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Aging is often associated with a loss of function. We believe aging to be more an
adaptation to the various, and often continuous, stressors encountered during life in
order to maintain overall functionality of the systems. The maladaptation of a system
during aging may increase the susceptibility to diseases. There are basic cellular
functions that may influence and/or are influenced by aging. Mitochondrial function
is amongst these. Their presence in almost all cell types makes of these valuable
targets for interventions to slow down or even reserve signs of aging. In this review, the
role of mitochondria and essential physiological regulators of mitochondria and cellular
functions, ion channels, will be discussed in the context of human aging. The origins
of inflamm-aging, associated with poor clinical outcomes, will be linked to mitochondria
and ion channel biology.
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AGING: A PHYSIOLOGICAL ADAPTATION

Chronological Aging
The definition of aging has been of great debate between scientists. Many view aging as a disease
itself, whilst others describe aging as the inevitable decline of function with time which increases
propensity to age-related disease development. Victor Hugo said: “Forty is the old age of youth, fifty
is the youth of old age” already suggesting strata to exist within each of the periods of life. In this
review, we define aging as individuals in the last stage of their life, often represented in the literature
as retirement age (65 years old). The life expectancy in developed countries is longer (83 years
in Singapore, 81 years in United Kingdom). Nevertheless, most countries will be approaching a
critical demography during this century, including extended life expectancy (75 years in Tunisia),
reduced birth rate and reduced workforce (World Health Organization, 2015). While aging of the
population is currently seen as a socio-economic burden it is possible to make it an opportunity.
The current view is highly influenced by the fact that many of the elderly also display diseases
and disabilities (World Health Organization, 2015; Vos et al., 2017). For example, the decline
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of pulmonary, cardiovascular and immune systems has been
shown in longitudinal aging studies, alongside physical decline
such as sarcopenia and frailty (Ng et al., 2015; Shimokata and
Ando, 2017; Huang et al., 2018). These may lead to loss of
physical integrity, impaired function and vulnerability to death.
Physiological aging can take two forms: (1) the normal decline
in function, which occurs in all individuals with age, and (2) the
loss of function from one or more diseases encountered with
age (Hayflick, 1994). Whilst the first may be seen by many as
untreatable, the second form often is treatable due to the great
strides we have made in treating and controlling age-related
diseases such as diabetes and atherosclerosis. In order to better
integrate the elderly population in our societies it is of utmost
importance to understand how to increase healthspan. While
assistive technologies are necessary to fill the gap, the long-term
challenge is to prevent the elderly from physical decline.

Biological Aging
We view aging as an adaptation to lifelong events, and
interventions should support the physiological balance during
age-related adaptation, response to acute stress, in order to avoid
disease onset. Adapted capacity in most organs has been shown
to occur from the third and fourth decades of life (Boss and
Seegmiller, 1981; Khan et al., 2017). Chronological age by itself
is not a great predictor of aging, healthspan or functional status
(Yang and Lee, 2009), with individuals of the same age putting
vastly different demands on health care systems and society in
general. Whilst the incidence of the top five chronic diseases
increases with age, 32% of the participants aged 85 and over in
the 2004 US Health and Retirement study were not diagnosed
with these conditions. Additionally, 28% of those 85 and over
reported themselves as in excellent or very good health compared
to 48% of the 51–54 age bracket (Lowsky et al., 2014). The
future of aging research may depend on our ability to stratify
elderly populations and predict clinical trajectories of the pre-
symptomatic adult populations. Young individuals of the same
chronological age (38 years) have been found to vary in their
biological age, measured by the functional decline of multiple
organ systems prior to the onset of age-related disease (Belsky
et al., 2015). Young individuals with an advanced pace of aging
show increased physical and neurological decline compared to
their slower aging counterparts between the ages of 26 and 38
(Belsky et al., 2015). This pool with a faster pace of aging could
be used to evaluate the effectiveness of anti-aging therapies prior
to disease onset.

Methods to assess biological age and the rate of aging
are varied. Measurements can range from simple one-off
measurements of telomere length to complex measurements of
epigenetic ticking rate and algorithms of biomarkers taken over
time (Belsky et al., 2018). Whilst agreement between different
measures of biological aging is low, the 71-cytosine-phosphate-
guanine epigenetic clock and biomarker algorithms were recently
found to be more reliable than other methods in relation to
physiological decline of organs and facial aging (Belsky et al.,
2018). Recent focus has been on understanding more about
epigenetic markers of aging (Mitnitski, 2018). Methylation within
certain CpG sites correlates with age, and have formed the

basis of epigenetic clock models of biological aging (Hannum
et al., 2013). In humans, methylation states of specific genes
appear to correlate well with biological age and link obesity and
human immunodeficiency virus (HIV)-infection as accelerators
of methylation and biological aging (Horvath et al., 2014; Gross
et al., 2016). In fact, a 5-year increase in biological age as
measured by epigenetic methylation results in a 21% increase
in mortality risk (Marioni et al., 2015). Life span interventions
such as calorie restriction and rapamycin, discussed later in
this review, have previously been shown to reduce epigenetic
age in mice, which show conserved CpG methylation sites
(Wang et al., 2017).

Core Physiological Functions in Aging
Cardiovascular
Cardiac output decreases by a rate of approximately 1% per year
from the first decade of life, independently of cardiac disease.
This is thought to occur through the senescence of cardiac
muscle, decreased response of cardiac cells to glycosides and
increased amyloid deposits with age (Steenman and Lande, 2017).
These deposits also increase the prevalence of atherosclerosis
and coronary artery disease in the elderly, severely affecting the
cardiovascular system (Hansson, 2005). Alongside the respiratory
and genito-urinary systems show reduced function with age as
well as decreased immune function, leading to increased infection
rates in the elderly (Kline and Bowdish, 2016; Nicolle, 2016;
Chason et al., 2018). This suggests that several compartments of
the immune system, including mucosal immunity, are altered in
old age (Sala-Rabanal et al., 2015; Martelli et al., 2016).

Central Nervous System
Aging is associated with the development of numerous
neuropathologies which appear exponentially with advancing age
(Niccoli and Partridge, 2012). The accumulation of plaques in
the brain has been associated with cognitive impairment and
the development of Alzheimer’s disease, whilst mitochondrial
dysfunction is a causative factor in the appearance of Parkinson’s
disease (Pickrell and Youle, 2015; Snyder et al., 2015). In fact, the
brain has been highlighted as particularly susceptible to aging.
Dementia, an umbrella term for numerous neurodegenerative
conditions, is a global issue affecting those from both low-
income and high-income countries, the prevalence of which is
expected to double every 20 years going forward (Prince et al.,
2013). Numerous causes have been attributed to the development
of neurodegenerative disorders, such as dysregulated calcium
signaling impacting on neuronal signaling, altered mitochondrial
and ion channel dynamics affecting mid-brain cell survival in
Parkinson’s diseases and the contribution of “inflamm-aging” to
neuroinflammation and decreased neuroplasticity (Di Benedetto
et al., 2017; Frazier et al., 2017; Peng et al., 2018). Mitochondrial
defects in particular have a large impact on neurological systems
due to larger energetic requirements of the brain compared to
other systems (Grimm and Eckert, 2017).

Metabolic
Progressive deterioration of the function of pancreatic beta cells
and the development of insulin insensitivity causes one of the
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most prevalent age-related diseases, type 2 diabetes (Shaw et al.,
2010; Marselli et al., 2014). Beta cells show reduced capacity to
respond to glucose levels, resulting in reduced insulin output,
reduced ability to control blood glucose levels and increased
adiposity (Kahn, 2003). With adipocyte enlargement also comes
a relative decrease in lean body mass due to muscle wastage
(Kalinkovich and Livshits, 2017). This loss of muscle (sarcopenia)
is due to the atrophy of muscle cells, generally as a consequence
of a sedentary lifestyle. Sarcopenia together with frailty are two
diseases that are highly associated with poor clinical outcomes
such as increased fall incidence and hospitalization (Kramer et al.,
2017). In parallel to muscle loss bone density is often reduced
and hip-fracture is a classical condition of the elderly with poor
balance and frailty (Kramer et al., 2017).

Immune System
Inflammation is a physiological process leading to the repair
of tissues in response to exogenous and/or endogenous stress.
However, it may establish a biological foundation of the
pathophysiological process of frailty, since chronic inflammation
generally induces detrimental consequences (Miller, 1996).
Inflammation is frequently caused by an aged-related change
in the immune system, known as immunosenescence. The
chronic inflammation associated with immunosenescence is
known as “inflamm-aging” which is accompanied by cytokine
dysregulation. This phenomenon is marked by increased
pro-inflammatory cytokine production and reduction in
anti-inflammatory cytokines. The clinical consequences of this
include increased risk of comorbidities such as bone, nutritional,
and muscle metabolism disorders and mortality (Manolagas
and Jilka, 1995; Cesari et al., 2004; Franceschi, 2007). Systemic
inflammation was found to be implicated in the pathophysiology
of neurodegenerative and cardiovascular disorders (Akiyama
et al., 2000; Cesari et al., 2003; Lopez-Candales et al., 2017).

Aging affects aspects of both the adaptive and immune
compartments of the immune system. Understanding of
age-related changes in the adaptive immune system far outweighs
that of the innate immune system (Montgomery and Shaw, 2015),
with reductions in naïve T cell pools and increases in memory
pools with age observed for some time (Nikolich-Zugich, 2014).
Generally T cell and B cell functions are reduced with age in
many individuals, leading to reduced antibody production and
T cell receptor (TCR) signaling defects in the elderly (Frasca
et al., 2016; Le Page et al., 2018). Innate immune responses
have also been shown to be dampened during ageing, alongside
the development of a mature composition (Montgomery and
Shaw, 2015). Additionally, there is a concurrent increase in the
pro-inflammatory profile of the innate immune system leading
to inflamm-aging (Bailey et al., 2018). The effects of aging on
the major populations of immune cells varies greatly depending
on cell type (Montgomery and Shaw, 2015). Monocytes isolated
from elderly individuals display reduced cytokine production
following toll-like receptor (TLR) activation with age and
reduced interferon production, whilst dendritic cells show loss of
antigen-cross presenting capacity (Chougnet et al., 2015; Metcalf
et al., 2017; Molony et al., 2017). However, the innate immune
system has also been shown to be activated at the basal level

with aging (Molony et al., 2018). Reduction of the immune
response to activation and increased basal activation of the
adaptive and immune systems with age bring the concepts of
immunosenescence and inflamm-aging together.

Not all systems become faulty with age in every individual,
but most individuals will display one or more faulty system as
they age. While loss or decreased function of organs may lead
to mild symptoms and maintenance of autonomy and quality of
life, failure of primary systems may have harsher consequences.
The accumulation of senescent cells in various systems is thought
to be the cause of their reduced functionality (Childs et al.,
2015). Recent studies in genetically engineered mice suggest the
specific removal of senescent cells (p16 expressing cells) as an
efficient strategy to recover functions in older mice (Baker et al.,
2011). One of these studies utilizes an INK-ATTAC transgene
for inducible elimination of p16INK4A expressing cells, a protein
which is used as a biomarker for senescence and increases with
ageing in both rodents and humans (Krishnamurthy et al., 2004).
This transgene has been shown to reduce the onset of age-related
disease in a progeroid mouse model when activated in a life-long
and late-life manner, and reduced the functional decline of many
organs (Baker et al., 2016; Bussian et al., 2018). Additionally,
the senolytic drug ABT263, which selectively kills senescent cells
in a B-cell lymphoma (BCL)-2/BCL-xL-dependent manner has
shown promise reducing premature aging of the hematopoietic
system in progeroid mice (Chang et al., 2016). This technique
may also show promise in humans due to the fact that normal and
induced-senescent human fibroblasts treated with a Forkhead
box (FOX)O4 interfering peptide selectively targets senescent
cells (Baar et al., 2017). This result has been confirmed in vivo in
both normal aging and fast-aging mice which showed a reduction
in the development of aging phenotypes compared to control
treated mice (Baar et al., 2017). There is currently a series of
efforts to test senolytics and aging-delaying drugs (Childs et al.,
2018; Niedernhofer and Robbins, 2018). Limitations of these
strategies (i) they are not targeted as they do not provide yet
organ-specific removal of senescent cells (senolytics) and (ii) the
aging-delaying drugs, including repurposed drugs (metformin,
rapamycin) as well as novel ones (spermidine), have not yet been
fully characterized for side-effects and aging-specific mechanisms
of action (Aliper et al., 2017; Madeo et al., 2018).

In order to delay aging interventions may target its main
hallmarks: genomic instability, telomere attrition, epigenetic
alteration, loss of protein homeostasis, deregulated nutrient
sensing, mitochondrial dysfunction, cellular senescence, stem cell
exhaustion and altered intercellular communication (López-Otín
et al., 2013). The unbalance in proteostasis has been suggested
to be a significant player in the process of aging (Labbadia and
Morimoto, 2015). Many upstream physiological systems such as
ion channels function directly influence proteostasis as well as
several other cellular processes (López-Otín et al., 2013; Hou
et al., 2018). The same applies to mitochondria, an essential
machinery linked to energy production and utilization in cells.
The modulation of ion channel functions and mitochondrial
activity are likely to have a wide range of effects depending
on the cells/organs affected. The adaptation occurring during
aging, and to some extent in senescent cells, has been described
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as a metabolic shift under intense mitochondrial influence
(Wiley and Campisi, 2016). This further suggests aging and the
accumulation of senescent cells to be driven by a metabolic
shift and that modulation of the mitochondrial capacity may
delay signs of aging. Hence, the control of essential systems
such as ion channels and mitochondria would enable to reduce
the pace of aging and promote healthspan. In this review,
we focus on two aspects of cell physiology: ion channel
biology and mitochondrial function that are interconnected and
related to the majority of hallmarks of aging. Mitochondria
have gained recent interest in the field of aging biology,
especially since the discovery of autophagy and its role in
proteostasis. Ion channel function is an overlooked phenomenon
in the field of aging and this review aims to bring the
attention to the topic.

THE BIOLOGY OF ION CHANNELS
IN AGING

Ion Channels Function and Dysfunction
Ion channels represent a variety of transmembrane proteins
forming pores. These pores are selective to specific ions
able to actively cross between intracellular and extracellular
compartments, therefore mediating the influx and efflux of
charged ions (Kulbacka et al., 2017). Their large structural
diversity at monomeric and heteromeric levels, due to alternative
splicing, supports their large functional diversity. Each cell
type represents an assemblage of ion channels that shape the
amplitude and duration of the action potential differently (Hoppa
et al., 2014; Rowan et al., 2016). At the intracellular level, ion
channels are also present on the surface of the mitochondria,
endoplasmic reticulum and nuclear membrane (Charpentier
et al., 2016; Raffaello et al., 2016).

Since the first structural resolution of Potassium (K+),
Chloride (Cl−) and later on Sodium (Na+) channels by
MacKinnon and Catterall research teams (Doyle et al., 1998;
Dutzler et al., 2002; Payandeh et al., 2011), the biology of
a large variety of ion channels has been well established.
The development of a large set of biological small and
active molecules targeting channels has been key to better
understand their mechanisms of action and regulation (i.e.,
specific toxins, ligands, antibodies). About 400 annotated ion
channel genes are retrieved in gene databases (about 1.5%
of the human genome). Behind several structural similarities,
their modes of action differ depending on the involved ion,
the ion channel gating and permeation pathway (Yang and
Nerbonne, 2016; Latorre et al., 2017). They are classified
into various voltage-gated [Na+, K+, Cl− and Calcium
(Ca2+)] and ligand-gated ion channels [nicotinic acetylcholine
receptors (nAChRs), γ-amino butyric acid (GABA), N-methyl-
D-aspartate receptors (NMDARs), ryanodine receptors (RyRs)]
according to their electrophysiological properties and their
depolarization events, neuronal signaling and contraction in
response to depolarization. According to their electrochemical
gradients, Na+, K+, and Ca2+ channels and their respective
ions cross the membrane when depolarization is activated

(Bose et al., 2016). The electrophysiology reports of ion channel
functions classify them into a large variety of subtypes
according to their pharmacology and ionic properties, probably
evolved from a common ancestor (Table 1). Despite this,
chloride channels are distinctly classified as members of the
voltage-sensitive subfamily with rarely predictable physiology
[i.e., calcium-activated, high (maxi) conductance, cystic fibrosis
transmembrane conductance regulator (CFTR) and volume
regulated channels].

Malfunctioning and/or overexpression of ion channels has
been observed in several healthy and tumor cells (Lan
et al., 2005; Han et al., 2007). Dysfunctional calcium channel
signaling has been observed in cognitive and cardiac decline,
however, most of this research has so far been conducted
in model organisms such as Drosophila (Lam et al., 2018;
Navakkode et al., 2018). Within the atrio-ventricular region
of rats sodium (Nav1.5) are downregulated with age whilst
calcium (Cav1.3) channels are upregulated, alongside augmented
atrial-ventricular node functioning (Saeed et al., 2018). Similarly
to this finding, an upregulation of L-type and osmotically
activated calcium channels have been observed in human
cardiomyopathy and aging, respectively (Jones et al., 2018;
Sanchez-Alonso et al., 2018). An overview of ion channel
dysfunctions and their relation to age-related disease is provided
in Table 2. By controlling membrane potential and signal
transduction pathways, ion channels on the surface of cells
contribute to maintaining the proteostasis and homeostasis of
systems. Therefore ion channels are incriminated in several
age-related dysfunctions (Santulli and Marks, 2015; Rao et al.,
2016). Because aging also involves physiological alterations of
ion channel function, it is suggested that abnormal changes
of ionic gradients can underlie age-dependent decline of
physiological functions (Rao et al., 2016). With age, functional
changes in ion channels lead to clinical phenotypes called
channelopathies (Rao et al., 2016).

Cardiac Channelopathies
The vascular system often shows decline in a number of
age-related diseases. Atherosclerotic plaques have been observed
in humans from early life but often do not have a clinical
impact until later in life (Jones et al., 2017). Several evidence
has shown that both endothelium and smooth muscle cells
(SMCs) communicate through signal transduction. Within
the numerous changes that may occur at vascular and/or
cardiac levels, it is noteworthy that voltage-dependent and
Ca2+-activated K+ (BKCa) channels, abundant in vascular mural
cell membranes, play an important role in vasodilatation and
regulating coronary tone (Climent et al., 2017). In particular,
they are activated by the vasodilator nitric oxide (NO). In
age-related diseases, a reduction in the density of the BKCa
alpha subunit in coronary smooth muscle was observed to
be associated with NO release (Toro et al., 2002) meaning
a decreased expression during aging (Figure 1). Despite
endothelial dysfunction, changes in K+ channel expression and
function are reported during aging in a young versus mature
rat model (Simkin et al., 2015). Likewise, long-lasting L-type
Ca2+ voltage dependent channels and high-conductance BKCa

Frontiers in Physiology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 158

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00158 February 27, 2019 Time: 17:32 # 5

Strickland et al. Physiological Adaptations in Human Aging

TABLE 1 | Voltage-gated and ligand-gated ion channel nomenclature.

Gating
classification

Channel family Channel subunit/subfamily Channel abbreviation

Voltage-gated ion Voltage-gated sodium channel (Na+) Alpha subunit NaV1.1-1.9

channel Beta subunit NaVβ1-4

Voltage-gated calcium channel (Ca2+) L-type calcium channel (Long-lasting) CaV1.1-1.4

P/Q-type channel (Purkinje/Unknown) CaV2.1

N-type channel (Neural) CaV2.2

R-type channel (Residual) CaV2.3

T-type channel (Transient) CaV3.1-3.3

Voltage-gated potassium channel Alpha subunit KV1-12

Beta subunit KVβ1-3

Hyperpolarization-activated cyclic
nucleotide-gated (CNG) channels

Alpha subunit CNGα1-4

Beta subunit CNGβ1/3

Voltage-gated proton channels Hydrogen channel HV1

Ligand-gated ion
channel

Ionotropic glutamate receptors α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor
(AMPA)

GluA1-4

Kainate GluK1-5

N-methyl-D-aspartate receptor (NMDA) GluN1, NRL1A-B, GluN2A-D,
GluN3A-B

Orphan GluD1-2

Cys-loop receptors Serotonin (5HT) 5-HT3A-E

Nicotinamide acetylcholine (nAChR) α1-10, β1-4, γ, δ, ε

Zinc-activated ion channel (ZAC) ZAC

Gamma-aminobutyric acid (GABA)A α1-6, β1-3, γ1-3, δ, ε, π, θ,
ρ1-3

Glycine (GlyR) α1-4, β

GABA receptors GABAA receptor α1-6, β1-3, γ1-3, δ, ε, π, θ

5-HT3 receptor Serotonin 5-HT3A−E

ATP-gated channels ATP-gated P2X receptor P2X1−7

Phosphatidylinositol 4,5-biphosphate
(PIP2)-gated channels

Inwardly rectifying potassium channel
(Kir)-activating

Kir1.1-7.1

channels are recognized as key regulators of vascular and
arterial tone through the NO-cyclic guanosine monophosphate
(cGMP) pathway (Climent et al., 2017). Their activities
are modulated by intracellular Ca2+ and their abundance
diminished with aging.

Therefore, vascular dysfunction is one of the main factors
linked to age-related diseases including cardiovascular and
cerebrovascular diseases. It occurs through a progressive
alteration of the structure and/or function of the vasculature.
Within the signaling pathway, ion channels modulate ion
fluxes by either activating K+ channels or inactivating Ca2+

channels leading to vasodilatation. In coronary smooth
muscle during aging, a decrease in voltage-Ca2+-activated
K+ channels has been described (Marijic et al., 2001) and an
inhibitory effect of testosterone has been demonstrated (Scragg
et al., 2004). Beside endothelium-dependent mechanisms,
hormones (i.e., testosterone, oestrogen) are involved in
vasorelaxation via ion channel modulation and activating
several signaling pathways (i.e., Phosphoinostide 3-kinase
(PI3K)/Akt-dependent pathways) in vascular endothelial
cells (Hisamoto et al., 2001). Both hormone receptors and
Ca2+ voltage-gated channels are on the plasma membranes

suggesting some commonalities in subsequent signaling
pathways (Núñez et al., 2018). With this respect, ion
channels are nowadays the preferential molecular targets of
future drug developments and ion channel modulators are
promising medicines to reduce human pathophysiological
changes (Testai et al., 2015; Bhattacharya and Biber, 2016;
O’Conor et al., 2016).

Ion Channels in the Aging Nervous
System
Ion disturbance is present in neurological disorders associated
with various types of voltage- and ligand-gated ion channel
defects and/or mutations. For instance, implications of several
voltage-gated sodium, potassium and calcium channel-subtype
gene families are linked to dyskinesia, seizure, epilepsy, and ataxia
pathogenesis (Simms et al., 2014). In neurons, changes in ionic
fluxes occur very rapidly producing action potentials with fast
depolarization, repolarization and signal propagation (Levitan
and Kaczmarek, 2015). Neuronal signaling involves specific ion
channels. The role of the ion channels in membrane physiology
and brain homeostasis is essential, triggering nerve impulses
and synaptic transmission. Many neurological disorders are
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TABLE 2 | Ionic channels and their age-related diseases by blocker/ligand matches (Guide to Immunopharmacology portal, http://www.guidetopharmacology.org/).

Ionic channel subtypes Age related diseases Blockers/ligands Reference

Transient receptor potential
channels (TRP1, TRPM3)

Polycystic kidney disease 2;
polycystic kidney disease 2-like
1 protein;

No putative TRP1 blockers
Cd2+, Ni2+ ligands

Oberwinkler et al., 2005

Voltage-gated potassium
channels (Kv1.3)

Autoimmune diseases (i.e.,
diabetes, multiple sclerosis and
rheumatoid arthritis)

Noxiustoxin;
Charybdotoxin;
Margatoxin
Kaliotoxin
Maurotoxin

Grissmer et al., 1994
Attali et al., 1992
Garcia-Calvo et al., 1993
Rochat et al., 1998

Voltage-gated calcium
channels (Cav1.4)

Ocular albinism, ocular albinism
type 2

Dihydropyridine antagonists
(verapamil, diltiazem)

Baumann et al., 2004

Calcium- and sodium-activated
potassium channels (KCa2.3)

Parkinson disease KCa2.3 blockers (Apamin,
Leiurotoxin I)

Barfod et al., 2001
Shakkottai et al., 2001

TRPV1 Transient receptor
potential channels

Inflammatory bowel disease,
Chron’s disease; Ulcerative
colitis

Agatoxin Barfod et al., 2001

TRPA1 Transient receptor
potential channels

Inflammation, inflammatory pain
and inflammatory diseases

Divalent cations modulators Nagata et al., 2005

Cav2.2 Voltage-gated calcium
channels

Renal and cardiovascular
diseases

Omega-conotoxins Lewis et al., 2000

Nav1.4 Voltage-gated sodium
channels

Susceptibility to periods of
hyperactivity

Saxitoxin
Tetrodotoxin
Mu-conotoxins
Lidocaine

Penzotti et al., 2001
Trimmer et al., 1989
Safo et al., 2000
Makielski et al., 1999

Kv8.1 Voltage-gated potassium
channels

Epileptic disease Kv8.1 is not functional on its
own but modulates the
properties of coexpressed
Kv2.1

Hugnot et al., 1996

Cav1.3 Voltage-gated calcium
channels

Multiorgan disease Cd2+; Verapamil
dihydropyridine antagonist

Scholze et al., 2001

Kv4.3 Voltage gated potassium
channels

Àtrial Fibrillation, Valvular heart
disease

Phrixotoxin 1 Wang et al., 2000

KCa2.1 Calcium- and
sodium-activated potassium
channels

Ataxia, epilepsy, memory
disorders, pain and possibly
schizophrenia and Parkinsons’s
disease

NS8593 gating inhibitor Strobaek et al., 2006

Nav1.6 Voltage-gated sodium
channels

Motor end-plate disease α scorpion toxins Oliveira et al., 2004

caused due to altered function or mutation in ion channels (i.e.,
Alzheimer, Parkinson, Huntington, multiple sclerosis diseases)
(Kumar et al., 2016). They are involved in propagation of action
potential and secretion of neurotransmitters, therefore aberrant
ion channels are considered of crucial negative influence in
neurodegenerative disorders (Kumar et al., 2016). For instance,
various calcium channels contribute to dysregulation of calcium
homeostasis and play an important role in age-related changes
(Navakkode et al., 2018). Recently, downregulation of the
CaV3.1 T-type calcium channel has been demonstrated in N2a
cells and the 3xTg-AD mouse model of Alzheimer’s disease
(Figure 1) (Rice et al., 2014).

Neurogenic inflammation and pain signaling are also
mediated by specific members of the transient receptor
potential (TRP) ion channel family. They are co-expressed
in at least 25% of nociceptors (Bautista et al., 2006; Pingle
et al., 2007). For example, TRPA1 mediates the inflammatory
actions of environmental irritants and analgesic agents and
enhance pain and inflammation (Matta et al., 2008). The same

TRPA1 was shown to be activated in lung epithelial cells in
response to cigarette smoke stress (Lin et al., 2015). This
suggests some commonalities in the role of ion channels
across various cell types and organs. Neuroinflammation and
cognitive decline often appear concurrently in the aging
brain, with inflammatory cytokines acting negatively on spatial
memory (Blalock et al., 2003; Moore et al., 2009). The
increased incidence of stroke with aging can bring about
the production of inflammatory cytokines from microglia
(Charolidi et al., 2015). Aging increases the production
of interleukin (IL)-6 in the brain of aged mice, in a
KV1.3-dependent manner. Alongside this, microglia in aged mice
show increased expression of voltage-activated K+ channels,
potentially enhancing IL-6 production and neuroinflammation
with age (Schilling and Eder, 2015).

Immuno-Channelopathies
In innate and adaptive immunity, regulation of membrane
potential and calcium influx are determined by the equilibrium
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FIGURE 1 | Age-related changes in ion channel function. Calcium (Ca2+) release-activated Ca2+ channels increase intracellular Ca2+ levels, activating K+ channel
opening and sustained Ca2+ signaling, whilst efflux of chloride (Cl−) ions inhibits Ca2+ influx. Downregulation of Ca2+ channels has been demonstrated in
Alzheimer’s disease. Decreased expression of Ca2+-activated K+ channels have been noted with aging, particularly within the smooth muscle cells of the vascular
system reducing arterial tone. Within the mitochondria, reduced Ca2+ ion channel activity results in reduced Ca2+ cycling. Potassium channel expression on the
mitochondria are also reduced with age in the heart sarcolemma.

potentials of K+ (KV1.3, KCa3.1), Na+ (TRPM4) and Cl−
channels in the plasma membrane (Feske et al., 2015). Following
T cell activation, opening of Orai (the store-operated calcium
channel) that encodes Ca2+ release–activated Ca2+ (CRAC)
channels (also expressed in B cells, NK cells, macrophages,
DCs, neutrophils) results in Ca2+ influx and subsequent
opening of KCa3.1 and KV1.3 channels (Figure 1) (Feske
et al., 2015). The study of mechanisms underlying their
function in lymphocytes, using ion channel inhibitors,
revealed important roles of ionic signals in immune
responses. For instance, the open state of KCa3.1 and
KV1.3 channels mediate K+ efflux and hyperpolarization
of the plasma membrane, thereby sustaining Ca2+ influx
(Figure 1). Alongside this, opening of Cl− channels results
in efflux of Cl− ions that inhibits Ca2+ influx (Feske et al.,
2015). Altered immune function through ion signaling can
have profound effects on the development of age-related
disease. Necrosis in the tumor microenvironment, which
causes release of K+ ions into the extracellular space, has
recently been shown to reduce effector T cell function in
a TCR-dependent manner (Eil et al., 2016). Additionally,
the activation of acid-sensing ion channels in microglia
following stroke has been shown to increase the development of
neuroinflammation in rats, tying ion signaling in immune cells
to inflamm-aging (Yu et al., 2015).

ION CHANNELS, MITOCHONDRIA AND
AGING

Ion Channels Regulate Mitochondrial
Functions
Mitochondria are often referred to as the powerhouse of
the cell, however, their physiological role goes well beyond
that (Chandel, 2015; Vakifahmetoglu-Norberg et al., 2017).
Mitochondria are highly dynamic organelles regulating their
structure in line with metabolism, redox signaling, mitochondrial
deoxyribonucleic acid (DNA) maintenance and apoptosis
(Vakifahmetoglu-Norberg et al., 2017). Besides from generating
adenosine triphosphate (ATP) for cellular energy, mitochondria
are also deeply involved in providing intermediates for cellular
signaling and proliferation (Diebold and Chandel, 2016).
Mitochondria can alter their size and organization as a result
of mitochondrial fission and fusion in response to various
intracellular and extracellular signals (Seo et al., 2010). Fission
and fusion events occur to meet metabolic demands and for
the removal of damaged/dysfunction mitochondria. The role
of mitochondrial fission and fusion in facilitating metabolism
has been researched extensively (Wai and Langer, 2016).
Fused mitochondrial networks typically engage more oxidative
pathways of metabolism, whilst fragmentation as a result of stress
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impairs the oxidative pathway and increases cellular demand on
glycolysis (Wai and Langer, 2016).

Ion channels are intimately involved in regulating
mitochondrial function (O’Rourke, 2007). The essential
role of cationic hydrogen (H+) ion transfer in ATP production
was noted as early as 1961 (Mitchell, 1961). H+ ions are pumped
from the mitochondrial matrix into the intermembrane space
by the flow of electrons through the electron transport chain.
These ions are then utilized to drive the ATPase machinery
and phosphorylate ATP, thus creating energy for the cell
(Mitchell, 1961). The movement of ions across the mitochondrial
membrane is also essential in establishing membrane potential
and maintaining proton (H+) flux. Ions transported across
the inner membrane include potassium (K+), sodium (Na+)
and calcium (Ca2+), alongside H+ (O’Rourke, 2007). The
most well-studied ion channel within the mitochondrion is the
voltage-dependent anion channel, also known as VDAC, which
is the primary route of metabolite and ion exchange across the
outer mitochondrial membrane (Colombini, 2004).

Mitochondrial channelopathies have been found in aging,
affecting the K+, Ca2+, VDAC and permeability transition pore
(Ca2+; PTP) channels. Mitochondrial Ca2+ cycling is impaired
with aging in neurons, resulting from reduced Ca2+ channel
activity and reduced recovery after synaptosomal stimulation
(Figure 1) (Satrustegui et al., 1996). This reduced calcium
recovery rate results in reduced mitochondrial membrane
potential and delayed repolarization, causing mitochondrial
dysfunction with aging. This effect has been found in the heart
of 2 year old senescent rats (Jahangir et al., 2001). In terms
of potassium channels, it has been shown that their density on
the surface of mitochondria significantly declines with age and
with metabolic syndromes in the heart sarcolemma (Figure 1)
(Ranki et al., 2002; Truong et al., 2016). This has been shown to
reduce tolerance to ischemia-reperfusion and increased injury in
aged guinea pig and rat hearts, and also humans (Roscoe et al.,
2000; Kamada et al., 2008). These effects have repercussions in
increasing susceptibility to myocardial infarction and reducing
neuronal activity in the elderly as mitochondrial K+ channels
have been shown to play a neuroprotective role in neurological
reperfusion injury in postnatal mouse pups (Connors et al.,
2015). Amyloid-β plaques in Alzheimer’s disease have been
shown to increase intracellular calcium levels (Demuro et al.,
2011). This increase in intracellular calcium, and uptake into
the mitochondria through the VDAC and calcium uniporter,
has been shown to increase mitochondrial stress responses and
initiate apoptosis in rat cortical neurons in vitro and hippocampal
slices ex vivo (Alberdi et al., 2010). Recent studies in Parkinson’s
disease, have revealed that α-synuclein acts via the VDAC to
promote mitochondrial toxicity of respiratory chain components
in a yeast model of Parkinson’s (Rostovtseva et al., 2015).

Mitochondrial Dysfunctions in Aging
In-born errors of metabolism and mitochondrial defects can
have wide-spread effects on human physiology from birth
(Vernon, 2015). These mitochondrial disorders are commonly
characterized by symptoms such as vision loss, heart disease
and dementia similar to that seen during aging, highlighting

the crucial role of mitochondria in maintaining cellular and
physiological function (Ganesh et al., 2017; Towbin and
Jefferies, 2017; Sklirou and Lichter-Konecki, 2018). The onset
of age-related pathologies have been linked to the development
of mitochondrial dysfunction for some time, particularly in the
development of Parkinson’s disease (Abou-Sleiman et al., 2006).
Moreover, mitochondrial dysfunction has also been observed in
cardiac disease, Alzheimer’s disease and more recently diabetic
kidney disease (Lesnefsky et al., 2001; Reddy and Beal, 2008;
Qi et al., 2017). Therefore, it is not hard to see the correlation
between increasing mitochondrial dysfunction and the decline
in physiological systems with aging. In fact, mitochondrial
dysfunction was highlighted as one of the nine hallmarks of aging
(López-Otín et al., 2013). Mitochondrial dysfunction manifests
during normal aging, its aggravation accelerates aging and its
amelioration in model organisms increases life span.

Mitochondrial biogenesis resulting from the growth and
division of existing organelles maintains mitochondrial health
and integrity, however, this process has been shown to be
reduced with age in both animals and humans (Figure 2)
(López-Lluch et al., 2008; Srivastava, 2017). The rate of
loss of mitochondrial biogenesis with age is still argued,
however, it has been shown to be augmented in response
to physiological stimuli such as hormones and transcription
factors. For example, oestrogen and progesterone promote
whilst testosterone inhibits mitochondriogenesis in human
brown adipose tissue in vitro, whilst the nuclear respiratory
transcription factors (NRF1 and NRF2) influence the expression
of mitochondrial respiratory genes (Rodriguez-Cuenca et al.,
2007; Scarpulla et al., 2012).

Additionally, exercise and caloric restriction have been shown
to enhance mitochondrial biogenesis whilst obesity and type
2 diabetes, which are prevalent in the aging population, have
been shown to reduce it (Hebert et al., 2013; Heinonen
et al., 2015). These mechanisms act directly by augmenting
the expression of the mitochondrial biogenesis regulator
peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1α) and indirectly by mediating the activation
of adenosine monophosphate-activated kinase (AMPK) which
phosphorylates PGC-1α (Jager et al., 2007; Jornayvaz and
Shulman, 2010). The PGC-1α transcriptional coactivator in line
with NRF1 and NRF2 regulates the expression of nuclear encoded
mitochondrial proteins (Lin et al., 2005). Hormone receptors
including peroxisome proliferator-activated receptors alpha and
gamma and oestrogen related receptor alpha also regulate the
expression of mitochondrial genes in concert with PGC-1α (Lin
et al., 2005). In response to stress AMPK induces mitophagy
by inhibiting mammalian target of rapamycin (mTOR), whilst
Sirtuin-1 phosphorylation by AMPK activates PGC-1α and
stimulates mitochondrial biogenesis (Rodgers et al., 2005; Alers
et al., 2012). In rats, reduced AMPK activity has been linked to
reduced mitochondrial biogenesis and insulin resistance with age
(Reznick et al., 2007; Qiang et al., 2007). Whilst caloric restriction
has been shown to increase PGC-1α activity in primary rat
hepatocytes (López-Lluch et al., 2006), the effect of caloric
restriction on AMPK activity is under discussion with studies
reporting both positive and negative results on AMPK signaling
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depending on the disease model studied (García-Prieto et al.,
2015; Amaral et al., 2016; Bayliss et al., 2016).

During aging, the efficiency of mitochondrial electron
transport chain weakens, thus reducing cellular ATP production
and increasing electron leakage and reactive oxygen species
(ROS) production in model organisms such as Caenorhabditis
elegans and Drosophila (Figure 2) (Ferguson et al., 2005; Rea et al.,
2007; Chistiakov et al., 2014). However, studies of human aging
are conflicted over the relationship between electron transport
chain activity and aging (Parker et al., 1989; Barrientos et al.,
1996; Doria et al., 2012). Mitochondria have formed the basis
of a number of theories examining the phenomenon of aging,
the most well-studied and accepted being the free-radical theory
of aging (Harman, 1992). This theory focuses on the increased
production of ROS with age which causes progressive cellular
damage (Figure 2). As ROS originate from the mitochondria,
these powerful and essential organelles are the most susceptible
to this oxidative damage (Belhadj Slimen et al., 2014). Mutations
in mitochondrial DNA have previously been linked to impaired
mitochondrial function and apoptosis in both murine and
human brain and muscle tissue (Fayet et al., 2002; Kraytsberg
et al., 2006; Li H. et al., 2017). This results in impaired tissue
homeostasis, degeneration and the development of age-related
phenotypes such as sarcopenia and neurodegeneration (Cha
et al., 2015; Herbst et al., 2016). Whilst ROS have been linked
to the increase in mitochondrial DNA mutations with aging,
this phenomenon can occur in the absence of oxidative stress
and has been attributed to replication errors (Seo et al., 2010;
López-Otín et al., 2013). Additionally, the free radical theory of
aging has recently been brought into question through studies
in the model organism C. elegans. Here, more recent studies
have shown that the absence of the antioxidant superoxide
dismutase (SOD) does not affect lifespan unless the organism is
put under stress (Van Raamsdonk and Hekimi, 2012). Loss of
SOD2 specifically has been shown to increase lifespan in clk-1
ETC (Coenzyme Q) mutants whilst decreasing lifespan in isp-1
ETC (complex II) mutant worms (Van Raamsdonk and Hekimi,
2009). Additionally, mitochondrial ROS production is required
for longevity in the C. elegans isp-1 and nuo-6 ETC mutants by
protecting against mitochondrial dysfunction (Yee et al., 2014).

A pro-oxidative redox state has been implicated in the
development of cardiovascular disease, inflammation, diabetes,
neurodegeneration and cancer in human health (del Valle,
2011; Dai et al., 2014; Münzel et al., 2015). ROS have
extensive effects within the cellular environment causing
protein misfolding and aggregation, as well as oxidative
damage to DNA (Nakamura and Lipton, 2017). Parkinson’s
disease results from abnormalities in the expression of the
protein Parkin, which aids in the autophagic degradation of
dysfunctional and damaged mitochondria (Kazlauskaite and
Muqit, 2015). Loss of this protein with age in humans
and mice results in decreased autophagy of mitochondria
(mitophagy), leading to the accumulation of damaged organelles,
decreased function and neurodegeneration (Song et al., 2017;
Zanon et al., 2017). A similar process has been observed in
Alzheimer’s disease, where amyloid-β plaque accumulation leads
to mitochondrial dysfunction and cellular toxicity. Studies in

yeast have helped to delineate the mechanism behind this effect
on mitochondrial function, whilst amyloid-β has also been shown
to induce mitochondrial dysfunction in human neural stem cells
(Mossmann et al., 2014; Chiang et al., 2016).

ROLE OF MITOCHONDRIA IN THE
REGULATION OF INFLAMM-AGING

Inflammation and Age-Related Diseases
It is well established that there is an age-related dysregulation
of pro/anti-inflammatory circulating cytokines which are
increased threefold to fourfold in plasma or serum from
elderly participants, termed inflamm-aging. Several studies have
reported that this cytokine-related aging process appears to
be related to a collection of age-related syndromes, including
loss of muscle and bone mass, anemia, immune dysfunction
and memory decline (Morley and Baumgartner, 2004; Reale,
2014). Westendorp has reported that persons with high levels
of tumor necrosis factor alpha (TNFα) and low levels of IL-10
favor a protective role in infection and will have an extended
lifespan, thus suggesting that the balance between pro- and
anti-inflammatory cytokines influences longevity (Westendorp,
2004). However, the burden of disease has now shifted away from
infectious diseases toward the chronic diseases that typically
come with old age. In this regard IL-6 has been linked to the aging
process and has been named the “geriatric cytokine” (Herpich
et al., 2018). Muscle wastage and high mortality are associated
with elevated serum levels of IL-6 in the elderly (Forcina et al.,
2018; Ridker et al., 2018). For example, a one SD increase in
IL-6 levels in elderly patients results in a 1.1–2.3 kg loss in grip
strength, whilst acute injection of IL-6 in rats causes a 17% loss
of myofibrillar protein (Visser et al., 2002; Haddad et al., 2005).
This age-associated increase in production of IL-6 was recently
proposed to be linked to the process of cellular senescence.
Senescent cells, which number increases with aging, were
shown to have a pro-inflammatory secretory profile, including
IL-6, which is part of the senescence associated secretory
phenotype (SASP) (Watanabe et al., 2017). Alongside IL-6 the
concentration of TNFα, a pro-inflammatory cytokine produced
by macrophages and adipocytes, is significantly increased in
centenarians compared with younger subjects (Bruunsgaard
et al., 1999; Holmes et al., 2009). This increase was associated with
a greater incidence of both Alzheimer’s disease and generalized
atherosclerosis in centenarians (Bruunsgaard et al., 1999; Holmes
et al., 2009). This chronic, sterile, low-grade inflammation called
inflamm-aging contributes to the pathogenesis of age-related
diseases such as those summarized in Table 3. SASP cytokines
such as IL-6 and TNFα are regulated by molecules such as
IL-10 (Stenvinkel et al., 2005). The interaction between pro- and
anti-inflammatory molecules is complex and in the context
of cardiovascular disease strongly suggests that dysregulation
of this interplay may lead to complications such as end
stage renal disease.

Recent advances have shown that the pro-inflammatory
capacity of cells is regulated by the inflammasome
(Guo et al., 2015). The inflammasome is a multiprotein
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TABLE 3 | Cytokines and their age-related-diseases.

Age-related-
diseases

Principal
associated

cytokine Reference

Sepsis ↑ IL-6 level → ↑ risk Starr and Saito, 2014

Alzheimer disease ↑IL-6 Level
↑IL-1β level

→ ↑ risk Banks and Morley, 2003
Wilson et al., 2002
Licastro et al., 2000

↓G-CSF → ↑ risk Barber et al., 2012

Cachexia syndrome ↑TNFα level → ↑ risk Baez-Franceschi and
Morley, 1999

Dilated
cardiomyopathy

↑TNFα level → ↑ risk Levine et al., 1990

Atherosclerosis and
osteopenia

↑IL-6 level
↑TNFα level
↑ IL-1β level

→ ↑ risk Hak et al., 2000
Jørgensen et al., 2001

Cognitive decline ↑IL-6 level
↑TNFα level

→ ↑ risk Engelhart et al., 2004
Schram et al., 2007
Weaver et al., 2002

Acute stroke ↑IL-6 level
↑TNFα level

→ ↑ risk Jung et al., 2010
Stankowski and Gupta,
2011

↑ IL-10 level
↑ TGF-β level

→ ↓ risk Van Exel et al., 2002
Pang et al., 2001

intracellular complex that forms in response to stress (pathogenic
microorganisms/sterile stressors) and results in the release of
the pro-inflammatory cytokines IL-1β and IL-18 (Guo et al.,
2015). IL-1β induces IL-2 and TNFα through the activation
of T-helper cells, and produces tissue inflammatory actions
by activating cyclooxygenase-2 to produce prostaglandin E2,
inducible intercellular adhesion molecules and NO (Raeburn
et al., 2002). IL-1β causes fever, anorexia, sickness behavior and
a decline in the ability to acquire and retain memory in mice
(Banks et al., 2001). It was also reported that IL-1β may increase
the production of amyloidal precursor protein within the central
nervous system and the development of neurodegenerative
disorders such as Alzheimer’s disease, with increased plasma
levels of pro-inflammatory cytokines IL-1 and IL-6 also observed
in these patients (Licastro et al., 2000; Wilson et al., 2002; Banks
and Morley, 2003; Shaftel et al., 2008).

Age-related inflammation has recently been postulated as a
concomitant adaptation to the metabolic shifts observed during
aging (Franceschi et al., 2018). This metabolic shift toward
decreased mitochondrial respiration and increased glycolysis is
observed within the model organism C. elegans (Feng et al.,
2016), as well as in rat hepatocytes and human skeletal muscle
(Hagen et al., 1997; Gouspillou et al., 2014). In aging bone,
impaired oxidative metabolism leading to a glycolytic shift has
been identified in mice due to PTP opening and mitochondrial
dysfunction (Shum et al., 2016). However, human fibroblasts
from aged individuals display a decrease in glycolytic flux and
lactate output and increase in oxygen consumption rate and ATP
levels (Son et al., 2017), suggesting this age-related metabolic
shift may be tissue specific. This metabolic adaptation and
concurrent inflammation with age is thought to result in chronic
inflammation driven by nutrient excess, obesity and regulated
by gut microbiota (Franceschi et al., 2018). This is supported

by the fact TNFα promotes anorexia, stimulates lipolysis and
inhibits lipoprotein lipase, leading to cachexia syndrome in older
persons. This implicates cytokines in feeding behavior and their
effects in the elderly (Baez-Franceschi and Morley, 1999). This
meta-inflammation hypothesis supports the potential role of
mitochondria, an essential keychain of the metabolic regulations,
in driving age-related inflammation. As discussed above (i)
mitochondria are involved in immune-metabolic adaptation (ii)
mitochondrial dysregulation is a core hallmark of aging and
senescence (iii) mitochondrial functions rely highly on ion
channel biology. Altogether this suggests an unexplored role of
ion channels in the regulation of inflammation.

Ion Channels, Mitochondria and SASP
Immune Cells
It has been more than 30 decades since expression of ion channels
in non-excitable immune cells (i.e., T lymphocytes) was first
described (DeCoursey et al., 1985). Besides their role in cell
excitability, KV channels are also involved in regulating cellular
secretion and in the differentiation and growth of non-excitable
cells. In particular, KV channels have been implicated in the
proliferation of many cell types and are usually down- or
up-regulated in immune cells of patients with cancerous diseases
(Pardo, 2004; Pardo et al., 2005). On the surface of immune
cells, a variety of ion channel subtypes are displayed. KV1.3 are
the most well-described potassium channel subtype involved in
the inflammation process and their dysfunction is associated
to altered T function, through impacting the calcium influx
and contributing to age-related changes of T cell function
(Kollár et al., 2015).

The most recent advances in the field of senescence, aging
and inflammation relate to the concept of the SASP. SASP
refers to the increased secretion of inflammatory cytokines,
chemokines and growth factors secreted by senescent cells
(Watanabe et al., 2017). The most common group of secreted
SASP factors are the major pro-inflammatory cytokines IL-1β,
IL-6 and IL-8, produced via augmented NF-κB and mTOR
signaling in senescent human fibroblasts and embryonic kidney
cells (Chien et al., 2011; Herranz et al., 2015). A causal
relationship between systemic inflammation and the prevalence
of generalized age-related osteoporosis has been observed in the
elderly (Yun and Lee, 2004; Ginaldi et al., 2005). Inflammatory
cytokines such as IL-6, TNF-α and IL-1β produced through
SASP (Watanabe et al., 2017), are stimulators of osteoclast
activity and are linked to the development of atherosclerosis
and osteopenia (Hak et al., 2000; Jørgensen et al., 2001).
SASP factors have simultaneously been shown to affect injury
recovery. Low levels of IL-6 were significantly correlated
with better functional and muscular recovery after femoral
neck fracture in women of good health aged 65 and over
(Miller et al., 2006, 2008).

Activation of inflammasomes, particularly the nod-like
receptor P3 (NLRP3) inflammasome, is highly dependent on the
activity and integration of the mitochondria. The mitochondrial
antiviral signaling protein (MAVS) adaptor is required for
recruitment of NLRP3 to the mitochondria and its activation
(Figure 3B), whilst the endoplasmic reticulum-mitochondrial
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junction is also integral to inflammasome activation (Raturi
and Simmen, 2013; Subramanian et al., 2013). Dysfunctional
mitochondria have been linked to inflammation for some time,
and have also been implicated in the inflamm-aging process

(Picca et al., 2017). Damage-associated molecular patterns
(DAMPs) accumulate with age as a result of the release of
ROS and ATP from damaged mitochondria (Kapetanovic et al.,
2015). Although mitochondria have been present in animal

FIGURE 2 | Mitochondrial dysfunction during aging. Healthy mitochondria produce ROS through regular oxidative (OXPHOS) activity which aid in normal cell
processes, this ROS production is kept in check by various anti-oxidant systems to prevent oxidative damage. During aging, dysfunctional mitochondria accumulate
due to reduced biogenesis and ROS control. This increased ROS production induces both further mitochondrial damage and cellular damage, resulting in reduced
cell function and eventual apoptosis.

FIGURE 3 | (A) Ion channels and inflammation. Increased extracellular reactive oxygen species (ROS) stimulates TRPA1 and calcium (Ca2+) influx. This increases
intracellular ROS production, MAPK activation and pro-inflammatory IL-8 release. Mitochondria produce ROS and ATP through their normal activities which affect ion
flux, for example by increasing calcium influx into the cell by increasing calcium ion channel activity and stimulating further ROS production. In turn the secretion of
inflammatory molecules such as IL-8 is stimulated. (B) Mitochondria, ions and inflammation. Mitochondria form the major platform for NLRP3 inflammasome
assembly through the mitochondrial antiviral signalling protein (MAVS). Mitochondria activate this inflammasome complex by releasing damage associated molecular
patterns (DAMPs) such as ROS and ATP leading to the maturation of IL-1β and IL-18 inflammatory molecules. Similarly, increased influx of ions such as calcium,
chloride and potassium can also influence inflammasome activation.
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cells for millions of years, it is believed that mitochondria
originated from bacteria and can be seen by the body as
pathogen-associated molecular patterns (PAMPs) (Krysko et al.,
2011). Both DAMPs and PAMPs induce an immune response by
triggering the activation of inflammasomes, including the NLRP3
inflammasome in innate immune cells such as macrophages,
driving maturation of IL-1β and IL-18 pro-inflammatory
cytokines (Figure 3B) (Kapetanovic et al., 2015).

It is also tempting to speculate on the role of ion channels
in the activation of the inflammasome. Potassium and chlorine
efflux, alongside calcium influx, have been shown to influence
NLRP3 inflammasome activation (Figure 3B) (Jo et al., 2016;
Hafner-Bratkovic and Pelegrin, 2018). ATP, as a common
activator of NLRP3, induces decreased levels of potassium and
alters other ionic contents within the cell (Jo et al., 2016), essential
for inflammasome activation in monocytes/macrophages (Petrilli
et al., 2007). In fact the intracellular chloride channel has
been shown to act downstream of potassium efflux, as a
result of mitochondrial ROS generation, to promote NLRP3
activation in murine macrophages and a human monocytic
cell line (Tang et al., 2017). Inflammasome activation itself
has also been shown to affect potassium, chlorine and calcium
homeostasis contributing to cytokine release in cells of the innate
immune system (Perregaux and Gabel, 1994; Hafner-Bratkovic
and Pelegrin, 2018). Chronic inflammation, Alzheimer’s disease
and metabolic diseases such as Type 2 diabetes have been
linked to aberrant activation of the NLRP3 inflammasome by
damaged mitochondria and dysregulated ion flux (Jo et al.,
2016). Therapeutic interventions to modulate the adverse and
overlapping effects of the numerous different inflammatory
mediators on each ion transport system could target adversely
affected ion transport systems directly and locally.

Other Cells
The expression or function of most ion channels can be
modulated by cytokines, prostaglandins, leukotrienes and
ROS resulting from inflammation. Key pathways in this
interaction are cyclic nucleotide, phosphoinositide and
mitogen-activated protein kinase (MAPK)-mediated signaling,
direct modification by ROS-like NO, ATP or protons and
disruption of the cytoskeleton in neuronal and epithelial
cells (Eisenhut and Wallace, 2011). The increased levels of
extracellular ROS following stress, such as smoke exposure,
leads to a 2.5-fold increase in Ca2+ influx following TRPA1
activation in human bronchial epithelial cells (Lin et al.,
2015). This contributes to increased intracellular ROS (via
NADPH oxidase) activating the MAPK pathway and increasing
the secretion of IL-8 in innate immune cells (Figure 3A)
(Lin et al., 2015). The relationship between altered chloride
channels and airway-related inflammation was recently reviewed
(Sala-Rabanal et al., 2015) and also included the chloride channel
regulator, the calcium-activated chloride channel (TMEM16A),
and chloride exchangers (SLC26A4 and SLC26A9), as potential
regulators of inflammation.

Additionally, ion channels have been shown to be involved
in the development of senescence. For example, expression of
the sodium voltage-gated channel SCN9A maintains cellular

senescence induced by oncogene expression, whereas loss of this
channel allows mammary epithelial cells to escape senescence
development (Warnier et al., 2018). SCN9A is upregulated
in an NF-κB-dependent manner following oncogene induced
senescence, and induces plasma membrane depolarisation in a
manner similar to that of calcium and potassium ion channels
(Wiel et al., 2014; Warnier et al., 2018). TRP channel, TRPC5,
has also been implicated in the development of senescence in
mouse vascular endothelial cells in a ROS-dependent manner,
with β-galactosidase staining reduced in cells lacking this gene
(Li Z. et al., 2017). Therefore, therapeutics targeting ion channels
could be useful in restoring endothelial cell function and reducing
the incidence of cardiac disease in this context (Minamino
et al., 2002). In contrast to the reversal of senescence, small
molecule activation of KV11.3 plasma-membrane potassium
channel have shown promise in inducing p16INK4A-dependent
senescence in melanoma cells in vivo, where the induction of
senescence is preferable (Perez-Neut et al., 2016). Induction of
senescence involved an AMPK-dependent cellular stress response
following a rapid increase in intracellular calcium as evidenced
by increased rates of autophagy. Consequently, therapeutics
designed to activate or reverse senescence could both be of use
in the aging population.

INTERVENTION STRATEGIES TO
RESTORE MITOCHONDRIAL FUNCTION

The removal of senescent cells is a strategy used to improve
physical capacity in old age. The use of senolytics to clear
senescent cells by exploiting their apoptotic pathways have
already shown promise in pre-clinical studies alleviating the
burden of SASP (Kirkland and Tchkonia, 2017). Particularly
the SASP components IL-6, IL-1α and TGF-β show decreased
expression with the use of senolytics in senescent murine
hematopoietic stem cells, human lung fibroblasts and a murine
model of pulmonary fibrosis (Chang et al., 2016; Schafer et al.,
2017). Consequently, the removal of senescent cells should
reduce the overall pro-inflammatory profile in older individuals.
In senescent human fibroblasts the anti-aging drug resveratrol,
has recently been shown to reduce SASP potentially through
targeting mitochondrial dysfunction in a p16INK4A-dependent
mechanism (Pitozzi et al., 2013; Kirkland and Tchkonia, 2017).
The senolytic properties of resveratrol in senescent porcine aortic
endothelial cells involve mitochondrial Ca2+ overload-induced
apoptosis (Madreiter-Sokolowski et al., 2019). However, the
difficulty resides in the specific targeting of senescent cells in
humans, as expression of senescent hallmarks is highly variable
in a tissue-specific manner, as well as in the potential detrimental
effect of this removal (Hudgins et al., 2018). Considering aging
as an adaptation, it can be difficult to conceive that removal of
senescent cells will only have beneficial effects. This may vary
from organ to organ and as of today it is difficult to predict the
tissue-specific effects of senolytics without further testing. Other
intervention strategies should now be considered.

Many interventions affecting mitochondrial function have
been shown to affect lifespan and healthspan. Inducing mild
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mitochondrial stress throughout the life course may result in
better outcomes later in life due to a programming effect,
termed mitohormesis (Yun and Finkel, 2014). As the ROS
theory of aging is so popular, anti-oxidants were one of the first
drugs utilized to ameliorate mitochondrial dysfunction during
aging (Cutler, 1984; Aversa et al., 2016). Whilst ROS have
long since been believed to cause cellular dysfunction through
the oxidative damage they cause, their role within the cell is
much more complex. The generation of mitochondrial-targeted
anti-oxidants have allowed the effects of anti-oxidants specifically
on mitochondria and metabolism to be studied more effectively.
These antioxidants have been shown to protect the mitochondria
from further oxidative damage more effectively than natural
anti-oxidants such as Vitamin E in rat liver mitochondria and
human osteosarcoma cells, sustaining their function during
oxidative stress (Smith et al., 1999). Whilst anti-oxidant
supplementation can reduce oxidative stress, they can also
have detrimental effects on health in the long term (Peternelj
and Coombes, 2011; Desjardins et al., 2017). This is because
ROS are essential for optimal cellular signaling, including that
of ion channels. Anti-oxidants may not be beneficial as an
intervention for restoring mitochondrial function as they may
over-compensate, detrimentally affecting vital cellular functions
and organism physiology. For example, anti-oxidants have
been shown to affect ion channel activity and can block
ATP-sensitive potassium channels in feline cerebral arterioles,
inhibiting the action of hydrogen peroxide in vasodilation
(Wei Enoch et al., 1998).

Metformin, used for the treatment of diabetes, has
wide-ranging effects on mitochondrial function through
multiple mechanisms (Viollet et al., 2012). These mechanisms
include decreased gluconeogenesis and mitochondrial complex
I inhibition resulting in partially inhibited metabolism (Viollet
et al., 2012). This response increases the activation of AMPK as
a response to metabolic stress. AMPK as the master regulator
of metabolism has the ability to induce many beneficial
changes within the mitochondria, from inducing mitochondrial
biogenesis to employing autophagy to regain energy homeostasis
(Hardie et al., 2012). This allows healthy mitochondria to
proliferate, whilst damaged mitochondria are removed through
autophagy and broken down. AMPK also engages oxidative
phosphorylation which has been shown to promote longevity in
some organisms (Hardie et al., 2012).

This may account for the recent call to repurpose drugs such
as metformin for slowing down the appearance of age-associated
diseases (by slowing the aging process itself). Contrary to recent
data implicating AMPK-activation in promoting longevity,
activation of AMPK has been shown to induce T cell senescence
(Lanna et al., 2014), resulting in defective TCR signaling and
reduced proliferation. Similarly, NK cell function has been
found to be reduced in an AMPK-dependent manner in
individuals aged 70 and over (Müller-Durovic et al., 2016). This
may hinder the use of metformin as a potential healthspan
extending drug in clinical trials. In terms of ion channels,
polyspecific cation transporters such as OCT1 (SLC22A1)
are required for accumulation of intracellular metformin and
its interaction with mitochondria and endoplasmic reticulum

(Chien et al., 2015). This interaction has been observed in
human embryonic kidney cells and mouse liver, where OCT1
deletion results in a similar action on metabolism as metformin
by disrupting glycolysis and activating AMPK (Chen et al.,
2014). Metformin has been shown to directly interact with
the intracellular chloride channel (CLIC1) in some human
cells (Gritti et al., 2014). In human glioblastoma stem cells
inactivation of CLIC1 by metformin inhibits the chloride current
and induces cell cycle arrest (Gritti et al., 2014). Metformin has
been shown to have no effect on Ca2+ current amplitude and
K+-contraction in smooth arterial muscle cells and therefore
does not affect vasodilation or contraction in guinea-pig arterial
SMCs (Nakamura et al., 1998). In adult rat myocytes, however,
metformin has been shown to normalize aberrant intracellular
Ca2+ clearing induced by high glucose (Ren et al., 1999). This
finding may implicate metformin in increasing cardioprotection
in diabetic patients.

Long-term caloric restriction has previously been shown
to reduce oxidative mitochondrial DNA damage with age in
rat liver and also decrease ROS production rate within the
mitochondria (Lopez-Torres et al., 2002). Therefore, utilizing
caloric restriction as a therapeutic strategy to combat aging has
received wide-spread attention. Caloric restriction has long been
shown to extend lifespan in a number of animal models ranging
from monkeys to yeast, however, studying the effects in humans
has been challenging due to ethical and methodological concerns
(Heilbronn and Ravussin, 2003). From studies in rhesus and
cynomolgus monkeys it has been shown that caloric restriction
can extend healthspan by delaying the onset of age-related
chronic diseases, such as cardiovascular disease and insulin
insensitivity (Type II Diabetes) (Cefalu et al., 2004; Mattison
et al., 2017). Cefalu and colleagues reported a twofold increased
risk for age-related morbidities in control animals, extending
from frailty through to diabetes and cancer compared to those
on a calorie restricted diets in an examination of two different
studies (Cefalu et al., 2004). Utilizing very low-calorie diets
as a short-term alternative for studying the effects of caloric
restriction, has shown that reducing caloric intake in humans
brings about a series of beneficial health effects. The most
striking finding is that an 8-week low-calorie diet can achieve
remission of impaired insulin responses, which can be sustained
for at least 6 months (Steven et al., 2016). Similar studies
have also shown to reduce inflammatory and oxidative stress
biomarkers (Merra et al., 2017) and improve cardiovascular
health in humans (Wei et al., 2017). Although only short-term,
these studies show that diets utilizing caloric restriction can
benefit health and may represent a strategy for delaying
age-related disease progression which can be used as both
an intervention and a preventative strategy. Caloric restriction
has been shown to activate AMPK-mTOR signaling inducing
mitochondrial biogenesis, improved energy homeostasis and
increased lifespan (Dong et al., 2017; Marin et al., 2017; Wierman
et al., 2017). Additionally, caloric restriction has been shown to
increase Ca2+ retention and buffering capacity in mouse liver
and rat brain mitochondria, resulting in reduced ischaemia-
reperfusion damage and reduced excitotoxicity (Amigo et al.,
2017; Menezes-Filho et al., 2017).
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The positive effects of exercise on increasing mitochondrial
health and increasing healthspan have been known for some
time. The global effects of physical exercise on the hallmarks
of aging has been reviewed recently (Rebelo-Marques et al.,
2018). Exercise training in male young and old mice has been
shown to promote biogenesis of mitochondria and mitochondrial
autophagy and suppress pro-inflammatory cytokine production
by up to 49% (Zhang et al., 2018). A similar effect has also been in
seen in humans, whereby a significant increase in anti-oxidant
levels and activity were observed in old active but not old
sedentary individuals after incremental exercise (Bouzid et al.,
2018). In aged mice an augmented oxidative profile following
a low-impact and accessible swimming regime has been shown
to aid in recovery after myocardial infarction even at durations
as short as 15 min, by decreasing ROS production by 48%
(Zhao et al., 2018). In murine studies, the beneficial effects of
exercise on mitochondrial health appear to be dependent on
the induction of PGC-1α expression, however, this link has yet
to be confirmed within human skeletal muscle (Halling et al.,
2017). Two months of training in 70-year old individuals has
revealed that mitochondrial Ca2+ uptake can also be improved
by exercise by increasing calcium uniporter expression (Zampieri
et al., 2016). Exercise intervention in the elderly has come under
scrutiny in the past due to the limited effects on mortality (West
and Jones, 2013), however, a more recent meta-analysis looking
at exercise prescription has confirmed reduced cardiovascular
mortality from 10.4 to 7.6% (Anderson et al., 2016). Additionally,
exercise has been shown to have positive effects on cognitive
aging (Conner et al., 2017). As the elderly often suffer from
multiple diseases taking additional medication and altering diet
is often unfavorable. In this respect exercise is different from
the other interventions described in this section and can also
have advantageous social benefits. In conclusion this suggests
that regular exercise in elderly can have advantageous effects
on healthy ageing, decreasing both the hallmarks of aging and
development of age-related disease.

PERSPECTIVES

Mitochondria are an essential entity of cells. Ion channels
are an essential regulator of mitochondrial functions. Knowing
the role of mitochondria in cellular energy building and the
consequences of its dysregulation, it becomes evident that a
deeper understanding of ion channel biology should enable to

provide better supportive strategies in the context of aging. The
family of ion channels described in this review are involved in
several physiological systems and influence immune responses,
neuronal signaling and cardiovascular functions which are all
very essential systems. In view of extending healthspan one
should then consider investigating at potential ion channel
modulators to influence mitochondria in an aging organism.
Indeed, ion channels are currently being validated as targets for
therapeutic development and their precise role during regulated
and unregulated cell death is being investigated (Kunzelmann,
2016; Douthwaite et al., 2017; Grandi and Dobrev, 2017). Recent
meta-analyses have concluded that the use of calcium-channel
blockers can reduce the risk of developing Parkinson’s disease
by up to 30% (Lang et al., 2015), and blockers of CaV1.3 for
treating Parkinson’s by reducing mitochondrial impairment and
neuroinflammation are currently in Phase III clinical trials (Swart
and Hurley, 2016). While the clinical effects of such interventions
may be observed in a long-term manner, the investigation of
oxidative stress and inflamm-aging should enable to have closer
outcomes to look at. Indeed, chronic inflammation has been
associated with a myriad of diseases and aged individuals with the
low inflammation were shown to be distant from the risk category
for most age-related diseases.
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