optimal state regulated by dopamine, including detailed E/I balance at the cellular level, critical dynamics at the

network level, and optimal WM performance at the system level.

2005; Cools and D’Esposito, 2011), the DA-induced inverted-
U profile of WM performance is not a robust biomarker
for diagnosing working memory deficits. Unlike the optimal
concentration suggested by the DA-induced inverted-U profile
of WM performance, which varies greatly across individuals, the
critical state is a feature of network dynamics that is individual-
invariant. Thus, it would be informative to study if the deviation
from criticality can be used as an individual-invariant biomarker
of network anomalies underlying WM deficits.

Our results quantitatively show that the excitatory currents
are highly correlated with the inhibitory currents in individual
neurons, indicating detailed E-I balance. The finding is consistent
with the current-clamp recordings in single neurons that the
excitatory and inhibitory currents of nearby cells track each other

closely (Okun and Lampl, 2008). The current-clamp recording
can only record the sum of the excitatory or inhibitory currents in
a single neuron, so the relative contributions of sub-components
of the currents, such as the recurrent currents, the external inputs,
and the leaky currents of neurons, are difficult to delineate.
Simulations are free from this limitation, which enables us to
illustrate that the recurrent currents play a more important role
in keeping the E/I balance compared to the background noise, the
leaky currents, and item-targeted external inputs.

The most important finding of the present work is that
optimal states at different scales in the network model
are different expressions of the same underlying condition
modulated by dopamine. The measures at each scale are
characterized by a series of U or inverted-U profiles, and
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each extremum indicates an optimal working state in the
corresponding scale. Specifically, at the system level, DA-
mediated WM performance profiles suggest an optimal state
accompanied by the maximum sensitivity and flexibility. At the
network level, the optimal state is corresponding to the critical
dynamics, which hold numerous advantages in information
processing, including transmission (Beggs and Plenz, 2003; Rämö
et al., 2007), storage (Haldeman and Beggs, 2005; Larremore
et al., 2011), computation (Bertschinger and Natschläger, 2004),
stability (Beggs, 2008) and dynamic range (Hosaka et al., 2008;
Shew et al., 2009; Gautam et al., 2015). At the cellular level,
an optimal state means that the excitatory and inhibitory
currents most closely track each other (Okun and Lampl, 2008;
Cafaro and Rieke, 2010), which can optimize the coding and
metabolic efficiency (Yizhar et al., 2011; Sengupta et al., 2013),
and track the external input more quickly (van Vreeswijk and
Sompolinsky, 1996). Importantly, all these optimal states in
the PFC manifested at different scales are regulated by the
same control parameter—the concentration of dopamine at the
synaptic level, with an intermediate concentration corresponding
to above mentioned optimal states at all levels. An interesting
question is that what is the mechanism to dynamically modulate
the dopamine in the PFC. Anatomical studies indicate that
the PFC contains abundant DA receptors (Goldman-Rakic,
1995) and receives diffuse projections from the mesocortical
and mesolimbic dopaminergic systems originating in the ventral
tegmental area of the midbrain (Bannon and Roth, 1983; Cools
and D’Esposito, 2011). Thus, DA release in the PFC will occur
in response to a variety of events either aversive or rewarding,
and this release may prepare the PFC networks running in the
optimal state to deal with environmental or cognitive challenges
(Seamans and Robbins, 2010).

Working memory deficits were observed in many brain
disorders, such as schizophrenia (Lett et al., 2014), depression
(Austin et al., 2001), epilepsy (Swartz et al., 1996), and autism
(Steele et al., 2007). At the same time, abnormal regulation
in dopamine has been reported in related disorders, especially
in schizophrenic patients (Abi-Dargham et al., 2002). In
addition, disruption in the E/I balance has been implicated
in the same set of diseases (Rubenstein and Merzenich, 2003;
Fritschy, 2008; Marín, 2012; Murray et al., 2014). Here we
provide a cross-scale view to better understand how the
changes in dopamine in the PFC might cause E/I imbalance,
which can push the network away from the critical state and
eventually induce WM impairments. This provides a potentially
useful multi-scale framework to reveal how the effects of
abnormal neuromodulation at the synaptic level can penetrate
different scales and give rise to functional deficits in different
pathological conditions.

Our results indicate that these optimal states in the PFC
manifested at different scales are actually multi-scale expressions
of the same condition modulated by dopamine. More generally,
the multi-scale nature of complex biological systems are widely
reported. For example, healthy heartbeat interval series have
been found to exhibit multi-fractal properties (Ivanov et al.,
1999, 2004). In the brain, activity measures across a wide range
of spatial scales, including those based on neural spikes, the

local field potential (LFP), magnetoencephalography (MEG),
functional magnetic resonance imaging (fMRI), have revealed
a highly similar dynamical regime close to criticality (Beggs
and Plenz, 2003; Tagliazucchi et al., 2012; Shriki et al., 2013;
Bellay et al., 2015). In addition, previous modeling study have
also reported pervasive scaling laws at the cellular, network and
behavioral levels in the critical branching neural network (Kello,
2013). The current results further highlight that incorporating
the multi-scale properties with a cross-scale perspective is
vital for understanding complex phenomena and processes
in physiology.

In summary, based on studying a neural network model,
here we demonstrate a cross-scale mechanism of dopamine
modulation for state optimization in the PFC, which for the first
time links several seemingly unrelated regularities at different
levels into a unified, coherent framework. Our results suggest
that the optimal performance of WM at the system level, critical
dynamics at the network level, and E/I balance at the cellular level
could be multi-scale expressions of one optimal state in the PFC.
This unified framework gives a novel cross-scale understanding
of state optimization in the PFC, and more generally, provide a
new perspective to incorporate scale-specific regularities into a
coherent, cross-scale account for brain functions.

MATERIALS AND METHODS

Network Model
Our model was adapted from a biophysically realistic model
proposed by previous work (Mongillo et al., 2008), which
utilizes calcium-mediated synaptic facilitation among recurrently
connected excitatory neurons to formWM.

Model Architecture

The architecture of our model is shown in Figure 1A. The
network is composed of three types of neuronal populations:
(1) selective excitatory (Es) populations (from Es1 to Esp)
to encode in total p memory items, each containing fNE

neurons selected from a pool of excitatory neurons (in total
NE = 8,000 excitatory neurons; f is a proportion common
to all Es populations); (2) one non-selective excitatory (Ens)
population formed by the remaining (1 – pf )NE excitatory
neurons; and (3) one inhibitory population (I) with NI = 2,000
inhibitory neurons.

Each neuron, regardless of which population it belongs
to, randomly receives presynaptic connections from all other
neurons in the network with common probability c. Tomimic the
long-term potentiation effect of Hebbian learning, the excitatory-
to-excitatory connections (JEE) within the same Es population are
set to be stronger (Jp), whereas the connections between different
Es populations are set to be weaker, i.e., baseline value (Jb). The
synapses connecting neurons from the Es populations to neurons
in the Ens population, as well as the connections within the Ens
population, take the potentiated strength (Jp) with probability
γ and the baseline strength (Jb) with probability (1 – γ ). These
synaptic strengths are indicated by Jb/p in Figure 1A.

All excitatory-to-excitatory synapses (JEE) display short-
term plasticity (see below), whereas the remaining synapses,
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TABLE 1 | Parameters used in the model.

Dopamine modulation parameters Dopamine1 Dopamine2

Optimal concentration of dopamine D0 1.0 1.0

Concentration domain [Dmin, Dmax] [0, 2.0] [0, 2.0]

Steep parameter Kc 0.150 0.120

Shifting parameter Dv 0.105 0.185

Selective stimulation Strength1 Strength2

Contrast factor Acue 1.10 1.15

Network parameters E I

Coding probability f 0.10 0.10

Number of memory items p 5 5

Probability of synaptic connection c 0.20 0.20

Number of excitatory/inhibitory cells N 8,000 2,000

Mean external current µext 23.80mV 21.0 mV

Standard deviation of external current σext 1.0mV 1.0 mV

Cell parameters E I

Spike emission threshold θ 20mV 20 mV

Reset potential Vr 16mV 13 mV

Membrane time constant τ 15ms 10 ms

Absolute refractory period τarp 2ms 2 ms

Synaptic parameters Values

Synaptic efficacy E to I JEI 0.135 mV

Synaptic efficacy I to E JIE 0.25 mV

Synaptic efficacy I to I JII 0.20 mV

Baseline level of E to E synapses Jb 0.10 mV

Potentiated level of E to E synapses Jp 0.45 mV

Fraction of initial potentiated synapses γ 0.10

Synaptic delays δ 0–1 ms

Short-term synaptic parameters Values

Baseline utilization factor U 0.20

Baseline available resources X 1.00

Recovery time of utilization factor τd 1,500 ms

Recovery time of synaptic resources τf 200 ms

Dopamine1 and Dopamine2 are parameters used for the white and gray modulation curve

in Figure 1F, respectively. Some parameters are based on a previous computational

working memory model (Mongillo et al., 2008).

including the excitatory-to-inhibitory (JEI), inhibitory-to-
excitatory (JIE), and inhibitory-to-inhibitory (JII), are constant.
For convenience, all parameters used in this model are listed
in Table 1.

Dynamic Rules of the Model

Activities of individual neurons are modeled by the leaky
integrate-and-fire model (LIF) with a refractory period of τarp.
Below the firing threshold (θ ), themembrane potential of neuron
i (Vi) is governed by:

τmV̇i = −Vi + I
(rec)
i (t)+ I

(ext)
i (t) (1)

where τm is the membrane time constant. The external input
(including background noise and memory-specific stimuli)

I
(ext)
i (t) is modeled as Gaussian white noise, with a mean of µext

and standard deviation of σext :

I
(ext)
i (t) = µext + σext · ηi(t) (2)

where ηi(t) is the standard Gaussian white noise. Memory-
specific stimuli are modeled by increasing µext but maintaining

σext . The recurrent current I
(rec)
i (t) is given by:

I
(rec)
i (t)=

∑

j

Ĵij(t)
∑

k

δ(t − t
(j)

k
− Dij) (3)

where t
(j)

k
refers to the firing times of presynaptic neuron j, Dij is

the transmission delay uniformly distributed between 0 and 1ms,
and Ĵij(t) is the instantaneous synaptic efficacy. For excitatory-
to-excitatory synapses, their strengths are dynamically adjusted
according to:

Ĵij(t) = Jij · uj(t − Dij)xj(t − Dij) (4)

u̇(t) =
U − uj (t)

τf
+ U

[

1− uj (t)
]

∑

k

δ

(

t − t
(j)
k

)

(5)

ẋj(t) =
X − xj (t)

τd
+ uj (t) xj (t)

∑

k

δ

(

t − t
(j)
k

)

(6)

where x indicates the available number of presynaptic
neurotransmitters, and u refers to the portion of x that
can be utilized during synaptic transmission, which reflects
the influence of calcium level on release probability at the
presynaptic site. U and X are the baseline values for u and x,
respectively. After each spike, x and u change according to
Equations (5, 6) with their corresponding time constants τd
(depressing) and τf (facilitating), respectively. As mentioned
above, only the excitatory-to-excitatory synapses are subjected
to this form of plasticity. All remaining synapse efficacies are
kept constant.

Model Dopamine Modulation

Previous studies have shown that different levels of dopamine D1
receptor activation act differently on glutamatergic input between
the excitatory and inhibitory neurons. Specifically, with low doses
of DA, the inputs to both excitatory and inhibitory neurons
are unaffected; with moderate doses of DA, the enhancement of
glutamatergic input to excitatory neurons is more pronounced;
and with high doses of DA, the inputs to both excitatory and
inhibitory neurons are strongly enhanced(Muly et al., 1998; Gao
et al., 2001). These differential effects of D1 activation level have
been widely acknowledged in computation models studying DA
modulation of the prefrontal cortical networks (Durstewitz et al.,
2000; Brunel and Wang, 2001; Lew and Tseng, 2014). To reflect
D1 modulation in the present model, we multiplied the absolute
strength of excitatory-excitatory (E-E) synapses (JEE, including
Jb, Jp, and Jb/p) and excitatory-inhibitory (E/I) synapses (JEI)
with relative strength factors AEE and AEI , respectively. AEE and
AEI are both functions of DA level, and the differences between
them change with DA, as indicated by the red dotted line (A) in
Figure 1E. The range of DA was set as D ∈ [0, 2]. Accordingly,
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we fixed the intermediate level of D1 activation at the center of
the range, i.e., D0 = 1.0. The range of the two scaling factors was
set as [Amin,Amax]. The functions of AEE and AEI could then be
specified as:

AEE =
[

1

CEE
·
(

1+ DL

1+ e(DE0−D)/Kc

)

− AP1

]

· 100% (7)

AEI =
[

1

CEI
·
(

1+ DL

1+ e(DI0−D)/Kc

)

− AP1

]

· 100% (8)

DE0 = D0 − DV (9)

DI0 = D0 + DV (10)

DL = Amax − Amin (11)

AP1 = 1− Amin (12)

where D refers to the level of D1 activation, and KC and DV are
two key parameters controlling the function shape in Figure 1E.
Steep parameter KC controls the vertical steepness and shifting
parameter DV controls the largest efficacy difference between
the two functions at D0. CEE and CEI are the normalization
parameters obtained by setting DV = 0 in Equations (9, 10) and
D= D0 in the following equations:

CEE = 1+ DL

1+ e(DE0−D)/Kc
(13)

CEI = 1+ DL

1+ e(DI0−D)/Kc
(14)

Each D1 activation level uniquely determines a AEI , AEE pair
(Figure 1E), which then specifies a point in the EE-EI plane.
With a continuously increasing D1 activation level, a system
state trajectory can be obtained. The exact shape and position
of the trajectory can be controlled by tuning parameters KC and
DV . Given (1) the objective function of obtaining the maximal
sensitivity of WM and avoiding the risk of “imaginary memory”
(see the main text for details), and (2) the constraints that at very
low/high D1 activation both JEE and JEI should be weak/strong,
eventually, we can obtain the trajectory as shown in Figure 1F.
With the increase in D1 activation level, the trajectory starts from
the diagonal, then approaches the transition line, before finally
returning to the diagonal.

Our main conclusions are robust toward different choices of
free parameters used in the model. For example, we show that
similar results (Supplementary Figure S1) can be obtained with
a different range of synaptic strengths, controlled by the scaling
factor [Amin,Amax], i.e., the gray trajectory in Figure 1F.

Analysis of Network Activities
Neuronal Avalanche Identification

We defined neuronal avalanches according to previous work
(Beggs and Plenz, 2003) (cf. Figure 3A). An avalanche is a
cascade of activity propagation within the network. To identify
such a cascade, a small time-window 1t is used to bin a Es
population activities. An inactive time bin is a bin during which
no neurons have fired, whereas an active time bin is the one
during which at least one neuron has fired. The cascades are then
defined as neuronal activities that occur either within the same

bin or within consecutive active bins (Figure 3A). For the present
analysis, 1t = 0.3ms, which is two times the average inter-spike
interval within the population. Avalanche size is defined as the
number of neurons involved in the corresponding cascade. All
neuronal avalanches in the present work are obtained with 2,000
ms-long simulations with a time step of 0.1 ms.

Power-Law Fitting

In critical neural networks, avalanche size distribution follows a
power law:

P(s) ∝ sα (15)

where P(s) is the probability density function (PDF) of observed
avalanche size s, α is the exponent that gives the power-law slope
in a log-log plot, which is close to −1.5 for critical networks
measured under both in vitro and in vivo conditions (Beggs,
2004; Gireesh and Plenz, 2008). To reduce the effect of noise
on distribution, a smoothing method based on geometric mean
values under the log-log coordinate was applied (Christensen and
Moloney, 2005), and the fit area are obtained by optimization the
object of minimal the Kolmogorov–Smirnov distance between
the data and fitting candidates, finally the exponent α then
estimated by least-square fitting in log-log coordinates. We
implemented these through a public python package Powerlaw
(Alstott et al., 2014).

Branching Parameter

Branching parameter σ is defined as the average number of active
units in the next time step that are triggered by one active unit at
the current time step. Following previous work (Beggs and Plenz,
2003), it can be measured by:

σ=

〈

Descendants

Ancestors

〉

(16)

where 〈〉 refers to the operation of arithmetic average, Ancestors
is the number of active units in the first bin of an avalanche, and
Descendants is the number of active units in the second bin of the
corresponding avalanche.

Correlation Coefficient and Coefficient
of Variation
The correlation coefficient is used to measure the degree of
balanced excitatory and inhibitory input to a neuron, which is
calculated as:

ρ = cov(x1, x2)√
D(x1)+ D(x2)

(17)

where x1 and x2 refer to the excitatory and inhibitory currents,
respectively, and D is the variance of the corresponding currents.
Note that the correlation coefficient between excitatory and
inhibitory currents is always a negative value. We always plotted
its absolute value in this to facilitate visual comparison.

The coefficient of variation of distribution is defined as:

CV = µ

σ
(18)
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where µ and σ refer to the mean and standard deviation of
distribution, respectively.
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