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Joubert syndrome (JS) is a congenital autosomal-recessive or—in rare cases–X-linked

inherited disease. The diagnostic hallmark of the so-called molar tooth sign describes

the morphological manifestation of the mid- and hind-brain in axial brain scans. Affected

individuals show delayed development, intellectual disability, ataxia, hyperpnea, sleep

apnea, abnormal eye, and tongue movements as well as hypotonia. At the cellular level,

JS is associated with the compromised biogenesis of sensory cilia, which identifies JS

as a member of the large group of ciliopathies. Here we report on the identification

of novel compound heterozygous variants (p.Y503C and p.Q485∗) in the centrosomal

gene PIBF1 in a patient with JS via trio whole exome sequencing. We have studied

the underlying disease mechanism in the frog Xenopus, which offers fast assessment

of cilia functions in a number of embryological contexts. Morpholino oligomer (MO)

mediated knockdown of the orthologous Xenopus pibf1 gene resulted in defective

mucociliary clearance in the larval epidermis, due to reduced cilia numbers and motility

on multiciliated cells. To functionally assess patient alleles, mutations were analyzed in

the larval skin: the p.Q485∗ nonsense mutation resulted in a disturbed localization of

PIBF1 to the ciliary base. This mutant failed to rescue the ciliation phenotype following

knockdown of endogenous pibf1. In contrast, the missense variant p.Y503C resulted in

attenuated rescue capacity compared to the wild type allele. Based on these results, we

conclude that in the case of this patient, JS is the result of a pathogenic combination of

an amorphic and a hypomorphic PIBF1 allele. Our study underscores the versatility of

the Xenopusmodel to study ciliopathies such as JS in a rapid and cost-effective manner,

which should render this animal model attractive for future studies of human ciliopathies.
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INTRODUCTION

Joubert syndrome (JS, OMIM # 213300) comprises a group

of autosomal recessive or X-linked inherited disorders with

a distinct cerebellar and brainstem malformation recognizable
on brain imaging, the “molar tooth sign.” The typical
brain malformation of JS patients gives their midbrain an
appearance reminiscent of a molar or wisdom tooth on
axial MRI (Figures 1E–H). The “molar tooth” appearance
results from three anatomical abnormalities of brainstem and
cerebellum: (a) an abnormally deep “interpeduncular fossa,”
(b) prominent, thickened, and elongated “superior cerebellar
peduncles,” and (c) absence or hypoplasia of the midline portion
of the cerebellum, the “cerebellar vermis” (see Figures 1E–H

for the “molar tooth sign” and Figures 1I–L showing the
corresponding MRI of a healthy control individual) (Maria et al.,
1997, 1999). Typical clinical symptoms of JS are hypotonia,
global developmental delay, intellectual disability, abnormal
breathing pattern, abnormal eye movements, and cerebellar
ataxia. Additional features include retinal dystrophy, cystic
kidney disease, liver fibrosis, polydactyly, cleft palate, and facial
dysmorphism in some patients (for review see (Parisi and Glass,
1993)). The estimated birth prevalence of JS is 1:80,000–1:100,000
(Parisi and Glass, 1993), but this may represent an underestimate
due to many undiagnosed cases. A higher prevalence is found in
the French–Canadian population, with several founder variants
noted (Badhwar et al., 2000; Srour et al., 2012a,b, 2015).
Founder variants in different genes have also been identified in
the Canadian Hutterite, the Ashkenazi Jewish, and the Dutch
population (Edvardson et al., 2010; Valente et al., 2010; Huang
et al., 2011; Shaheen et al., 2014; Kroes et al., 2016). To date,
pathogenic variants in more than 30 genes are known to cause
JS (for review see Parisi and Glass, 1993). The encoded proteins
of all these genes localize either to the primary cilium, basal
body and/or centrosome and play a role in the formation,
morphology, and/or function of these organelles, rendering JS a
member of the rapidly expanding family of ciliopathies (Parisi
and Glass, 1993; Romani et al., 2013). Common features of
many ciliopathies include brain malformation, renal disease,
retinal dystrophy, and polydactyly. Pathogenic variants in genes
that cause Joubert syndrome have also been identified in
ciliopathies with clinical findings that overlap with JS, e.g.,
Meckel-Gruber syndrome (MKS), Jeune asphyxiating thoracic
dystrophy (JATD), Bardet-Biedl syndrome (BBS), oral-facial-
digital syndrome (OFD), and juvenile nephronophthisis. The
severe end of the clinical spectrum is represented by the lethal
disorder MKS (Barker et al., 2014). Most of the genes causative
of MKS are also associated with JS, namely CEP290, TMEM67,
RPGRIP1L, CC2D2A, CEP41, MKS1, B9D1, B9D2, TMEM138,
TMEM231, TCTN2, TCTN3, TMEM237, CPLANE1, CSPP1,
CEP120, TMEM107, and TMEM216 (Parisi and Glass, 1993;
Valente et al., 2010; Thomas et al., 2012; Romani et al., 2014;
Bachmann-Gagescu et al., 2015; Knopp et al., 2015; Shaheen et al.,
2015; Roosing et al., 2016; Slaats et al., 2016). In addition, several
families with occurrence of JS and MKS in siblings have been
reported (Brancati et al., 2009; Valente et al., 2010). Features
of the skeletal ciliopathy JATD have been reported in several

children with JS caused by mutations in CSPP1 and KIAA0586
(Tuz et al., 2014; Malicdan et al., 2015). Pathogenic variants
in the three BBS genes CEP290, MKS1, and NPHP1 have been
shown to cause both BBS and JS (Leitch et al., 2008; Zaghloul
and Katsanis, 2009; Knopp et al., 2015). Patients with oral-facial-
digital syndrome (OFD) show features that overlap considerably
with JS, as do several genes causative for OFD (Franco and
Thauvin-Robinet, 2016). Patients with juvenile nephrophthisis
can also show clinical overlap with JS: about 10% of individuals
have extrarenal findings, including the molar tooth sign in some
cases (Saunier et al., 2005). Conversely, nephronophthisis, can
also be a renal manifestation in JS (Parisi and Glass, 1993). These
examples illustrate the complex clinical and genetic background
of JS and related ciliopathies. Preliminary genotype-phenotype
correlation for some genes indicate that biallelic null alleles
lead to MKS while at least one hypomorphic (e.g., missense)
variant is associated with JS (Delous et al., 2007; Mougou-
Zerelli et al., 2009; Tallila et al., 2009; Iannicelli et al., 2010;
Romani et al., 2014). However, the molecular and cellular
mechanisms that lead to a specific phenotype in patients with
ciliopathies are not fully understood. Altered sonic hedgehog
(SHH) signaling via defective cilia has been proposed to be the
causative pathomechanism for the characteristic molar tooth sign
in JS, but does not fully explain the mid-hindbrain phenotype
(Spassky et al., 2008; Doherty, 2009).

Recently, mutations in PIBF1 have been identified as a
cause of JS, using a combination of a siRNA-based functional
genomics screen and exome sequencing data (Wheway et al.,
2015). A second publication reported a girl with a biallelic 36-bp
insertion in PIBF1 and clinical signs of JS (Hebbar et al., 2018).
The patients presented with ataxia and developmental delay,
ranging from mild to moderate. Imaging ranged from the classic
molar tooth sign to moderate vermis hypoplasia with mildly
thick superior cerebellar peduncles and characteristic superior
cerebellar dysplasia (Wheway et al., 2015). In addition, thinning
of corpus callosum, facial dysmorphism, hypotonia and enlarged
cystic kidneys were observed in one patient (Hebbar et al., 2018).
Polymicrogyria has not been described in association with PIBF1
variants so far.

PIBF1, also known as PIBF, CEP90, JBTS33, and C13orf24,
consists of 22 coding exons and is widely expressed in different
human tissues, including the brain, kidney, and liver, with the
highest expression in testis and thyroid (Fagerberg et al., 2014).
PIBF1 encodes the progesterone immunomodulatory binding
factor 1 that is induced by the steroid hormone progesterone
and overexpressed in highly proliferating cells (Lachmann et al.,
2004; Cohen et al., 2016). The parent compoundmeasures 90 kDa
and is associated with the centrosome (Lachmann et al., 2004).
A splice variant that is found in cytoplasm measures 34–36 kDa
(Polgar et al., 2003; Lachmann et al., 2004). The protein regulates
the immune system to maintain a normal pregnancy, may play a
role in preterm labor and promotes the proliferation, migration,
and invasion of astrozytoma/glioblastoma cells (Gonzalez-
Arenas et al., 2014; Hudic et al., 2015, 2016; Gutierrez-Rodriguez
et al., 2017). PIBF1 encodes a centrosomal protein that may play
an important role in ciliogenesis (Wheway et al., 2015). However,
the precise molecular and cellular mechanisms that cause the
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FIGURE 1 | Pedigree and MRI scans. (A) Pedigree of patient family. Black symbol, affected individual; White symbols, unaffected individuals. (B–H) MR imaging of the

patient at age 2 years and 6 months. Sagittal (B) and axial (C–H) images showed polymicrogyria in the parietal and temporal region (C,D) and hypoplasia of vermis

cerebellum (B,E–H). Axial MR images of cerebellum and brainstem (E–H) showed a mild “molar tooth sign” (marked with white arrows in F–H) due to a deep

interpeduncular fossa, prominent and elongated superior cerebellar peduncles and a hypoplastic cerebellar vermis. (I–L) Corresponding MR images of a healthy

control individual.

complex JS phenotype in individuals with PIBF1mutations have
not yet been elucidated.

Here, we report on novel PIBF1 variants in a girl with JS.
The variants were identified by whole-exome sequencing (WES)
and functionally assessed in the Xenopus model. Our analyses
demonstrate that both PIBF1 alleles reflected loss of function
variants. In general terms, the Xenopus model proves to be an
excellent model to study the functional impact of rare genetic
variants identified by diagnostic exome sequencing in patients
with human ciliopathies.

MATERIALS AND METHODS

Participants
The patient and her parents were recruited and clinically
phenotyped by the Outpatient Clinic of the Institute of

Human Genetics, University Hospital Heidelberg, as part of
the “Genome-wide genetic analysis of rare hereditary disorders”
study. Written informed consent for participation in the study
and publication of study results was obtained from both parents.
The study was approved by the Ethics Committee of the Faculty
of Medicine at the University of Heidelberg and adhered to the
tenets of the Declaration of Helsinki. A summary of the study
results and its clinical implications have been published elsewhere
(Evers et al., 2017). Written informed consent for the publication
of this case report and parental results was obtained from the
patient’s parents.

Case Report
The girl was the first child of non-consanguineous healthy
parents from Germany. Her pedigree is shown in Figure 1A.
She was born after 40 weeks of gestation with a birth weight
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of 2,620 g (1st centile), length of 48 cm (3rd centile), and head
circumference (OFC) of 34 cm (20th centile). Soon after birth,
spastic tetraparesis, truncal hypotonia, and feeding difficulties
were noted. At age 6 months, she developed abnormal eye
movements. An electroencephalogram (EEG) was normal. The
girl showed a severe failure to thrive and developmental delays.
Routine pediatric investigations, including basic laboratory
testing and metabolic screening, resulted in normal values with
the exception of mildly elevated liver enzymes (GOT: 134U/l,
GTP: 164 U/l, GGT: 493 U/l), which persisted during childhood.
Regular abdominal ultrasound examinations were normal with
no signs of hepatic fibrosis. Ophthalmological examination
including fundoscopy at age 3 years showed no abnormalities.
At her first visit to the Genetic Outpatient Department at age 4
years 2 month, she presented with global developmental delay,
no speech, spastic tetraplegia and a submucosal cleft palate.
Her height was 85 cm (<1st centile, −4.99 SDS), her weight
11.47 kg (<1st centile, −3.08 SDS) and her OFC 49.5 cm (8th
centile, −1.43 SDS). At follow up examination at age 6 years
9 months, she had a height of 98.0 cm (<1st centile, −5.49
SDS), a weight of 13.6 kg (<1st centile, −4.30 SDS) and an
OFC of 50 cm (2nd centile, −2.09 SDS). cMRI at age 6 months
revealed bilateral polymicrogyria in the parietal and temporal
areas. Follow up MRIs at age 23 months and 2 years and 6
months showed polymicrogyria, hypoplasia of vermis cerebelli,
and a mild molar tooth sign (Figures 1E–H). Chromosomal
analysis and molecular karyotyping (array analysis) gave normal
results. Gene panel diagnostics for Joubert syndrome by next
generation sequencing of 129 known and potentially ciliopathy
genes showed no pathogenic mutation. The gene panel did not
include PIBF1, which was not known to cause JS at the time of
analysis. A single gene test by Sanger sequencing of GPR5, a gene
associated with polymicrogyria, gave normal results.

Exome Sequencing
Genomic DNA was isolated from leukocytes of the patient and
both parents by standard procedures (Miller et al., 1988). Whole
exome sequencing (WES) and analysis of the sequence data
of the patient and her parents was performed at the German
Cancer Research Center (DKFZ) in Heidelberg, Germany, as
described previously (Paramasivam et al., 2018). Variants with a
minor allele frequency (MAF) >1% in the 1000 genome phase
III and Exome Aggregation Consortium (ExAC) database (Lek
et al., 2016) were considered common alleles and discarded,
as were variants detected in 328 WES and 177 whole genome
sequencing (WGS) local control samples with a frequency above
2%. Gene-based annotations from Gencode V19 were added
using ANNOVAR (Wang et al., 2010). All single nucleotide
variants (SNVs) and indels affecting protein sequences and
variants within ±2 bases around the intron-exon junction
were considered as functional. Variants were further assessed
by the seven different variant effect prediction tools SIFT,
PolyPhen2, LRT, MutationTaster, MutationAssessor, FATHMM,
and PROVEAN from dbNSFP (Ng and Henikoff, 2003; Chun
and Fay, 2009; Adzhubei et al., 2010; Schwarz et al., 2010; Reva
et al., 2011; Choi et al., 2012; Liu et al., 2013; Shihab et al.,
2013) and CADD scores (Kircher et al., 2014). Variants were

classified according to standards and guidelines of the American
College of Medical Genetics and Genomics (ACMG) (Richards
et al., 2015). To confirm WES data by Sanger sequencing, exons
11 and 12 and adjacent intron boundaries of PIBF1 (RefSeq
NM_006346.2, ensemble transcript ENST00000326291.6) were
sequenced using Big Dye Terminator V1.1 cycle sequencing kit
and ABI 3130xl genetic analyzer. Primer sequences and PCR
conditions are available upon request.

RT PCR, qPCR, and Sequencing
Total RNA from patients, parents, and control blood was
extracted using the MasterPure RNA Purification Kit (Epicentre
Biotechnologies). cDNA was synthesized using random hexamer
primers and reverse transcriptase RT Maxima (Fermentas).
qPCR was carried out using SybrGreen mix (Thermo Scientific).
Expression levels using primer pairs for the three regions of
PIBF1 (exon 2–4, exon 10–12, exon 15–17) were normalized
to ADP-ribosylation factor 1 (ARF1). PCR products of patient,
parents and control were sequenced by Sanger sequencing
(GATC).

Western Blot Analysis of Overexpressed
Protein
To analyze the expression of overexpressed PIBF1 variants,
Hek293T cells were transfected in 6-well plates with 1 µg of
the corresponding plasmids using Turbofect transfection reagent
(Thermo Scientific. Cells were lysed 24 h post transfection and
proteins were separated by 10% SDS-PAGE. For Western blot
analysis, a rabbit anti-GFP antibody (1:1,000, Adgene) and a
mouse anti-PIBF1 antibody (1:500, Biozol) were used.

Protein Structure Analysis
For analyzing putative protein domains, the following algorithms
were used: NCBI conserved domain search (https://www.ncbi.
nlm.nih.gov/Structure/cdd/wrpsb.cgi), InterProScan (https://
www.ebi.ac.uk/interpro/search/sequence-search), WoLF PSORT
(https://wolfpsort.hgc.jp), and epestfind (http://emboss.
bioinformatics.nl/cgi-bin/emboss/epestfind).

Xenopus Injection Experiments
Adult Xenopus laevis frogs were obtained from Nasco (U.S.A.;
https://www.enasco.com/c/Education-Supplies/Xenopus-
Frogs). Xenopus laevis embryos were injected at the 4-cell stage
into the ventral marginal zone to target the epidermal cell lineage
(Moody, 2000). Translation blocking morpholino oligomere
(TBMO; 5′-CCGGGACATCTTTACACTTTACATA-3′) was
injected at 4 pmol per embryo. mRNAs of EGFP or PIBF1 fusion
constructs were injected at a dose of 0.4 pmol per embryo.
Lineage tracer Fluorescein Dextran (FD, 10,000 MW, anionic,
lysine fixable) was used at 50 ng per injection. Embryos were
cultured until stage 30 and subsequently processed for analyses.

RNA in situ Hybridization and
Immunofluorescence Staining
Xenopus embryos were fixed using 4% paraformaldehyde
solution (for in situ hybridization and acetylated Tuba4a
staining) or Dent’s (for Pibf1 and Tjp1 staining). RNA in
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situ hybridization was performed as described previously (Belo
et al., 1997) using a full length digoxigenin labeled pibf1 probe.
The following reagents were used for immunofluorescence
staining: anti-acetylated Tuba4a (T6793, Sigma; 1:800), anti-
Pibf1 (SAB1401526, Sigma; 1:200), and anti-Tjp1 (21773-1-AP,
Proteintech Europe; 1:400).

High-Speed Video-Microscopy
Capturing of ciliary beating required flat mounting of the
specimens in a chamber constructed on a slide with tape and
a cover slip. Only the most ventral cells allowed differential
interference contrast microscopy of the ciliary tufts, which were
recorded at 600 fps using a Hamamatsu X high speed video
camera. Kymographs were generated using ImageJ (https://
imagej.net/Generate_and_exploit_Kymographs).

RESULTS

The phenotypic features of the patient (cf. section Case Report),
including developmental delay, hypotonia, polymicrogyria,
vermian hypoplasia, and mild molar tooth sign (Figure 1), led
to the clinical diagnosis of JS. The observed liver involvement
with elevated GOT/GRP is also a typical finding of this
ciliopathy. A cleft palate reported here is a rare finding in
JS and demonstrates its clinical overlap with oral-facial-digital
syndrome. The microcephaly of the patient is not part of the
classical JS spectrum, but has been reported in a patient with a
PIBF1missense mutation (Kodani et al., 2015).

Exome Sequencing
Exome sequencing variants were filtered as described above and
only heterozygous de novo variants and variants being consistent
with an autosomal recessive disease model were considered.
Applying these filter criteria, 10 variants remained (Table 1).
These were further assessed by in silico predicted effects on

protein function, as described above (Table 1). Subsequently,
a literature search was performed to gain further information
about gene function and to determine if the gene had been
previously associated with intellectual disability, neurological
or developmental disorders in humans. This narrowed the
candidate list to PIBF1 variants c.1453C>T; p.(Q485∗) and
c.1508A>G; p.(Y503C). The variant c.1453C>T; p.(Q485∗) was
classified as pathogenic [class 5, according to ACMG criteria;
(Richards et al., 2015)]. The variant c.1508A>G; p.(Y503C) was
classified as variant of unknown significance [class 3, according
to (Richards et al., 2015)].

Expression Analysis of PIBF1 Variants in
the Patient
cDNA fragments of three different regions of PIBF1 (exons 2–
4, 10–12, and 15–17) were amplified from the patient and both
parents, showing a higher expression in the patient compared
to mother, father, adult, and infant control (Figure S1A).
Interestingly, the cDNA of exons 15–17, which are localized 3′

of the predicted premature stop codon of the variant p.(Q485∗),
showed a higher expression in the patient as well. However,
whether both variants are transcribed in the patient was still
unclear. Sequencing of the PCR product of the patient showed
that both PIBF1 variants could be detected in the patient
(Figure 2A). The parents’ cDNAs carried either the missense or
the nonsense variant in heterozygous state (data not shown). This
indicated that mRNA harboring the predicted pathogenic variant
was not degraded by nonsense-mediated mRNA decay (NMD)
and that both variants resulted in stable mRNAs. The enhanced
transcription of both PIBF1 variants in the patient could be a
compensatory response to decreased PIBF1 protein levels due to
protein instability of the mutants. The PIBF1 nonsense variant
p.(Q485∗) was expected to result in the synthesis of a truncated
protein lacking the C-terminal 273 amino acids. Expression

TABLE 1 | De novo and compound heterozygous variants and prediction of their functional effects.

Affected genes RefSeq transcript and variant information* Variant status in silico parameters **:

MT/MA/SIFT/PPH2(HDIV:

HVAR)//FATMM/PROVEAN/LRT

ATXN1 ENST00000436367.1:exon7:c.G630T:p.Q210H Heterozygous de novo N/N/D/-:-/T/N/-

DSPP ENST00000399271.1:exon5:c.2001_2003del:p.667_668del Heterozygous de novo Poly/-/-/-:-/-/-/-

EPS8L2 ENST00000318562.8:exon8:c.G616T:p.A206S Heterozygous DC/M/T/B:B/T/N/Del

EPS8L2 ENST00000318562.8:exon13:c.1071_1072insCTG:p.T357delinsTL Heterozygous Poly /-/-/-:-/-/-/-

OBSCN ENST00000366707.4:exon52:c.A5292T:p.Q1764H Heterozygous N/N/T/D:P/T/N/N

OBSCN ENST00000422127.1:exon94:c.20514_20515del:p.6838_6839del Heterozygous DC/-/-/-:-/-/-/-

PIBF1 ENST00000326291.6:exon11:c.C1453T:p.Q485X Heterozygous DC/-/-/-:-/-/-/-

PIBF1 ENST00000326291.6:exon12:c.A1508G:p.Y503C Heterozygous DC/M/D/D:D/T/D/Del

ZFHX3 ENST00000397992.5:exon9:c.C7543T:p.R2515C Heterozygous DC/N/T/D:B/D/N/Del

ZFHX3 ENST00000397992.5:exon8:c.G5535T:p.Q1845H Heterozygous DC/L/T/D:D/T//Del

*According to Ensembl database (http://www.ensembl.org).

**Obtained by prediction tools MutationTaster (MT) (Schwarz et al., 2010), MutationAssessor (MA) (Reva et al., 2011), SIFT (Ng and Henikoff, 2003), PolyPhen2 (PPH2) HDIV and PPH2

HVAR (Adzhubei et al., 2010), FATHMM (Shihab et al., 2013), PROVEAN (Choi et al., 2012) and LRT (Chun and Fay, 2009).

B, benign; D, damaging; DC, disease causing; Del, deleterious; L, predicted functional effect is low; M, predicted functional effect is medium, N, neutral; Poly, Polymorphism; ProbD,

probably damaging; T, tolerated; PosD, possibly damaging.
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analysis of wildtype (WT) and mutated EGFP-PIBF1 constructs
using an anti GFP antibody showed expression of WT and both
mutated proteins, the one with the missense and the one with
the truncating variant at expected size (Figure S1B). This result
indicated that both, missense and the nonsense variant, resulted
in the synthesis of stable proteins with the nonsense variant being
smaller than the WT and the missense, as expected. Analyses
using an antibody against the full length PIBF1 protein could
detect the WT and the missense variant, but not the truncated
nonsense variant. However, the sensitivity of the antibody was
far lower than that of the GFP antibody and it has not been tested
on truncated PIBF1 proteins so far. Whether its epitope is in the
lacking C-terminus has to be determined.

Protein Structure and Evolutionary
Conservation of Pibf1
A comparison of PIBF1 protein sequences from various
vertebrate species revealed a high degree of conservation
(Figure 2B). The Xenopus sequence showed 69.5% identity
(84.2% similarity) to human PIBF1, very close to the mouse
(Figure 2B). Functional studies at the protein level have not
been reported for PIBF1 so far. Applying the NCBI conserved
domain search algorithm highlighted three possible SMC-related
domains (structural maintenance of chromosomes; Figure 2C).
Additional searches identified a putative PEST domain, two
ER membrane retention signals including one R-4 motiv, two
nuclear localization sequences (NLS), a peroxisomal targeting
signal (PTS), and two leucine zipper sequences as well as 11
coiled-coil domains along the 757 amino acids (Figure 2C).
The three known JS mutations as well as the two novel alleles
reported here localize to the C-terminal half of the protein and
within coil-coiled domain, while a 6th mutation, which caused
microcephaly, was found at the N-terminus, again in a coiled-coil
domain (Figure 2C).

The above in silico analyses thus showed that the two novel
mutations are located in important regions of a highly conserved
JS candidate gene. In order to prove that these alleles indeed were
causative for JS in the patient, they needed to be functionally
tested in a relevant vertebrate model organism, particularly
because the variant p.(Y503C) did not fulfill the ACMG-criteria
to be classified as pathogenic or likely pathogenic (Richards et al.,
2015). We chose to apply the Xenopus model, because of its
suitability for studying ciliopathies: speed, high-throughput, and
low cost of analyses (Johnston et al., 2017; Blum and Ott, 2018).

Expression of pibf1 in Ciliated Tissues
During Xenopus Embryonic Development
As a prerequisite to functionally analyzing the putative JS
alleles, we analyzed whether the endogenous pibf1 mRNA was
expressed in tissues related to cilia. Transcription of pibf1
in embryos of defined developmental stages was analyzed
using whole-mount in situ hybridization. Maternally deposited
pibf1 mRNA was present in the cytoplasm of the animal
hemisphere in cleavage stage embryos (Figure 3A). At the
onset of gastrulation, signals were found in future mesodermal
tissues (Figure 3B; involuting marginal zone). From neurulation

onwards, expression was found in the axial (notochord) and
paraxial (somites) mesoderm (Figures 3C,D). Additionally, a
dotted epidermal pattern was obvious which resembled the
distribution of multiciliated cells (MCCs) in the larval skin and
was maintained until the end of neurulation (Figures 3C,D).
In the 2-day larva (stage 25, Figure 3E), mRNA transcripts
were seen in the ciliated otic vesicle (Figure 3E′) as well as in
the forming ciliated nephrostomes of the embryonic kidney.
The latter staining intensified and was prominently visible
in sections of stage 30 tadpoles (Figures 3F,F′). A persistent
staining in the head region became more pronounced from stage
30 onwards (Figures 3F–H). Enrichment of pibf1 transcripts
in the head region as well as in the spinal cord was in
agreement with the expected function of Pibf1 during neural
development (Figures 3E–G). At these stages, the pibf1 signal
became less discrete, appeared more diffuse and was present at
low levels inmost tissues (Figures 3E–G). Histological sectioning
revealed enrichment in the retina and inner nuclear cell layer
(Figure 3H′). In summary, pibf1 was expressed in many tissues
harboring cilia, namely otic vesicle, nephrostomes, brain, retina,
and possibly MCCs.

Pibf1 Protein Localization in Larval Skin
MCCs
JS is associated with dysfunctional primary, i.e., immotile and
sensory cilia. The unexpectedmRNA expression in the larval skin
hinted at localization in MCCs, which harbor hundreds of motile
cilia. In order to investigate the possible expression of Pibf1
in MCCs, immunofluorescence staining using a monoclonal
mouse PIBF1 antibody raised against the human protein was
applied. This antibody detected hundreds of spots on individual
cells dotted on the larval skin (Figures 4A,A′). Co-staining with
the basal body marker (Cetn1; Park et al., 2008) unequivocally
demonstrated that Pibf1 indeed localized to the base of individual
cilia on MCCs, specifically to basal bodies, as Pibf1 and Cetn1
partially overlapped (Figures 4A–C). Therefore, Pibf1 seemed to
be a bona fide component of all basal bodies in ciliated cells
in Xenopus.

In order to ascertain whether or not the missense or nonsense
mutations have impact on the localization of PIBF1 to basal
bodies, we cloned fusion constructs in which the N-terminus of
the human WT or mutant ORFs of PIBF1 were linked to EGFP.
Injection of the WT PIBF1 construct into the Xenopus epidermis
recapitulated the endogenous distribution at the basal bodies of
MCCs (Figures 4D–F), demonstrating that ectopic expression of
a fusion protein did not interfere with correct localization of
the protein. In many cases, aggregates of fusion protein were
additionally found in targeted cells (Figures 4D,G). Themissense
construct fully phenocopied this localization (Figures 4G–I). In
contrast, the signal of the nonsense variant was much attenuated
at basal bodies and was additionally found in a non-localized
manner throughout the cell (Figures 4J–L). Taken together, these
analyses showed that (1) Pibf1 was unexpectedly expressed in
motile cilia of the larval skin; (2) Pibf1 localized to basal bodies,
in agreement with its centrosomal expression in other contexts
(Kim and Rhee, 2011; Kim et al., 2012); (3) the nonsense allele
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FIGURE 2 | PIBF1 protein conservation and domain structure. (A) Sanger sequencing of PIBF1 from RT-PCR product of the patient mRNA extracted from blood.

Black arrow heads indicate position of mutations. (B) Conservation of amino acid sequences between human, mouse, Xenopus, and zebrafish PIBF1. (C) Putative

domain structure. JS and microcephaly (MC) mutations are indicated as red bars. For details see text. *Novel mutations identified in this study.

FIGURE 3 | Embryonic pibf1 expression correlates with ciliated tissues. Embryos of defined stages were analyzed for pibf1 mRNA by whole-mount in situ

hybridization using a digoxigenin-labeled antisense probe. (A) Maternal transcripts in the animal hemisphere of the 4-cell embryo. (B) Expression in the involuting

marginal zone tissue of the early gastrula embryo. (C) Staining of pibf1 in the axial and paraxial mesoderm at early neurula stages. (D) Pibf1 signals in skin MCCs and

axial/paraxial mesoderm. (E) Expression in the otic vesicle at stage 25. (F–H) Expression pattern in tadpoles, including the head region, somites, and nephrostomes.

Histological section of the eye (H′) revealed signals in the retina as well as the inner nuclear cell layer. Planes of histological sections in (B′,D′,E′,F′,H′) are indicated in

the respective panels. an, animal; a, anterior; d, dorsal; DL, dorsal lip; INL, inner nuclear layer; l, left; neph, nephrostomes; no, notochord; nt, neural tube; ov, otic

vesicle; p, posterior; r, right; re, retina; som, somite; v, ventral; veg, vegetal.
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FIGURE 4 | Pibf1 localization to MCC basal bodies is attenuated in nonsense JS variant. (A–C) Localization of the endogenous Pibf1 protein, using an anti-PIBF1

antibody (A) and co-staining with Centrin 1 (B) and Hoechst 33342 to highlight the nucleus (C). (D–F) An EGFP-PIBF1 fusion protein recapitulates the staining of the

endogenous protein. (G–I) Unaltered expression of the missense allele Y503C. (J–L) Attenuated basal body localization of the truncated Q485* variant of PIBF1.

Arrowheads mark protein aggregates observed upon overexpression of EGFP fusion proteins.

was much reduced in its localization to ciliary basal bodies,
indicative of a ciliary function; (4) the missense allele appeared
unaffected in its ciliary localization, raising questions as to the
underlying mechanism of JS in the patient.

Functional Analysis of Wildtype and Mutant
PIBF1 Alleles in the Xenopus Larval Skin
Although JS is not related to motile cilia, the expression and
localization of Pibf1 in basal bodies of MCCs afforded the
opportunity of testing whether this protein played a role in
motile cilia as well and whether the mutant alleles were affected
in this function. Skin MCCs of Xenopus larvae function in
much the same way as human airway epithelia, namely in
mucociliary clearance as a first line of defense against pathogens
(Dubaissi and Papalopulu, 2011; Walentek et al., 2014; Blum
and Ott, 2018). MCC cilia beat in a coordinated manner
to move mucus, produced by goblet cells, from anterior to
posterior (head to tail), and to thereby remove environmental
particles and pathogens caught by the mucus layer (Brooks
and Wallingford, 2014). In order to assess a possible role of
pibf1 in this process, an antisense morpholino oligomer (MO)
targeting the translational start site of the mRNA (translation

blocking MO, TBMO) was designed. In retinal epithelial cells
(RPE-1) and inner medullary collecting duct cells (IMCD3),
loss of Pibf1 resulted in fewer or absent cilia (Kim et al., 2012;

Wheway et al., 2015). We therefore analyzed the presence of
MCC cilia inmorphant larvae that were injected with TBMO into

the skin lineage at the 4-cell stage. Successful gene knockdown
was proven by immunofluorescence staining for Pibf1, which
demonstrated the efficient depletion of the protein fromMCCs of
morphant specimens (Figure 5). Immunofluorescence staining
of cilia in morphant specimens was performed by staining the
ciliary axoneme with an antibody against acetylated tubulin
(Tuba4a). This analysis clearly demonstrated markedly reduced
numbers of cilia onmorphantMCCs (Figures 6A–E). Functional
consequences of reduced cilia numbers were assessed by high-
speed video microscopy of larval skin at stage 30. Movie S1

shows that coordinated ciliary beating was lost in morphants as
compared toWT specimens. The loss of cilia was also apparent in
kympgraphs from high-speedmovies (Figure 6L,M). Ciliary tufts
on WT and morphant MCCs were grouped into three classes,
representing normal, mild, or strong reduction of cilia numbers.
No unaffected ciliary tufts were retained in morphant MCCs, as
displayed in Figure 6M.
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FIGURE 5 | Loss of Pibf1 protein in pibf1 morphant Xenopus skin MCCs. Basal body staining of Pibf1 (A–C) was lost in TBMO injected specimen (D–F). Tjp1

immunofluorescence was used to mark cell boundaries (B,C,E,F). Fluorescent dextrane (green) was co-injected as lineage tracer to control targeting of injections

(E,F). Arrowheads highlight MCC cilia in WT embryo.

Next, we asked whether heterologous expression of a WT
human PIBF1 construct was able to rescue cilia numbers in
morphants. To that end, TBMO andWT PIBF1 were co-injected
into 4-cell embryos and targeted to the larval skin. As shown
in Figures 6E–G, the WT human gene rescued cilia numbers
in a highly significant manner. In a last set of experiments,
we analyzed the rescue capacity of equimolar amounts of the
two novel Pibf1 alleles identified in our JS patient. While the
nonsense mutant was unable to rescue the gene knockdown
(Figures 6E,H,I), a residual and attenuated rescue capability
was observed when the missense mutant allele was co-injected
(Figures 6E,J,K). In summary, our functional analysis of mutant
Pibf1 alleles demonstrated a role of Pibf1 in motile cilia of
larval skin MCCs in Xenopus, and identified both nonsense
and missense allele as non-functional, in agreement with the
manifested JS in the patient girl.

DISCUSSION

Mutant gene alleles identified in patient DNAs represent a
valuable resource for studying protein function and are a
prerequisite for the elucidation of pathomechanisms at the
molecular level. A given mutation may not, however, reveal
its pathogenicity at first glance. In the case of the compound
heterozygous JS patient analyzed here, one of the mutations,
the truncation variant p.Q485∗, was highlighted as pathogenic
according to ACMG criteria (Richards et al., 2015). Our analysis
in ciliated Xenopus cells confirmed its predicted pathogenicity.
The disturbed localization of this variant at basal bodies in
combination with the inability to rescue the ciliation phenotype
of Pibf1 deficient frog MCCs identifies it as an amorphic allele.
Clinically even more important, our studies of the missense-
variant p.Y503C indicated a pathogenic effect of this variant,

too. A careful cell by cell analysis of mutant MCCs revealed that
this mutant showed an about 50% rescue capacity, significantly
below the >80% achieved with the WT allele (Figure 6). It
should be noted, that this analysis was performed in a tissue
that is not relevant in JS patients and on motile cilia, while JS
is caused by defects of primary, immotile cilia. Therefore, in
the context of a bona fide JS target tissues, the combination
of these mutations may give rise to even more pronounced
defects at high frequency. Recapitulating the patient gene setup
in any animal model would be experimentally more challenging,
require more time and be more expensive. The attenuated rescue
ability, however, unequivocally demonstrates that the missense
variant is hypomorphic in nature, leading to a re-classification
of the allele from “unkown significant” to “likely pathogenic,”
according to ACMG criteria (Richards et al., 2015). The finding of

a hypomorphic allele due to a missense mutation in combination
with a null allele due to a truncating mutation is a typical finding

in patients with JS and has been reported for a number of other
causative genes (such as RPGRIP1L, TMEM67, CCD2D2A, and
TCTN3), whereas biallelic null alleles in these genes are associated
with a more severe phenotype (Delous et al., 2007; Mougou-
Zerelli et al., 2009; Tallila et al., 2009; Iannicelli et al., 2010;
Romani et al., 2014).

The precise role of PIBF1 in the context of ciliary biogenesis
is not well-understood. All JS-associated mutations in PIBF1
identified so far cluster in the C-terminal region of the protein
[Figure 2; (Wheway et al., 2015; Hebbar et al., 2018)]. In contrast,
a homozygous missense mutation that is linked to microcephaly
is present within the N-terminus [Figure 2; (Kodani et al.,
2015)]. The large structural maintenance of chromosomes (SMC)
domains constitute almost 90% of the protein, suggesting
that PIBF serves as a scaffolding factor which may dimerize
with ciliary SMC proteins such as SMC1A or SMC3 (Khanna
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FIGURE 6 | Rescue of morphant MCC ciliation is lost with mutant PIBF1 alleles. (A–E) MCC ciliation in WT embryos was lost in pibf1 TBMO-injected specimens.

(E–G) Rescue of ciliation upon co-injection of TBMO and EGFP-PIBF1. (E,H,I) Attenuated rescue in embryos co-injected with missense PIBF1 allele. (E,J,K) Defective

rescue upon co-injection of the nonsense PIBF1 allele. (E) Quantification of results. (L,M) Kymographs representing ciliary beating in WT and TBMO-injected stage 30

larval skin MCCs. ***Very highly significant, p < 0.01.

et al., 2005). A search of the protein interaction database
IntAct (https://www.ebi.ac.uk/intact/) revealed a number of SMC
proteins that were shown to interact with PIBF1, for example
CEP63 and PCM1 (Kim et al., 2012; Gupta et al., 2015; Yachie
et al., 2016). As PCM1 is not relevant for cilia formation in
multiciliated mouse tracheal epithelial cells, it is not a promising
candidate to explain the loss of cilia in PIBF1 depleted MCCs
(Vladar and Stearns, 2007). CEP63, in contrast, is required
during the centriolar duplication cycle, acts in parallel with its
paralog deup1 in basal body formation in MCCs and harbors
an SMC related domain (Zhao et al., 2013). The reduced
number of cilia on morphant MCCs may result from such a
mechanism.XenopusMCCoffer themselves for in-depth analyses
of potential interaction partners, which are beyond the scope of
the present study.

The advent of high-throughput sequencing technology,
in particular whole exome sequencing (WES), has led to
a revolution of genetic diagnostics of rare diseases, e.g.,
developmental disorders. Before the era of WES many patients
had undergone a long and frustrating “diagnostic odyssey” to

obtain an accurate diagnosis. This has been widely overcome
with the introduction of WES, which has emerged as an effective
diagnostic tool leading to diagnostic rates of around 40%
in patients with previously undiagnosed neurodevelopmental
or pediatric neurologic disorders [for review see (Wright
et al., 2018)]. A diagnosis is essential for an optimal clinical
management of the particular patient, e.g., initiation of a specific
therapy or surveillance program, and appropriate access to
education, social care and patient support groups (Boycott et al.,
2017). A molecular diagnosis is also important for the patients’
parents and other family members, in particular for informed
decision-making with regard to family planning, and possibly
prenatal diagnosis (PD) or preimplantation genetic diagnosis
(PGD). In the case reported here, a molecular diagnosis could
not have been established without the Xenopus analysis of
the PIBF1 missense variant and the resulting re-classification
as likely pathogenic. Important consequence for the parents,
who previously had decided against further children for fear
of another disabled child, was that they now opt for a further
pregnancy with PD.
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Furthermore, identifying the molecular genetic cause of a
disease is essential for a better understanding of its pathogenesis
and the development of novel treatment strategies. However,
interpretation of high-throughput sequencing data can be
difficult. WES also uncovers many rare variants of which the
functional impact is not known. Thus, a molecular diagnosis
may be missed. Furthermore, recent studies in the field of cancer
genetics and prenatal diagnosis indicate that unambiguous
genetic results such as the finding of unclassified variants can
lead to false treatment decisions and dissatisfaction with genomic
testing (Kurian et al., 2017; Desai et al., 2018). Therefore, animal
models are needed to verify or discard candidate disease alleles.
Because of its genetic closeness, the mouse has been the model
of choice to assess human genetic diseases. However, analyses in
mice are costly and slow; in addition, the mouse is not suited
for high-throughput analysis and cannot possibly keep up with
the pace at which candidate variants keep being identified by
WES. Therefore, additional and complementing animal models
need to be promoted. Among the non-mammalian models, the
zebrafish is widely used, while Xenopus is less well-known among
clinical scientists. The frog, however, offers unique advantages
particularly when investigating ciliopathies (Blum andOtt, 2018).
The developing embryo presents its ciliated skin for a total of 3
days and allows easy and straightforward observation (including
videomicroscopy) and functional analyses. Manipulations can be
performed in a unilateral fashion, such that the non-manipulated
side serves as an internal control. Given the inter-individual
variability of phenotypes, this represents a unique advantage of
the Xenopus model. The present analysis demonstrates that a
syndrome like JS, which is caused by defects of primary, immotile
cilia, can be successfully dissected in the context of motile cilia, as
the expression analysis revealed a pan-ciliary presence of pibf1
mRNA. This is likely true for most ciliopathies of primary cilia.
Other organs that are easily addressed in the Xenopus model
include the kidney (Getwan and Lienkamp, 2017) and heart
(Duncan and Khokha, 2016). It seems, therefore, warranted to
promote Xenopus among clinical scientist as a complementing
model to mouse and zebrafish, in order to allow for the most
efficient assessment of disease alleles.
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Movie S1 | Uncoordinated beating of MCC cilia upon pibf1 gene knockdown.

Coordinated ciliary beating of MCC (left) was lost in pibf1 morphant specimen

(right). Note the reduced number of cilia on morphant cell. Time lapse movie was

recorded at 600 fps and plays at 30 fps (0.05 × real time).

Figure S1 | Expression anlayses of PIBF1 variants. (A) Relative expression levels

of PIBF1 exons analyzed by qPCR from patient, parents’ and control blood.

Shown are the mean ± SD of three independent RT-PCRs and subsequent

qPCRs. ARF1 expression was used for normalization. (B) Western blot analyses of

overexpressed EGFP-PIBF1 constructs in HEK293 cells, using anti-GFP and

anti-PIBF1 antibodies, respectively.
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