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Calcium is an important second messenger required not only for the excitation-contraction 
coupling of the heart but also critical for the activation of cell signaling pathways involved 
in the adverse cardiac remodeling and consequently for the heart failure. Sustained 
neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic 
hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart’s 
structural and molecular adaptation might elevate the risk of developing heart failure and 
malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through 
TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins 
are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), 
TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by 
numerous physical and/or chemical stimuli. TRP channels participate to the handling of 
the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different 
cardiovascular alterations. This review provides an overview of the current knowledge of 
TRP proteins implication in the pathologic process of some frequent cardiac diseases 
associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, 
and conduction alteration.
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INTRODUCTION

Calcium (Ca2+) is an important second messenger necessary for the excitation-contraction (EC) 
coupling process in cardiac myocytes (Berridge, 2002; Bers, 2002; Eisner et  al., 2017), which 
occurs as a consequence of Ca2+ entry to the cytosol due to L-type Ca2+ channels that provoke 
Ca2+ release from sarcoplasmic reticulum causing cardiac myocyte contraction. Cardiac relaxation 
starts when intracellular Ca2+ concentration ([Ca2+]i) decreases as a result of the activity of 
sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) responsible for the Ca2+ reuptake into the 
sarcoplasmic reticulum and the Na+/Ca2+ exchanger responsible of the Ca2+ extrusion out of 
cardiomyocytes (Bers, 2002; Eder, 2017). Ca2+ is also required for the activation of signaling 
pathway that plays minor roles in the healthy heart, for example, those involved in the cardiac 
remodeling and heart failure (Yue et  al., 2015; Eder, 2017; Freichel et  al., 2017; Avila-Medina 
et  al., 2018; Domínguez-Rodríguez et  al., 2018).
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Among the wide Ca2+-permeable channels known in the 
heart, transient receptor potential (TRP) channels contribute 
to the Ca2+ influx induced by a wide spectrum of physico-
chemical stimuli from cellular microenvironments, such as 
thermal, mechanical stresses, and neurohormonal (Freichel 
et  al., 2017). Likewise, a wide variety of vasoactive agent, 
including endothelin-1, thrombin, ATP, angiotensin-II, or 
bradykinin, also stimulates TRP (Suzuki et  al., 2011; Albarrán 
et  al., 2013; Gerhold and Schwartz, 2016; Sawamura et  al., 
2017). TRP channels comprise a large Ca2+-permeable cation 
channel superfamily showing a common architecture. They 
contain six transmembrane domains (TM1–TM6) and the 
cation-permeable pore region formed by a loop between TM5 
and TM6 (Gaudet, 2007). They are divided into six major 
subgroups based on their specific function and sequence analogies 
(Nilius and Droogmans, 2001; Owsianik et  al., 2006; Peng 
et  al., 2015): the canonical channel (TRPC), the vanilloid-
related channel (TRPV), and the melastatin-related channel 
(TRPM) formed by 7, 6, and 8 different channel proteins, 
respectively (Montell et  al., 2002; Venkatachalam and Montell, 
2007; Yu et  al., 2010); the ankyrin-related channel (TRPA) 
subfamily containing only one protein; the mucolipin-related 
channel (TRPML) formed by three proteins; and polycystin-
related channel (TRPP) constituted by three members also 
known as polycystic kidney disease protein (PKD2) (Montell 
et  al., 2002; Venkatachalam and Montell, 2007).

TRP channels display diverse cation selectivity and activation 
mechanisms (Venkatachalam and Montell, 2007). Most of them 
are nonselective for cation and are permeable to monovalent 
and divalent cations, more permeability for Ca2+ than Na+ (ratio 
PCa/PNa) that ranges from channels selective for monovalent cations, 
such as TRPM4 and TRPM5 with a ratio PCa/PNa  <  0.05, to 
highly Ca2+ selective channels, as TRPV5 and TRPV6, which 
exhibit a ratio PCa/PNa close to 100 (Yue et  al., 2015). TRPM6 
and TRPM7 are also permeable to Mg2+, Ca2+, Na+, Zn2+, and 
other metals [for an extensive review see Freichel et  al. (2017)]. 
Most of TRP channels lack the typical voltage sensor; therefore, 
they are not gated by voltage (Ramsey et  al., 2006; Alonso-
Carbajo et al., 2017; Jardín et al., 2017) but they can be modulated 
by a different chemical and physical stimuli, including temperature 
fluctuations and mechanical stretch (Islas, 2017; Nazıroğlu and 
Braidy, 2017; Yamaguchi et al., 2017), extracellular and intracellular 
ions (including H+, Ca2+, and Mg2+) (Launay et  al., 2002; Jiang 
et al., 2005; Li et al., 2007), intracellular ligands [as diacylglycerol 
(Palazzo et  al., 2013), phosphoinositide-4,5-bisphosphate (PIP2) 
(Ong and Ambudkar, 2017)], and various exogenous natural and 
synthetic ligands (Vetter and Lewis, 2011; Holzer and Izzo, 2014).

TRP channels have been suggested as regulators of local micro 
domains signaling pathway related with changes in the [Ca2+]i 

or by the interplay with Ca2+-dependent regulatory proteins. 
Actually, they contribute to Ca2+ homeostasis by directly conducting 
Ca2+ or indirectly via membrane depolarization and modulation 
of voltage-gated Ca2+ channels (Nilius and Droogmans, 2001; 
Owsianik et  al., 2006; Freichel et  al., 2014; Pires et  al., 2017). 
Hence, during the last two decades, TRPs have been suggested 
as intermediaries of diverse physiological and pathophysiological 
cardiovascular processes (Inoue et al., 2006, 2018; Egginton, 2009; 
Smani et  al., 2015; Yue et  al., 2015).

EXPRESSION OF TRP CHANNELS IN 
CARDIAC CELLS

RT-PCR, western blot, immunostaining, and functional current 
recordings demonstrated that TRPs are expressed ubiquitously 
in cardiac myocytes and fibroblasts of different species (Sabourin 
et  al., 2011; Yue et  al., 2015). In the case of TRPC channel, 
the seven members TRPC1–7 are expressed in the majority 
of the cell types in heart (Eder, 2017; Freichel et  al., 2017). 
Consistently, all TRPCs, except TRPC5, were detected in the 
sinoatrial node (Ju et  al., 2007). Interestingly, significant 
overexpression of TRPC1/C3/C4/C5 or TRPC6 was detected 
in patients with heart failure as compared to nonfailing heart 
(Bush et  al., 2006; Morine et  al., 2016). Interestingly, these 
TRPC channels show distinct profiles of expression in the 
ventricles of patients with heart failure as it happens in murine 
models of univentricular pressure overload (Morine et al., 2016). 
As in other cell types, TRPC channels are implicated in signal 
transduction in cardiac myocytes (Flockerzi and Nilius, 2014; 
Eder, 2017; Freichel et  al., 2017). TRPC family requires the 
phospholipase C (PLC) pathway for activation. TRPC3, TRPC6, 
and TRPC7 interact directly with diacylglycerol (Yamaguchi 
et  al., 2018), while TRPC1, TRPC4, and TRPC5 are activated 
indirectly through a still unidentified mechanism (Sabourin 
et  al., 2011; Zhang and Trebak, 2014; He et  al., 2017). Some 
TRPC channels are activated by intracellular Ca2+ store depletion, 
which stimulates the store-operated Ca2+ entry (SOCE) required 
for diverse cardiac physiopathological process (Ong et al., 2016; 
Eder, 2017). It has been proposed that TRPC1 associates with 
TRPC4 or TRPC5, thereby forming the store-operated Ca2+ 
channel, while TRPC3, TRPC6, and TRP7 are suggested to 
form the receptor-operated channel (Ju and Allen, 2007; Saleh 
et al., 2008; Sabourin et al., 2012). Others studies demonstrated 
that long-term stimulation of cardiac myocytes with angiotensin 
II, phenylephrine, endothelin-1, or aldosterone evoked an 
exacerbated SOCE elicited by thapsigargin, correlating with an 
increment in the expression or activation of TRPC1, TRPC4, 
and/or TRPC5 (Watanabe et al., 2008; Makarewich et al., 2014; 
Camacho Londoño et  al., 2015; Sabourin et  al., 2016). The 
use of dominant negative mutants confirmed that TRPC4 is 
sensitive to passive Ca2+ store depletion, while TRPC3 and 
TRPC6 respond to the diacylglycerol stimulus, regardless of 
store depletion (Makarewich et  al., 2014). Furthermore, 
upregulation of TRPC3/C4  in adult ventricular cardiomyocytes 
correlated with the enhanced SOCE and pro-arrhythmic 

Abbreviations: AF, Atrial Fibrillation; [Ca2+]i, concentration of intracellular Ca2+; 
ROS, reactive oxygen species; SOCE, store-operated Ca2+ entry; TRP, transient 
receptor potential; TRPC, transient receptor potential-canonical; TRPV, transient 
receptor potential-vanilloid; TRPM, transient receptor potential-melastatin; TRPA, 
transient receptor potential-ankyrin; TRPML, transient receptor potential-mucolipin; 
TRPP, transient receptor potential-polycystin.
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spontaneous Ca2+ waves (Domínguez-Rodríguez et  al., 2015). 
Importantly, transient occlusion of coronary artery in rats also 
enhanced the expression of TRPC1/C3/C4/C5 and TRPC6 either 
in risk or in remote zone of the infarcted heart (Domínguez-
Rodríguez et al., 2018). Finally, TRPC7 activation was proposed 
to initiate angiotensin-II activation to myocardial apoptosis 
(Satoh et  al., 2007).

TRPV channels were also detected in mammalian hearts, 
especially TRPV1, TRPV2, and TRPV4 (Yue et al., 2015). Most 
of TRPV channels are sensitive to temperature and ligands, 
and they participate in sensation of hot temperature and in 
chemoreception (Vriens et  al., 2007; Islas, 2017). TRPV1 was 
identified principally in sensory nerves in the cardiovascular 
system but also in the myocardium (Zahner et  al., 2003; Gao 
et  al., 2015; Randhawa and Jaggi, 2017). Bradykinin evoked 
a TRPV1-dependent [Ca2+]i increase in cardiac neurons, 
indicating that TRPV1 activation was responsible for stimulation/
sensitization by bradykinin of cardiac nociceptors (Wu and 
Pan, 2007). An early study demonstrated that after trpv1 gene 
deletion, an exacerbated inflammation and cardiac remodeling 
occurred due to impaired post-ischemic recovery in isolated 
perfused infarcted heart (Wang and Wang, 2005). More recently, 
the overexpression of TRPV2 after myocardial infarction was 
observed in cardiac tissue of rats (Entin-Meer et  al., 2014), 
and TRPV2 downregulation in knockout mice was related to 
a better recovery after myocardial infarction (Entin-Meer et al., 
2017), probably because of an attenuated pro-inflammatory 
response in these mice. Another study also suggested that 
TRPV2 may play a critical role in stretch-activated Ca2+ influx 
pathway in dystrophic cardiomyopathy, contributing to [Ca2+]i 
mishandling (Lorin et  al., 2015). In the case of TRPV4, it is 
also highly expressed in the heart and is activated during 
myocardial ischemia and reperfusion, which induced Ca2+ influx 
with subsequent reactive oxygen species (ROS) release (Wu 
et  al., 2017). Recently, TRPV4 upregulation in cardiomyocytes 
was also linked with aging in mice (Jones et al., 2018). Indeed, 
pharmacological inhibition of TRPV4 with HC067047 prevented 
stress-induced cardiomyocyte death and ischemia and 
reperfusion-induced cardiac damage in aged mice. These findings 
might have potential implications in the treatment of elderly 
populations at increased risk of myocardial infarction.

Regarding the expression of TRPM channels in hearts, it 
is known that eight isoforms are present in different parts of 
the heart, and TRPM2/4/7 is expressed specifically in cardiac 
myocytes (Yue et  al., 2015). The analysis of mRNA and/or 
protein levels showed that levels of TRPM2, TRPM3 and 
TRPM8 were reduced in left and right ventricle of patients 
with failing heart (Morine et  al., 2016), meanwhile increased 
expression of TRPM7 was observed in the left ventricle of 
patients with ventricular tachycardia (Parajuli et  al., 2015). 
TRPM2 seems essential for cardiac myocyte bioenergetics 
maintenance (Hoffman et  al., 2015). Its activation protected 
the heart from ischemia and reperfusion injury by improving 
mitochondrial dysfunction and reducing ROS levels (Miller 
et al., 2014). TRPM4 is thought to interfere in cardiac myocyte 
contraction by its activation of voltage-gated Ca2+ channel 

(Alonso-Carbajo et al., 2017). Actually, the exacerbated activity 
of TRPM4, which is activated by physiological range of Ca2+ 
concentration, was related with arrhythmic changes (Hu et  al., 
2017). Also, TRPM7 is believed indispensable during the 
myocardial proliferation in early stages of cardiogenesis, since 
the deletion of trpm7 gene, before embryonic day 9 of mice, 
provoked heart failure and embryonic death (Sah et  al., 2013). 
Nevertheless, the mechanism by which TRPM7 regulates cardiac 
cell proliferation remains unknown (Chubanov et al., 2017).

In relation to the expression and function of other TRP 
channels in heart, TRPA1 was detected in cardiac endothelial 
cells, vascular smooth muscle, and in cardiac myocytes (Yue 
et  al., 2015), where its activation seems relevant to attenuate 
ischemia and reperfusion injury (Lu et al., 2016). Furthermore, 
the presence of TRPP2 has been proven in knockout mice 
who died before birth as a result of cardiac malformations 
(Pennekamp et  al., 2002). Recently, a study confirmed that 
TRPP2 was able to regulate autophagy through Ca2+ homeostasis 
in cardiac myocytes (Criollo et  al., 2018). However, there are 
only few studies which looked on the role of these channels 
in the function of cardiac cells.

ROLE OF TRP CHANNELS IN 
THE  ADVERSE CARDIAC REMODELING

Ca2+ plays critical role in the adaptation of the heart to 
environmental demands, leading to cardiac remodeling (Eder, 
2017; Avila-Medina et al., 2018). Physical exercise or pregnancy 
are reversible stimuli that induce physiologic cardiac hypertrophy 
to adapt the increase in consumption of nutrients and oxygen, 
whereas sustained neurohumoral activation, hypertension, or 
myocardial injury can lead to pathological heart hypertrophy 
followed by interstitial fibrosis (Pfeffer and Braunwald, 1990; 
Klug et  al., 1993; Hill and Olson, 2008). These events might 
cause left ventricular dilation and dysfunction, what is known 
as the adverse cardiac remodeling, which increases the risk 
of heart failure and malignant arrhythmia (Hill and Olson, 
2008; van der Bruggen et  al., 2017).

Initial attentions have been given to describe the role of 
TRP channels in the appearance of cardiac remodeling using 
different experimental procedures in vitro and in vivo in animal 
models (Guinamard and Bois, 2007; Eder and Molkentin, 2011; 
Yue et  al., 2015). Here, we  will focus on the role of TRPCs, 
TRPVs, and TRPMs role in the adverse cardiac remodeling, 
since little is known regarding the other subfamilies and their 
participation in these processes.

TRPs and Cardiac Hypertrophy
Compelling evidence confirmed that the activity and expression 
of several TRP channels are upregulated in pathological 
hypertrophy and heart failure as reviewed elsewhere (Watanabe 
et  al., 2008; Yue et  al., 2015; Freichel et  al., 2017), and as 
summarized in Figure 1. Special attention has been given to 
TRPC’s role in cardiac hypertrophy, but the implication of 
TRPV1, TRPV2, and TRPM4 has been also demonstrated.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Falcón et al. TRPs in Cardiac Remodeling

Frontiers in Physiology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 159

TRPCs and Hypertrophy
The role of TRPCs in the pathological cardiac hypertrophy 
has been extensively studied in isolated neonatal and adult 
cardiac myocytes and in different animal model of cardiac 
hypertrophy (Nishida and Kurose, 2008; Watanabe et al., 2008; 
Eder and Molkentin, 2011; Xiao et  al., 2017). Ca2+ entry 
through TRPCs is considered essential to activate signaling 
pathways involving PKC, calmodulin-kinase, and calcineurin/
NFAT, which promotes cardiac hypertrophy by the re-expression 
of the fetal  gene program (Heineke and Molkentin, 2006; 
Nakayama et al., 2006; Eder and Molkentin, 2011). Independent 
reports demonstrated that stimulation of neonatal rat cardiac 
myocytes with hypertrophic agonists such as ATP, endothelin-1, 
phenylephrine, or angiotensin-II, increased cells size, correlating 
with the upregulation and activation of TRPC1 (Ohba et  al., 
2007), TRPC3 (Brenner and Dolmetsch, 2007), TRPC5 (Sunggip 
et  al., 2018), and TRPC7 (Satoh et  al., 2007). Using animal 
models of pressure overload-induced heart hypertrophy, different 
studies demonstrated that TRPC1 (Ohba et al., 2007), TRPC3 
(Bush et al., 2006; Brenner and Dolmetsch, 2007), and TRPC6 
(Kuwahara et  al., 2006) are upregulated in heart. Conversely, 

the overexpression of TRPC3  in transgenic mice increased 
cardiac hypertrophy through calcineurin/NFAT activation when 
mice were subjected to angiotensin-II and phenylephrine 
treatment or pressure overload (Nakayama et  al., 2006). 
Similarly, the overexpression of TRPC6  in transgenic mice 
leaded to the development of cardiac hypertrophy and heart 
failure (Kuwahara et  al., 2006). In contrast, the use of 
cardiomyocyte-specific dominant-negative mutants in transgenic 
mice for TRPC3 and TRPC6 or for TRPC4 reduced cardiac 
hypertrophic responses following either the infusion of 
neuroendocrine agonists or pressure overload stimulation 
through calcineurin/NFAT (Wu et  al., 2010). Moreover, trpc1 
gene deletion in mice attenuated pressure overload-induced 
hypertrophy by the alteration of calcineurin/NFAT and Akt 
signaling pathway (Seth et  al., 2009). Intriguingly and in 
contrast to other studies mentioned here, a previous study 
reported that TRPC3/TRPC6 double knockout mice did not 
develop pressure-overload induced hypertrophy; however, trpc3 
or trpc6 gene’s deletion did not protect the heart from 
hypertrophy or dysfunction due to pressure overload, suggesting 
the need of both channels to promote the deleterious 

FIGURE 1 | Scheme summarizing the role of TRP channels in cardiac hypertrophy. Activation of TRP channels can be preceded by stimulation of G-coupled 
receptors with hypertrophic agonists, by mechanical stress, or pressure overload. The consequent increase of the intracellular Ca2+ concentration stimulates 
different signaling protein, such as PKC, AKT, calcineurin, and NFAT, whose activation promotes TRP channels overexpression and the activation of fetal genes 
reprograming leading to cardiac hypertrophy.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Falcón et al. TRPs in Cardiac Remodeling

Frontiers in Physiology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 159

hypertrophic response (Seo et  al., 2014). This finding worth 
further investigation and confirmation in other model of 
pathological cardiac hypertrophy.

TRPVs and Hypertrophy
Most studies focused on TRPV1 and TRPV2 role in hypertrophy 
and the adverse cardiac remodeling. An early study revealed 
that TRPV1 knockout mice showed a reduced increase in heart’s 
weight as compared to wild-type mice, and they were partially 
protected from pressure-overload induced cardiac hypertrophy 
(Buckley and Stokes, 2011). A recent study demonstrated that 
TRPV1’s expression is increased in hypertrophied heart of mice 
evoked by transverse aorta constriction (TAC) (Chen et  al., 
2016). However, Trpv1 gene’s deletion was associated with excessive 
inflammation, exaggerated cardiac hypertrophy, and abnormal 
cardiac function after TAC, suggesting a protective role of TRPV1 
(Zhong et  al., 2018a). This study proposed that TRPV1, highly 
expressed in sensory nerves, might be involved in the regulation 
of cardiovascular function due to its anti-inflammatory effects 
via calcitonin gene-related peptide. Conversely, a previous study 
revealed that pharmacological activation of TRPV1 with SA13353 
prevents the increase of cardiomyocyte size evoked by endothelin-1 
(Zhang et  al., 2012b). SA13353 also attenuated and reduced 
cold stress-induced hypertrophy and decreased the fractional 
shortening among others functional cardiac and cellular parameters 
(Zhang et  al., 2012b). In contrast, another study showed that 
TRPV1 activation with capsaicin can antagonize high-salt diet-
mediated cardiac hypertrophy, by ameliorating the mitochondrial 
complex I oxidative phosphorylation and suggesting that TRPV1-
mediated amendment of mitochondrial dysfunction may represent 
a novel target for the management of early cardiac dysfunction 
(Lang et al., 2015). Therefore, the role of TRPV1 in the molecular 
mechanism underlying pathological cardiac hypertrophy still 
remains unclear.

TRPV2 is also significantly upregulated in wild-type mice 
subjected to TAC, whereas the absence of functional TRPV2 
reduces significantly the left ventricular hypertrophy after TAC, 
suggesting a role of TRPV2 in the development of cardiomyocyte 
hypertrophy because of an increased afterload (Koch et  al., 
2017). In this way, the overexpression of TRPV2 was also 
associated with enlarged hearts in patients with dilated 
cardiomyopathy (Iwata et al., 2013). TRPV3 is also overexpressed 
in angiotensin-II-induced cardiomyocyte hypertrophy, which 
aggravated cardiac hypertrophy through calcineurin/NFATc3 
signaling pathway activation (Zhang et  al., 2018).

TRPMs and Hypertrophy
In the case of TRPMs, different studies focused especially on 
TRPM4 role in hypertrophy, while little is known regarding other 
TRPM channels. TRPM4 is thought to fine-tune the amount of 
Ca2+ influx into cardiomyocytes via store-operated Ca2+ channels 
after chronic angiotensin-II stimulation, through a mechanism 
involving calcineurin–NFAT activation (Kecskés et  al., 2015). 
TRPM4 upregulation was observed in hypertrophied ventricular 
cardiomyocytes freshly isolated from well-established genetic model 
of spontaneously hypertensive rats when compared to control, 
the Wistar Kyoto rats (Guinamard et  al., 2006). Interestingly, 

selective removal of TRPM4 from the heart resulted in an increased 
hypertrophic growth after chronic mice treatment with angiotensin-II 
as compared to wild type mice (Kecskés et  al., 2015), suggesting 
a protective role of TRPM4. Recently, a study confirmed the 
beneficial role of TRPM4  in hard training-induced physiological 
hypertrophy because TRPM4 knockout mice developed a 
pathological cardiac hypertrophy when they were subjected to 
endurance training (Demion et  al., 2014). The deletion of the 
Trpm4 gene in 12-week-old mice was linked with moderate cardiac 
hypertrophy as well as ventricular dilation, increased cellular 
density, and reduced left ventricular cardiomyocytes size, suggesting 
that TRPM4 might act as a negative regulator of cardiomyocytes 
proliferation during prenatal development (Demion et  al., 2014).

Role of TRPs in Interstitial Fibrosis
Cardiac fibroblasts represent ∼75% of all cardiac cells, although 
they represent about ∼10–15% of total cardiac cell volume 
due to their small size. However, the activation of cardiac 
fibroblasts plays a crucial role in cardiac pathology. Cardiac 
fibrosis is caused by an excessive extracellular matrix proteins 
produced by myofibroblasts, the differentiated phenotype of 
fibroblasts under stress situations (Yue et  al., 2013), where the 
Ca2+ signaling is essential for transcriptional control regulation 
and myocardial fibrosis (Ramires et  al., 1998), as illustrated 
in Figure 2. The role of TRP channels in cardiac fibroblasts 
activation, proliferation, and differentiation has been extensively 
investigated (Du et  al., 2010; Yue et  al., 2013; Certal et  al., 
2017). However, unlike in cardiac myocytes, TRPs-activated 
Ca2+ signaling mechanisms are not fully understood in fibroblasts.

TRPCs and Fibrosis
TRPC1, TRPC3, and TRPC6 are considered the main TRPCs 
implicated in cardiac fibrosis, but most studies focused on 
TRPC3’s role in cardiac fibrosis, as reviewed recently (Numaga-
Tomita et  al., 2017). A role of background Ca2+ entry through 
TRPC1 and TRPC4 was associated with fibrosis in double 
knockout mice subjected to pressure overload (Camacho Londoño 
et  al., 2015). In mechanically stressed hearts, TRPC3 activation 
triggered an aberrant increase of ROS production, leading to 
RhoA activation in both cardiac myocytes and fibroblasts, 
resulting in interstitial fibrosis (Kitajima et  al., 2016). Actually, 
trpc3 gene deletion suppressed cardiac fibrosis in response to 
pressure overload or to angiotensin-II infusion (Domes et  al., 
2015; Kitajima et al., 2016; Numaga-Tomita et al., 2016). TRPC3 
blockade with Pyr3 also inhibited angiotensin-II-induced Ca2+ 
entry, proliferation, and differentiation of fibroblasts isolated 
from left atrial of electrically maintained atrial fibrillation in a 
dog model (Harada et  al., 2012). Recently, chronic treatment 
of rat models of pressure overload with GSK503A, proposed 
to inhibit both TRPC3 and TRPC6, showed no interstitial cardiac 
fibrosis (Seo et  al., 2014), suggesting that TRPC3 and TRPC6 
are needed for the fibrosis appearance. TRPC6 has been supposed 
as a regulator of myofibroblast differentiation, since its silencing 
in human cardiac fibroblasts attenuated the upregulation of 
α-SMA, a marker of myofibroblast transformation, induced by 
TGF-β1, a pro-fibrotic agonist (Kapur et  al., 2014). Conversely, 
the loss of TRPC6 in knockout mice prevented TGF-β1-mediated 
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myofibroblast transformation. In addition, TRPC6 overexpression 
using adenovirus promoted fibroblast conversion to myofibroblast, 
a hallmark of fibrosis (Davis et  al., 2012). In contrast to this 
finding, an early report proposed that silencing of TRPC6 
enhanced myofibroblast formation (Nishida et  al., 2007), which 
questions whether TRPC6 is relevant for cardiac fibrosis.

TRPVs and Fibrosis
TRPV channels seem also critical for cardiac fibroblast 
differentiation to myofibroblasts. It was shown that the ablation 
of TRPV1 markedly enhanced the fibrosis due to myocardial 
infarction, by the stimulation of the TGF-β1 and Smad2 signaling 
pathway (Huang et  al., 2010). In contrast, the administration 
of a TRPV1 antagonist in TAC mice protected the heart from 
the fibrotic process (Horton et  al., 2013). Conversely, in a 
pressure-overload mice model, it demonstrated a reduction of 
hypertrophy and fibrosis-mediated TRPV1 channel activation 
by capsaicin (Wang et  al., 2014). Capsaicin blunted pressure 
overload–induced upregulation of TGF-β1 and Smad2/3 
phosphorylation. It also reduced angiotensin-II-induced 
proliferation of cardiac fibroblast isolated from wild-type but 
not from TRPV1-knockout mice (Wang et  al., 2014). Recently, 
the overexpression of TRPV1  in transgenic mice-attenuated 
isoproterenol-induced myocardial fibrosis in vitro and in vivo 
in primary cultured cardiac fibroblasts (Wang et  al., 2016).

Other reports suggested that TRPV2, TRPV3, and TRPV4 
channels also participate in cardiac fibrosis. TRPV2 functional 

deletion was associated with a decreased development of fibrosis 
associated with aging (Jones et  al., 2017), while TRPV2 
upregulation was associated with enlarged hearts, increased 
fibrosis, and myocardial structural defects in patients with 
dilated cardiomyopathy (Iwata et al., 2013). Furthermore, TRPV3 
activation intensified cardiac fibrosis, stimulating cardiac 
fibroblast proliferation in the pressure-overloaded rat hearts 
(Liu et  al., 2018). TRPV4 seems also necessary for cardiac 
fibroblasts differentiation to myofibroblasts, since AB159908, 
a TRPV4 antagonist, as well as TRPV4 siRNA inhibited TGF-β1-
induced fibroblasts differentiation (Adapala et al., 2013). Actually, 
TRPV4-knockout mice presented decreased fibrosis after 
myocardial infarction (Adapala et  al., 2018).

TRPMs and Fibrosis
Several reports made special attention to the abnormal expression 
of TRPM7 and the development of cardiac fibrosis; however, 
little is known regarding other TRPM channels (Xu et  al., 
2015). Recently, higher amount of mRNA and protein levels 
of TRPM6  in addition to significant increase in markers of 
myocardial fibrosis as TGF-β1, collagen I and III, were detected 
in atrial fibrillation patients, suggesting possible contribution 
of TRPM6 to atrial fibrosis (Zhang et  al., 2015).

Experimental strategies treating human or animal cardiac 
fibroblasts with pro-fibrotic agonists or with hormones as 
angiotensin-II increased significantly the expression of TRPM7. 
In fact, TGF-β1 addition to human atrial fibroblasts upregulated 

FIGURE 2 | Scheme summarizing the role of TRP channels in cardiac fibrosis. In pathological conditions, different kind of stress stimulates Ca2+ entry in cardiac 
myocyte through TRP channels and other signaling pathway as RhoA dependent on reactive oxygen species (ROS) production, which lead to profibrotic 
gene’s expression. Profibrotic agonists and other stimuli activate cardiac fibroblast (green) leading to their proliferation and differentiation. The intracellular Ca2+ 
concentration increase through TRP channels promotes the expression of pro-fibrotic agonist (TGF-β1), α-SMA, collagen, and different isoforms of TRP channels, 
leading to exacerbated extracellular matrix synthesis and fibrosis.
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the expression of TRPM7; meanwhile, TRPM7 silencing inhibited 
fibroblasts proliferation, differentiation, and collagen production 
induced by TGF-β1 (Du et al., 2010). Angiotensin-II also stimulated 
TRPM7 resulting in an increased expression of α-SMA and 
fibronectin protein (Yu et al., 2014). Moreover, rat cardiac fibroblasts 
incubated with angiotensin-II increased levels of protein expression 
of TRPM7, collagens I  and III, which promoted fibrosis (Zhou 
et al., 2015). In contrast, the downregulation of TRPM7 decreased 
its related current density and inhibited angiotensin-II mediated 
cardiac fibroblasts proliferation, differentiation, and collagen 
synthesis (Li et  al., 2017). Moreover, in rats with sick sinus 
syndrome, TRPM7 regulated angiotensin II-induced cardiac 
fibroblasts proliferation and collagen synthesis of sinoatrial node, 
involving Smad signaling pathway (Zhong et al., 2018b). Recently, 
a role of TRPM7 was reported in miRNA-135a inhibition of 
isoproterenol-induced cardiac fibrosis (Wu et  al., 2018) and in 
fibrosis evoked by H2O2 and hypoxia (Guo et  al., 2014; Lu et  al., 
2017). Therefore, TRPM7 stand out as an interesting possible 
target to attenuate pathological cardiac fibrosis.

TRPs and Conduction Disorders
Atrial fibrillation (AF) is the most sustained clinical arrhythmia, 
which occurs due to structural remodeling, involving prominent 
fibrotic changes (Yue et al., 2011). TRP channels do not influence 
the excitability of heart’s pacemaker but apparently their 
upregulation mediate the arrhythmogenesis and the progression 
of electrical remodeling of the diseased heart (Yue et  al., 2015). 
Special advances have been made by studying the role of TRPM4, 
TRPC3, and TRPM7  in conduction disorders in the heart.

TRPM4 contribution to cardiac conduction as well as the 
development of arrhythmias has been demonstrated using 
different approaches, such as channel inhibition with 
9-phenantrol, a blocker for TRPM4 (Grand et al., 2008), using 
TRPM4-deficient mouse models, and by the identification of 
TRPM4 mutants detected in a variety of inherited human 
cardiac arrhythmias (Freichel et  al., 2017). A pro-arrhythmic 
role of TRPM4 and its participation in membrane potential 
depolarization likely explain the triggering of spontaneous 
beating and the increase of action potential duration described 
in the hypertrophied heart (Demion et  al., 2014). In vitro 
experiments showed that 9-phenanthrol decreased Ca2+ 
oscillations in atrial HL-1 mouse cardiac myocytes, thought 
to play a critical role in arrhythmias (Burt et  al., 2013). 
TRPM4 inhibition with 9-phenanthrol also mimicked the 
reduction of action potential duration evoked by TRPM4 
deletion in atrial cells (Simard et  al., 2013) and reverted the 
early after-depolarization involved in cardiac arrhythmias 
observed after a process of hypoxia and re-oxygenation (Simard 
et  al., 2012). Recently, it was shown that physiological range 
of [Ca2+]i could activate TRPM4, and its upregulation altered 
action potential characteristics in HL-1 cells treated with 
angiotensin-II, which increased the arrhythmic propensity of 
cardiac tissue in pathological situation (Hu et  al., 2017). 
Interestingly, trpm4 gene mutations were linked to progressive 
familial heart block type 1 (Kruse et  al., 2009; Daumy et  al., 
2016), isolated cardiac conduction disease (Liu et  al., 2010), 

atrio-ventricular block (Stallmeyer et  al., 2012; Syam et  al., 
2016), right bundle branch block (Stallmeyer et  al., 2012), 
Brugada syndrome (Liu et  al., 2013; Gualandi et  al., 2017), 
and recently to either complete heart block or idiopathic 
ventricular fibrillation (Bianchi et  al., 2018).

Additional indications suggested that TRPM7 and TRPC3 
might also mediate the pathogenesis of AF. In atrial fibroblasts 
from AF patients, TRPM7 is notably upregulated (Du et  al., 
2010; Zhang et  al., 2012a) and was suggested to play a pivotal 
role in AF due to fibrogenesis in the atrium since fibrosis is 
the main factor for AF. TRPM7 knockdown suppressed 
endogenous TRPM7 currents, decreased Ca2+ influx in atrial 
fibroblasts, and inhibited TGF-β1-induced fibroblast proliferation, 
differentiation, and collagen production (Du et al., 2010). TRPC3 
is also significantly upregulated in the atria of AF patients 
(Zhao et  al., 2013). In fibroblasts freshly isolated from left 
atrial of dogs undergoing AF, by sustained atrial tachypacing, 
it was observed a significantly increase in TRPC3 protein 
expression, currents, ERK phosphorylation, and extracellular 
matrix gene expression (Harada et  al., 2012). Further evidence 
for a role of TRPC3 has been demonstrated in experiments 
using TRPC3 knockout mice, in which the effect of angiotensin-II 
addition to pacing-induced AF mice was significantly reduced 
compared to wild-type mice (Ju et  al., 2015). Interestingly, a 
recent study examined the expression of different TRPs in 
leukocytes of patients with nonvalvular AF (Düzen et al., 2017). 
They observed marked increase in gene expression of TRPC1-
C7, TRPV1-V6, TRPM1-M8, TRPML1-ML3, TRPA1, and TRPP2. 
A possible correlation between these leukocytes genes’ expression 
and those examined from the atrium will be  of major interest. 
Therefore, further investigations are undoubtedly needed for 
understanding the role of all these TRP channels in AF.

CONCLUSIONS AND PERSPECTIVES

A growing body of evidence has demonstrated that, by controlling 
Ca2+ homeostasis, different TRP isoforms are critically involved 
in pathological cardiac remodeling and heart failure. However, 
molecular mechanisms which trigger the transition of the heart 
from adaptation to maladaptation by these channels are still 
unknown. In the last two decades, the use of genetically 
modified animal and mice models of cardiac disease provided 
valuable information about TRPs implication in cardiac 
remodeling. Nevertheless, substantial work is still required to 
understand why many TRPs from different subfamilies are 
activated by similar pro-hypertrophic or pro-fibrotic stimuli, 
and whether they associate or interact between them to activate 
signaling pathway involved in hypertrophy, fibrosis, or conduction 
disorders. Unfortunately, the wide range of agonists and 
antagonists used to modulate TRPs failed to determine which 
TRPs might be  the right target(s) to characterize and consider 
as therapeutic tools. More specific inhibitors/activators of TRPs 
are eagerly awaited to shed a light on the complex mechanism 
of cardiac diseases associated with remodeling. Of hope, the 
increasing amount of available information related to TRP-drug 
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interaction sites and gating processes of TRP channels is expected 
to facilitate the development of novel therapeutic concepts by 
pharmaceutical companies. Overall, and in the light of the 
reported studies, TRP channels are still considered promising 
therapeutic targets to regulate pathological cardiac plasticity.
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