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Neuromuscular physiology is a vibrant research field that has recently seen exciting

advances. Previous publications have focused on thorough analyses of particular aspects

of neuromuscular physiology, yet an integration of the various novel findings into a single,

comprehensive model is missing. In this article, we provide a unified description of a

comprehensive mathematical model of surface electromyographic (EMG) measurements

and the corresponding force signal in skeletal muscles, both consolidating and extending

the results of previous studies regarding various components of the neuromuscular

system. The model comprises motor unit (MU) pool organization, recruitment and rate

coding, intracellular action potential generation and the resulting EMG measurements,

as well as the generated muscular force during voluntary isometric contractions.

Mathematically, it consists of a large number of linear PDEs, ODEs, and various stochastic

nonlinear relationships, some of which are solved analytically, others numerically. A

parameterization of the electrical and mechanical components of the model is proposed

that ensures a physiologically meaningful EMG-force relation in the simulated signals,

in particular taking the continuous, size-dependent distribution of MU parameters into

account. Moreover, a novel nonlinear transformation of the common drive model input

is proposed, which ensures that the model force output equals the desired target

force. On a physiological level, this corresponds to adjusting the rate coding model

to the force generating capabilities of the simulated muscle, while from a control

theoretic point of view, this step is equivalent to an exact linearizing transformation

of the controlled neuromuscular system. Finally, an alternative analytical formulation of

the EMG model is proposed, which renders the physiological meaning of the model

more clear and facilitates a mathematical proof that muscle fibers in this model at

no point in time represent a net current source or sink. A consistent description of a

complete physiological model as presented here, including thorough justification of model

component choices, will facilitate the use of these advanced models in future research.

Results of a numerical simulation highlight the model’s capability to reproduce many

physiological effects observed in experimental measurements, and to produce realistic

synthetic data that are useful for the validation of signal processing algorithms.

Keywords: mathematical modeling, electromyography, force generation, motor unit, rate coding, recruitment,

action potential, neuromuscular physiology

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.00176
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.00176&domain=pdf&date_stamp=2019-03-08
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eike.petersen@uni-luebeck.de
https://doi.org/10.3389/fphys.2019.00176
https://www.frontiersin.org/articles/10.3389/fphys.2019.00176/full
http://loop.frontiersin.org/people/527648/overview
http://loop.frontiersin.org/people/565104/overview


Petersen and Rostalski Modeling Neuromuscular Physiology

1. INTRODUCTION

Electromyography (EMG) denotes the measurement of
the electrical fields generated by the electrophysiological
processes that lead to muscle fiber contraction. EMG is highly
relevant for a number of clinical and scientific applications,
since it enables monitoring and analysis of a muscle’s
electromechanical properties and state, both of which would
otherwise remain mostly inaccessible. Surface electromyography
(sEMG) denotes the noninvasive measurement of electrical
muscle activity by means of electrodes placed on the skin surface,
as opposed to the traditional measuring method using needle
electrodes. For more background information on sEMG, its
analysis and many of its applications, refer to, e.g., Merletti and
Parker (2004) and Merletti and Farina (2016).

Mathematical models of sEMG are highly useful, on
the one hand to advance understanding of the underlying
physiological processes, and on the other hand to analyze the
sensitivity of sEMG measurements to various physiological and
technical parameters, and to test and validate sEMG signal
processing algorithms. Over the past decades, researchers have
pursued a number of different approaches for the modeling
and simulation of different aspects of sEMG measurements.
Phenomenological (Hogan andMann, 1980; Lo Conte et al., 1994;
Sinderby et al., 1995; McGill, 2004) as well as physiologically
motivated (Fuglevand et al., 1993; Dimitrov and Dimitrova, 1998;
Farina and Merletti, 2001; Farina et al., 2004; Dideriksen et al.,
2010a,b; Mordhorst et al., 2015) models have been proposed and
analyzed. Overviews can be found in Stegeman et al. (2000),
McGill (2004), Rodriguez-Falces et al. (2012), and Merletti and
Farina (2016).

Many researchers have worked on modeling the electric
signal produced by a single contraction of a single muscle fiber,
the so-called single fiber action potential (SFAP). Classically,
the propagation of the action potential along a contracting
muscle fiber has been modeled using simplified dipole, tripole
or quadrupole models Fuglevand et al. (1992); Merletti et al.
(1999); Merletti and Parker (2004); Plonsey and Barr (2007).
A more general model has been proposed by Dimitrov and
Dimitrova (1998), and thismodel has been successfully employed,
modified and combined with various other models for the
remaining physiological processes in several publications Farina
and Merletti (2001); Farina et al. (2004); Wang et al. (2006);
Dideriksen et al. (2010a).

In the present article, the SFAP model originally proposed by
Dimitrov and Dimitrova (1998), and subsequently extended by
Farina and Merletti (2001), is combined with the well-known
motor unit (MU) pool organization model of Fuglevand et al.
(1993) and the twitch force parameterization used by Raikova
and Aladjov (2002). Care is taken in particular to achieve a
consistent parameterization of the electrical and the mechanical
components of the model, resulting in a realistic EMG-force
relationship of the simulated muscle. Recent results regarding
the modeling of MU rate coding and recruitment (De Luca
and Hostage, 2010) and the variability of the inter-spike
intervals (Moritz et al., 2005) are incorporated, and a new model
of motor unit firing rates is proposed. Moreover, we propose a

novel nonlinear transformation of the common drive input to the
muscle, which ensures that the desired muscle output force can
directly be used as a model input. This is achieved by adjusting
the rate coding model to the force generating capabilities of
the simulated muscle and has interesting consequences for the
modeling of physiological force control, which will be discussed
as well. Finally, an alternative analytical formulation of the
SFAP model of Farina and Merletti (2001) is proposed, which
clarifies the physiological meaning of the model. Based on this
alternative formulation, a proof is provided that in this model
the ingoing and outgoing currents along each fiber sum to
zero at all times, which is a physiologically plausible property
due to the quasi-static behavior of action potential generation
(Plonsey and Barr, 2007).

In section 2, all components of the mathematical model
are presented briefly, yet completely, and in a unified way.
Several mathematical properties of the model are derived, and
the above-mentioned alternative formulation of the model of
Farina and Merletti (2001) is proposed. Results of numerical
simulations based on themodel are presented in section 3 and are
assessed with respect to their physiological plausibility. Finally,
section 4 concludes the article with a discussion of the various
improvements introduced in this article. Note that a preliminary
version of themathematical analysis of the sEMGmodel of Farina
and Merletti (2001) presented in section 2.5 has been the subject
of a conference publication (Petersen, 2016).

2. MATHEMATICAL MODEL

The fundamental functional unit of a skeletal muscle is the motor
unit (MU), comprising a motor neuron and the muscle fibers
innervated by that neuron. The following sections introduce
mathematical models of the electrical and mechanical properties
of MUs, as well as their organization in a muscle. Figure 1 shows
a graphical summary of the main model components and their
interactions and may provide a useful reference for the reader
while following along the description of the model.

2.1. Motor Unit Pool Structure
Every muscle consists of a number n of MUs. Each MU has
various mechanical and electrical properties, most of which have
been found to be closely related through the size principle: MU
size as measured by the number of fibers contained in the
MU is roughly proportional to force twitch amplitude, EMG
twitch amplitude, and recruitment threshold (Henneman, 1957;
Henneman et al., 1965; Heckman and Enoka, 2012). This means
that larger MUs are only activated at higher levels of desired
muscle force compared to smaller units, but they also add larger
force and EMG contributions to themuscle output once activated.
This orderly recruitment appears to be a result of an increase
in input resistance with MU size (Powers and Binder, 2001;
Heckman and Enoka, 2012) and seems to remain remarkably
stable over a wide range of MU conditions (Heckman and Enoka,
2012). Based on these findings, the classical MU pool model
of Fuglevand et al. (1993) that has been reused and extended
in numerous studies (Stegeman et al., 2000; Zhou and Rymer,
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FIGURE 1 | Block diagram illustrating the main components of the proposed model of muscular force generation. The model input is the mean normalized desired

muscle force ˜̄Fref(t) with values in [0, 1], the model outputs are the total generated muscle force F (t) and the measured EMG signal. Firing rates of individual MUs are

denoted by λi (t), the force contribution of each MU by Fi (t), and the EMG contribution of each MU by EMGi (t). The common drive input CD(t) to the rate coding model

is calculated from the desired muscle force by means of a static, nonlinear function, which effectively adjusts the rate coding and recruitment model to the force

generation model.

2004; Keenan and Valero-Cuevas, 2007; Dideriksen et al., 2010a;
Robertson, 2014; Potvin and Fuglevand, 2017) describes the
MU twitch forces and contraction times as a function of the
MU’s recruitment threshold. Recent results have shown that
various other parameters are also related to MU size, and hence
can be considered size principle parameters as well (Heckman
and Enoka, 2012; Del Vecchio et al., 2017). In the following,
we will describe a size-dependent MU pool parameterization
model that is based on the model of Fuglevand et al. (1993),
but extended in several important aspects. Currently, the most
common assumption regarding the neural excitation of MUs is
that all MUs in a muscle receive the same net level of neural
input, usually termed the common drive to the muscle (De Luca
and Erim, 1994; Erim et al., 1996; Piotrkiewicz and Türker, 2017).
We therefore formulate our model as a function of the common
drive CD(t), with 0 ≤ CD(t) ≤ 1.

The recruitment thresholds of MUs in a muscle appear to
follow a continuous distribution with many MUs attaining a
small recruitment threshold, and few large MUs only being
recruited at high activation levels (Van Cutsem et al., 1997;
Raikova et al., 2007; Heckman and Enoka, 2012). This behavior is
captured well by the exponential model proposed by Fuglevand
et al. (1993), which assigns the recruitment thresholds

CDrec(i) =
eai

100
with a =

ln(100 · CDfull)

n
(1)

to MUs i = 1, . . . , n, where CDrec(i) denotes the minimum
level of common drive at which the MU is recruited, and CDfull

denotes the point of full recruitment, i.e., the level of common
drive at which all MUs are recruited. Alternatively, following the
formulation of De Luca and Contessa (2012), the thresholds can
also be modeled as

CDrec(i) =
bi

n
·
eai

100
with a =

ln( 100·CDfull
b

)

n
, (2)

where b denotes a scaling factor that influences the shape of the
distribution. The latter model results in a more gradual slope
compared to the first one and has been used by De Luca and
Contessa (2012) for modeling the characteristics of the Vastus
Lateralis (VL) muscle. The choice between Equations (1) and (2),

in general, should be based on the characteristics of the specific
muscle under consideration. With the recruitment thresholds
set, peak twitch forces are calculated as a linear function of the
recruitment thresholds following

Pi = P1 +
CDrec(i) − CDrec(1)

CDfull − CDrec(1)
· (Pn − P1) (3)

as proposed by Contessa and De Luca (2013), where the twitch
peak range (Pn/P1) is typically large, e.g., Pn/P1 = 130 for the
First Dorsal Interosseus (FDI) muscle (Fleshman et al., 1981;
Contessa and De Luca, 2013).

Equivalently to Equation (3), Fuglevand et al. (1993) modeled
the number η of innervated muscle fibers, which appears
to be the main factor influencing MU twitch force (Totosy
de Zepetnek et al., 1992), directly proportional to the peak
twitch force and hence also to the recruitment threshold. This
direct proportionality, however, neglects the increase in fiber
diameter from small to large MUs, which also contributes
to the overall rise in MU twitch force (Burke, 1981; Kernell,
2006), since specific fiber tension (tension/area) does not change
significantly (Lucas et al., 1987; Heckman and Enoka, 2012). The
fiber diameter also determines, among others, action potential
amplitude (Hakansson, 1956; Nandedkar and Stålberg, 1983),
and electrical twitch conduction velocity (Hakansson, 1956;
Nandedkar and Stålberg, 1983; Sadoyama et al., 1988). We thus
consider both peak fiber twitch force and single fiber action
potential (SFAP) amplitude to be size principle parameters as
well, with the former being proportional to the square of the
recruitment threshold CDrec (since it is related to fiber area)
and the latter directly proportional to CDrec (since it is related
to fiber diameter). Finally, a fivefold range in contraction speed
has been found from the slowest to the fastest MU (Burke,
1981; Fleshman et al., 1981) and there is also a slight negative
correlation of time to peak force with the recruitment threshold
(Van Cutsem et al., 1997), while the electrical twitch conduction
velocity v correlates positively with the recruitment threshold
(Del Vecchio et al., 2017). We hence consider the electrical
conduction velocity v and the force twitch model parameters
TEMD, Tri, and Thr (see section 2.7) to be linearly related to the
recruitment threshold as well.
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Fuglevand et al. (1993) modeled the relationships between
parameter values deterministically, but experimental evidence
demonstrates that these relations are of a highly stochastic
nature (Heckman and Enoka, 2012). As did several previous
studies (Contessa and De Luca, 2013; Robertson, 2014;
Al Harrach et al., 2017), we thus draw parameter values for
each MU at random from a stochastic distribution. The main
novelty of the MU pool part of our model is that the distribution
from which each property is drawn depends continuously on the
MU’s size. Previous modeling studies have followed a different
path in assigning each MU a particular MU type or each fiber a
fiber type and then drawing parameter values at random from
a parameter distribution associated with this type (Robertson,
2014; Al Harrach et al., 2017), or drawing the parameters
of all MUs from the same, static distribution (Contessa and
De Luca, 2013). It has been argued, however, that both MU and
fiber properties follow a continuous distribution that does not
support a distinction between discrete types (Fuglevand et al.,
1993; Enoka and Fuglevand, 2001; Heckman and Enoka, 2012;
Potvin and Fuglevand, 2017). For this reason, we decided to
model both MU and fiber properties as continuously distributed
quantities. As proposed by Contessa and De Luca (2013), we
useWeibull distributions for the parameter values. Summarizing,
the MU pool model presented above describes the electrical
and mechanical parameters of individual MUs as a stochastic,
continuous function of MU size.

One final difference between our model and previous models
regards the model input: while previous studies have always
described recruitment thresholds as a function of the muscle
force F(t) (Fuglevand et al., 1993; De Luca and Contessa, 2012),
we define them as a function of the common drive CD(t)
instead. This change is necessary since the generatedmuscle force
depends on all properties of the MU pool, and not only on the
recruitment thresholds. Finding a model parameterization that
fixes theMU recruitment thresholds at particular levels of muscle
force is, hence, a hard problem that requires careful adjustment
of all model components. It has to the authors’ knowledge not
been solved so far. The relationship between the common drive
and the generated muscle force, as well as an alternative solution
to the problem of adjusting model components to each other, will
be discussed in more detail in section 2.8.

2.2. Geometrical Distribution of Motor
Units and Muscle Fibers
Muscle fibers belonging to the same motor unit spread over
a territory that may span a large portion of the muscle cross
section (Buchthal et al., 1957; Burke, 1981; Trontelj et al., 2004).
The territories of the different MUs overlap, leading to an
interweaving of fibers belonging to multiple MUs (Buchthal et al.,
1957; Trontelj et al., 2004). Buchthal et al. (1957) have found
motor unit territories to attain an irregular round shape, whence
we propose the use of an elliptic model for the MU cross sections.
With the elliptic axis ratio being fixed, the MU cross-sectional
area—and thereby the axes lengths—are calculated by dividing
the number of innervated fibers η by the desired MU fiber

density ρ (fibers/area):

A =
η

ρ
. (4)

The midpoints of all MUs are then distributed uniformly over
the muscle cross section. Note that without further assumptions,
the above model directly leads to overlapping regions between
MUs, which is a desirable feature, as noted above. Finally, fibers
belonging to the MU are then again distributed uniformly inside
the elliptic MU cross section. This model is equivalent to the
propositions of Fuglevand et al. (1993), except for the means
of reducing fiber density variability described next, and the fact
that they used circular MU territory shapes as opposed to the
more flexible elliptic shape proposed here. It is advisable to
divide the muscle cross section into M parts of equal size, and
then distribute n/M MUs uniformly in each part, to avoid an
unrealistically high variability of the fiber density due to the
random MU placement. Alternatively, MU centers could also be
placed using an optimization algorithm such as the one proposed
by Carriou et al. (2016b), which sequentially places MUs at the
position that maximizes the distance to the already placed MUs.

A crucial decision when modeling random MU placement
concerns the treatment of muscle boundaries. Those parts
of MU territories that exceed the muscle territory must
be cut off, and the question remains how to account for
this loss in MU territory. Several approaches to solving
the problem are conceivable (Rodriguez-Falces et al., 2012;
Carriou et al., 2016b):

1. All fibers belonging to the MU are placed in the remaining
parts of the MU territory. This approach leads to an increase
in the fiber density of boundary MUs, and hence also in the
overall fiber density toward the muscle boundaries.

2. The number of fibers innervated by the MU is reduced
proportionally. This approach keeps the assigned fiber density
constant, but reduces the number of innervated fibers and thus
the size of boundary MUs.

3. The axes lengths of the elliptic MU region are adjusted in such
a way as to keep the MU area at the desired value in spite of
the cut-off. This approach keeps the number of fibers and the
fiber density at the desired values but likely leads to strongly
increased overall fiber density toward the muscle center, due
to many adjusted MU regions overlapping there.

4. MUs with territories exceeding the muscle territory are
rejected completely. This approach obviously removes the
need for MU property adjustments, but without further
modifications leads to reduced overall fiber density close to the
muscle boundaries (Carriou et al., 2016b).

There are advantages and disadvantages to each approach, and it
does not yet seem to be clear if one of the proposed approaches
is generally superior to the others, or which approximates
reality best (Rodriguez-Falces et al., 2012). However, muscle fiber
diameters appear to be approximately constant throughout a
muscle (Johnson et al., 1973; Schnetzer et al., 2001), whence a
constant fiber density throughout the muscle cross section seems

Frontiers in Physiology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 176

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Petersen and Rostalski Modeling Neuromuscular Physiology

desirable. To this end, the second of the above approaches has
been pursued here.

Reducing only the number of fibers in MUs close to the
muscle boundary without adjusting the other MU parameters as
well would disturb the relationship between the electrical and
mechanical properties of these MUs. Hence, the recruitment
threshold CDrec(i), the peak twitch force Pi and the electrical
twitch conduction velocity v were recomputed. Note that this,
in turn, distorts the exponential distribution of MU parameters
described by Equations (1) and (2). This distortion, however,
was considered less grave than a disturbed electromechanical
relationship in a significant number of MUs. Finally, to prevent
unphysiologically sharp IAP generation and extinction artifacts,
we randomize both innervation zone placement as well as fiber
end placement, as described previously (Merletti et al., 1999;
Carriou et al., 2016b).

An alternative model of MU placement has been proposed by
Navallas et al. (2010). They explicitly consider the optimization
problem of minimizing the variability of muscle fiber density
throughout the muscle, regardless of variances in MU fiber
density and while maintaining the exponential relationship (1).
Their model has recently been extended (Robertson and
Johnston, 2017) to account for the physiologically observed
regionalized MU placement (Elder et al., 1982), something that
has not been but could be considered in our model. While all
of these are desirable properties of a MU placement algorithm,
the much simpler division of the muscle region into separate
parts and random placement proposed above also reduces the
variability of the fiber density. MU regionalization could be
implemented using this same division into separate parts; and
the distortion to the exponential relationship (1) when using
this algorithm has been found to be rather small in practice,
see section 3. In summary, both the placement algorithms of
Navallas et al. (2010) and the one proposed here represent
viable modeling choices, with the former being preferable if the
particular influence of different aspects of MU geometry is of
interest, and the latter being a much simpler algorithm.

2.3. Firing Rates
The firing rate λi(t) of a motor unit denotes the frequency at
which its motoneuron discharges, thereby generating both EMG
and force twitches in its innervated muscle fibers. Together with
the force and EMG twitch amplitudes of each MU, the firing
rates are the primary determinant of the generated muscle force
and surface EMG. Following the experimental results of Milner-
Brown et al. (1973), firing rates have traditionally been modeled
as a linear function of excitatory drive (Fuglevand et al., 1993;
Erim et al., 1996). Recently, De Luca and Hostage (2010) have
proposed a linear-exponential firing rate model based on new
experimental findings. In this model, the firing rate of a MU with
recruitment threshold CDrec(i) is given by

λ(CD(t);CDrec(i)) = C4·CD(t)+(C3−C1e
−CD(t)/C2 )·CDrec(i)+C5,

(5)
where 0 ≤ CD(t) ≤ 1 denotes the current level of common
drive to the muscle, and the Cj, j = 1, . . . , 5 are constant
shape parameters. For example values of the shape parameters

for different muscles, refer to De Luca and Hostage (2010).
Figure 2A shows exemplary firing rate characteristics obtained
using Equation (5).

This model reproduces many phenomena observed
experimentally, such as the onion-skin phenomenon: MUs
recruited first appear to attain a higher firing rate than those
MUs recruited later throughout the whole contraction (De Luca
and Erim, 1994; Erim et al., 1996). Interestingly, however, the
model also differs from previous results and models in several
ways. Firstly, the model does not feature the increased slope of
the firing rate characteristics at excitation levels exceeding the
point CDfull of full recruitment which has been observed by
De Luca and Erim (1994). Secondly, in the observations and the
model of De Luca and Hostage (2010), the initial firing rates of
motor units are declining with increasing recruitment threshold,
while in the earlier study of Erim et al. (1996), they are increasing.
Thirdly, the firing rates, especially of the smaller motor units,
appear unusually large in the low activity range. These high rates
may result from the limitation of the regression data, from which
the model was derived, to the range from 20 to 100%MVC, as has
been noted by the authors in a subsequent corrigendum (De Luca
and Hostage, 2012). While the parameters in Equation (5) of
course can be tuned to follow new findings or represent other
muscles, the shape of the characteristics cannot be altered
arbitrarily due to the small number of model parameters. Finally,
other researchers have questioned the validity of the EMG
decomposition approach employed by De Luca and Hostage
(2010) to obtain the firing rates of individual MUs (De Luca and
Nawab, 2011; Farina and Enoka, 2011; Farina et al., 2015), a fact
that warrants caution when reusing results obtained using this
decomposition approach.

To facilitate the inclusion of the various observations
discussed above into a single model, and since the model of
De Luca and Hostage (2010) cannot be adjusted in all of
these regards, we propose the following, novel model of MU
firing rates:

λ(CD(t);CDrec(i)) = −C1 · (C2 − CD(t)) · CDrec(i) + C3 · CD(t)

+C4− (C5−C6 · CDrec(i)) · e
−

CD(t)−CDrec(i)
C7 .

(6)

Figure 2C shows exemplary firing rate characteristics obtained
using this model. This model (with suitably chosen parameter
values Cj, j = 1, . . . , 7) fulfills the following requirements:

• An initial, steep slope of the characteristics is followed by
a flatter, linear region, and the transition between the two
regions is smooth. Neither the models of Fuglevand et al.
(1993) nor Erim et al. (1996) are smooth. Also, the model of
Fuglevand et al. (1993) does not feature the initial phase with
steeper slopes.

• At each activation level CD(t), the characteristics fulfill the
onion skin property dλ(CD;CDrec(i))/dCDrec(i) < 0.

• The slope dλ(CD = CDrec(i);CDrec(i))/dCDrec(i) of the initial
firing rates can be freely adjusted to either positive or negative
values. This is not the case for the model of De Luca and
Hostage (2010).
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FIGURE 2 | Firing rates of every tenth MU in one belly of one of the simulated recti, following Equation (5) (A,B) and Equation (6) (C,D). Firing rates are shown as a

function of the common drive CD(t) to the muscle (A,C) and as a function of the normalized muscle output force F̃ (B,D). The point of full recruitment was set to

CDfull = 0.6. Note that the application of the proposed nonlinear input transformation CD = F̃−1(F̃ref) has shifted the point of full recruitment to a much higher force

level. This shift and the noticeable upwards bend at high activation levels are a result of adjusting the rate coding model to the force generating capabilities

of the muscle.

• The degree of convergence of the firing rate characteristics
of earlier and later recruited MUs can be freely adjusted by
modifying C2. This is not possible using the model of De Luca
and Hostage (2010). The importance of this issue has been
discussed in detail by Fuglevand et al. (1993).

Note that as for the recruitment thresholds, we define the firing

rates as a function of the common drive, as did Fuglevand et al.
(1993) and unlike De Luca and Hostage (2010). The generated

muscle force depends on all model parameters, and hence firing

rates at a particular level of muscle force must be chosen in
accordance with the force twitch parameters of the involvedMUs.
We will address this issue in section 2.8 by introducing a suitably
defined procedure for calculating the common drive input CD(t)
to the rate coding model as a function of the desired muscle force
level F̃ref, thereby adjusting the rate coding model to the force
generating capacity of the model. One benefit of the nonlinear
input transformation proposed in section 2.8 is that it effectively
results in an increased slope of the firing rate characteristics at
excitation levels exceeding the point of full recruitment CDfull, a
desirable feature as was mentioned above.

2.4. Firing Instants
Given the instant ti(j−1) of the (j − 1)th firing of MU i and the
time course of the MU’s firing rate λi, the next firing instant
tij can be calculated. To model the stochastic distribution of
the inter-spike intervals, these are assumed to follow a normal
distribution with a coefficient of variation that decreases with
increasing activation, following

cv,i(CD(t)) = 10+ 20e−(CD(t)−CDrec(i))/2.5, (7)

as proposed by Moritz et al. (2005). The jth inter-spike interval
ISIj then is drawn from

ISIj ∼ N

(

ISI∗j , cv,i(CD(t
∗
ij)) · ISI

∗
j

)

, (8)

where the mean t∗ij of the time of the next firing event and

the corresponding mean inter-spike interval ISI∗j are obtained
by solving

t∗ij − ti(j−1) =
1

λi(CD(t
∗
ij))

= ISI∗j (9)
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for t∗ij as proposed by Fuglevand et al. (1993). The time tij of the

jth firing event is finally calculated as

tij = ti(j−1) + ISIj. (10)

Note that several distributions other than the normal distribution
have been proposed for modeling the distribution of the inter-
spike intervals (Jones et al., 2002; Barry et al., 2007). For reasons
of simplicity, and as the influence of the shape of the distribution
of the inter-spike intervals on the overall EMG and force signals
found by Barry et al. (2007) appeared to be rather negligible,
a normal distribution is used in the simulation described in
section 3.

Equation (7) represents a purely phenomenological model
of force variability that reproduces the experimentally observed
decrease in coefficient of force variation with increasing
activation (Moritz et al., 2005). This phenomenon appears to be
the result of different physiological processes, with synaptic noise
being the main contributor to the coefficient of variation at low
activation levels and oscillations in the descending neural drive
explaining most of the variation at higher levels of activation
(Dideriksen et al., 2012). Since the model described in this
article is purely feed-forward, i.e., no physiological feedback or
force control are considered, a phenomenological model of force
variability is a reasonable choice. If, however, themodel presented
here was to be included in a more complete model including
force control based on sensory feedback, one should strive
to reproduce the experimentally observed variations in force
variability through synaptic noise and the intrinsic properties of
a force feedback controller such as the one recently proposed by
Dideriksen et al. (2017).

One aspect of firing instant calculations that has to the
authors’ knowledge not been addressed before is the fact that
firing instants will occur at arbitrary times between two sampled
instants. Simulation studies so far have assumed the set of
firing instants tij to be a subset of the set of sampling instants
(Fuglevand et al., 1993), which is a simplifying assumption
that may introduce an artificial distortion in the simulated
signal. In our model, we hence allow firing instants to occur at
arbitrary times, and not just at sampling instants. Note that for
implementing this, it is necessary to calculate differently shifted
versions of both the force and EMG twitches of each MU at each
firing instant. For the force twitch model presented in section 2.7
an analytical functional relationship is available, for which a time
shift can be realized by simply evaluating this function at different
input values. Regarding the EMG twitch model described in
section 2.6, a description of the Fourier spectrum of the EMG
twitch is provided which can be evaluated numerically, andwhich
is then inversely transformed to obtain the EMG twitch in time.
Here, a time shift can be realized efficiently in the Fourier domain
before applying the inverse transform.

2.5. Intracellular Action Potential
Propagation
The propagation of an intracellular action potential (IAP) from
the neuromuscular junction (NMJ) of a muscle fiber along
both directions toward the two fiber ends can be modeled by

representing the actively firing fiber by a distributed current
source and sink. In the model initially proposed by Dimitrov and
Dimitrova (1998), this distributed fibermembrane current source
ı̂(z, t) is composed of two propagating wavefronts and localized
contributions at the NMJ and the two fiber ends. These localized
contributions model the IAP generation and extinction process.
In the formulation of Farina andMerletti (2001), the model reads

ı̂(z, t) =
d

dz

[

ψ (z − zi − vt) p1 (z)− ψ (−z + zi − vt) p2 (z)
]

.

(11)
Here, z denotes the spatial variable along the muscle fiber, zi the
location of the NMJ, v the IAP’s propagation velocity, and

p1(z) = H(z − zi)−H(z − (zi + L1)) and

p2(z) = H(z − (zi − L2))−H(z − zi) (12)

the characteristic functions of the two fiber halves, where
L1 and L2 are the distances between the innervation zone
and the right and left tendon, respectively. The propagation
velocity v, which has been found to depend on the MU’s firing
rate (Nishizono et al., 1989) among other factors, is assumed
constant throughout the whole simulation for each MU in
this study to simplify calculations. For an efficient method to
simulate different propagation velocities, refer to Dideriksen et al.
(2010b). Moreover,

ψ(z) =
d

dz
Vm(−z), (13)

denotes the voltage gradient across the fiber membrane along
the fiber axis, where the function Vm(z) prescribes a model for
the trans-fiber membrane voltage wave shape and can be chosen
arbitrarily to match simulated or measured data. For details on
the significance of Vm(z), refer to Plonsey and Barr (2007). Here,
the analytical model function

Vm(z [mm]) =

{

D1z
3e−z + D2, if z > 0

D2, otherwise
(14)

with D1 = 96mVmm−3 and D2 = −90mV will be used, as
originally proposed by Rosenfalck (1969) and as has been done in
previous studies (Farina andMerletti, 2001; Carriou et al., 2016a).

The IAPmodel in Equation (11) can be shown to be equivalent
to choosing

ı̂(z, t) =GEN(t) δ (z − zi)+ ψ
′ (z − zi − vt) p1 (z)

+ EOF1(t) δ (z − zi − L1)+ ψ
′ (−z + zi − vt) p2 (z)

+ EOF2(t) δ (z − zi + L2) , (15)

with the Dirac distribution δ, the end-of-fiber components

EOF1(t) = −ψ (L1 − vt) (16)

and

EOF2(t) = −ψ (L2 − vt) , (17)
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and the potential generation component

GEN(t) = 2ψ(−vt). (18)

Here, again, the end-of-fiber components describe the IAP
extinction process at the fiber ends, and the potential generation
component models the influence of IAP generation at the
innervation zone on the membrane current.

This formulation renders—to the authors’ opinion—the
structure of the model more clear, by explicitly distinguishing
between propagating and non-propagating signal components,
and by revealing the non-smoothness of the resulting distributed
current source, the latter following from the presence of the
stationary Dirac distributions at the two fiber ends and the
location of the innervation zone. The equivalence of the two
formulations of the model is summarized in the following lemma,
the proof of which is given in the Appendix.

Lemma 1. The expressions given in Equations (11) and (15) to (18)
are equivalent, assuming that ψ ∈ C∞1.

In order to achieve a smooth current source model as opposed
to the discontinuous model proposed by Farina and Merletti
(2001) and analyzed above, Carriou et al. (2016a), inspired
by earlier works by Merletti et al. (1999), have suggested the
use of smooth Tukey window functions w1/2(z) instead of the
characteristic functions p1/2(z), which results in the progressive
generation and extinction of action potentials. In their study,
they set the window smoothness parameter to α = 0.1, where
α = 0 would result in the characteristic functions specified
in Equation (12). However, while appearing physiologically
reasonable, the influence of this modification on the resulting
EMG signal and the EMG-force relationship has been found
to be limited (Carriou et al., 2016a). Note that a formulation
similar to Equations (15)– (18) can easily be obtained if smooth
window functions are used instead of the characteristic functions
in Equation (11), since in this case all derivatives are defined in
the classical sense [assuming smoothness of ψ(z)].

Interestingly, one can show that both IAP models ensure

∞
∫

−∞

ı̂(z, t) dz = 0 ∀ t, (19)

which means that the sum of all incoming and outgoing
currents along each fiber is zero at all times. This property
is well motivated by physiology, considering that the invoked
electrodynamical processes can be regarded as quasi-static
(Plonsey and Barr, 2007), and it is also in accordance with
the predictions of the standard Hodgkin-Huxley model for
action potential propagation (Kleinpenning et al., 1990). For the
discontinuous model, it is precisely a result of the presence of
the three Dirac distributions in Equation (15), as these have the

1Note that – strictly speaking – the expression for Vm(z) given in Equation (14)

does not result in a compactly supported ψ(z) ∈ C
∞, but Equation (14) could

trivially be modified to comply with this requirement, e.g., by convolution with a

smooth and compactly supportedmollifier. As this is a purely theoretical operation

with no practical relevance at all, this has not been pursued here.

combined effect of collecting all remaining currents exerted by
the intermediate fiber sections due to their higher potential. This
result is the subject of the following lemma, the proof of which
again is deferred to the Appendix.

Lemma 2. For compactly supported ψ(z), the IAP model given in
Equations (15) to (18) [or equivalently, Equation (11)] yields a
formulation of ı̂(z, t) that satisfies the condition (19)2. This also
holds true if the characteristic functions p1(z), p2(z) are replaced
by smooth window functions w1(z),w2(z) which fulfill

w1(zi + L1) = w1(zi) = w2(zi) = w2(zi − L2) = 0 (20)

and which yield a product ψ(z)w1/2(z) that is differentiable with
an integrable derivative.

The Tukey window function employed in Carriou et al. (2016a)
and Al Harrach et al. (2017) falls into the class of window
functions supported by the above lemma.

2.6. EMG Measurements
Biological tissues can be considered volume conductors (Plonsey
and Barr, 2007). The existence of an electric field implies the
existence of electric currents traveling through the tissue, and vice
versa3. Due to the comparably low rate of change of physiological
systems, it is justified (Plonsey and Barr, 2007) to assume these
time-varying electric fields to behave as if they were static at
each instant of time, whence they are called quasi-static. This
assumption amounts to a neglection of the capacitive properties
of the tissues. Accordingly, as for static fields, the electric field
in a physiological volume conductor is considered equal to the
negative gradient of a scalar potential ϕ, namely,

EE = −∇ϕ. (21)

By Ohm’s law, the current density (current per unit of cross-
sectional area) in a volume conductor is proportional to the
electric field, that is,

EJ = σ EE = −σ∇ϕ, (22)

where σ denotes the conductivity of the medium. Defining a
distributed current density source I throughout the region of
interest, the divergence of the current density is constrained by

∇ · EJ = I. (23)

Combining Equations (22) and (23) and assuming a
homogeneous, isotropic medium yields Poisson’s equation
for the diffusion of the potential, namely,

1ϕ = −
I

σ
. (24)

In the following, the electric field generated by point sources in
planar tissue layers will be considered as a model for flat and

2See previous footnote.
3Note that in biological tissues, the charge carriers are ions, as opposed to electrons

in electric wires (Plonsey and Barr, 2007, p. 25).
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large muscles, such as the recti abdominis simulated in section 3.
The muscle layer is assumed to be infinitely extended and planar,
and to be covered by an infinitely extended planar layer of fat
and an infinitely extended planar layer of skin. Muscle tissue is
considered anisotropic to reflect the difference in conductivity
between currents along the muscle fiber axis and currents across
the muscle fiber axis, whereas fat and skin tissue are considered
isotropic. Muscle fibers are assumed to run along the z direction,
with the x and z dimensions spanning the skin plane, and the y
dimension being orthogonal to the skin plane, positive vectors
pointing outwards.

The geometrical set-up described above has been analyzed
by Farina and Rainoldi (1999). For a point source of strength
Î located at (0, y0, 0), the authors derive the 2-D spatial Fourier
transform of the resulting potential distribution at the skin
surface to be

8(Î,ωx ,ωz; y0) =
2Î

σm,p
e−ωya|y0|

·
1

(1+ rc) cosh
(

ω+
y

)

ν
(

ω+
y

)

+ (1− rc) cosh
(

ω−
y

)

ν
(

ω−
y

) ,

(25)

with the abbreviations

ω+
y = ωy(df + ds), ω−

y = ωy(df − ds),

ωy =
√

ω2
x + ω

2
z , ωya =

√

ω2
x + raω2

z (26)

and

ν(s) = ωya + srm tanh(s), (27)

where ωx = 2π fx and ωz = 2π fz denote the spatial angular
frequencies in the x and z directions, respectively. The coefficients

rc =
σs

σf
, rm =

σf

σm,p
, and ra =

σm,f

σm,p
(28)

specify ratios of the different tissue conductivities. Finally, y0
denotes the depth of the point source in the muscular tissue, df
the thickness of the fat layer and ds the thickness of the skin layer.

Equation (25) directly yields an analytic description of the 2-D
spatial transfer function of the volume conductor via

Hvc(ωx,ωz; y0) =
1

Î
·8(Î,ωx,ωz; y0). (29)

EMG measurements are usually taken differentially between a
set of electrodes. Consider a regular grid of R × S electrodes
with interelectrode distances dx and dz , respectively, where R =
Ra + Rb + 1 and S = Sa + Sb + 1. The variables subscripted
by a and b denote the number of electrodes on the two sides
of an arbitrarily chosen reference electrode. The grid is assumed
to be aligned parallel to the z axis. Assigning weights ζkℓ to
the electrodes and assuming all electrodes to attain the same
transfer function, the (spatial) transfer function from a given
surface potential distribution to the potential measured by such

an electrode configuration at each point on the surface is given
by (Farina and Merletti, 2001)

Hec(ωx,ωz) =

Rb
∑

k=−Ra

Sb
∑

ℓ=−Sa

ζkℓe
−jωxkdxe−jωzℓdz . (30)

For the transfer functionHele of a single electrode, various model
assumptions can bemade as well. For examples and details, please
refer to, e.g., Merletti and Parker (2004).

Concatenating the spatial transfer functionsHvc of the volume
conductor, Hec of the electrode configuration and Hele of
the electrodes themselves, the global transfer function of the
combined system emerges as

Hglo(ωx,ωz; y) = Hvc

(

ωx,ωz; y
)

·Hele (ωx,ωz) ·Hec (ωx,ωz) .
(31)

From this, the 2-D potential distribution on the skin surface
as measured by electrode configurations consisting of electrodes
with transfer function Hec and Hele, respectively, and positioned
at (x, z), can generally be calculated as

ϕ(x, z, t) =

∫

R

(

i
(

x, y, z, t
)

∗
(x,z)

hglo
(

x, z; y
)

)

dy

=

∫

R

F
−1
xz

{

i
(

ωx, y,ωz , t
)

·Hglo

(

ωx,ωz; y
)}

dy (32)

where i(ωx, y,ωz , t) = Fxz

{

i(x, y, z, t)
}

is the 2-D Fourier
transform of the current density source i(x, y, z, t), and ∗(x,z)
denotes 2-dimensional convolution in the x and z variables. For
a particular electrode (configuration) location on the skin surface
and a muscle fiber following a straight line parallel to the skin
surface, Equation (32) simplifies, and the resulting single-fiber
action potential SFAP(t) = ϕ(t) can be calculated numerically
(Farina and Merletti, 2001; Petersen, 2015; Carriou et al., 2016a).
One can prove that in this case the integration kernel only
has removable singularities, which ensures the convergence of a
numerical integration scheme (Petersen, 2015). Figure 3 shows
exemplary SFAPs resulting from the evaluation of Equation (32)
for such fibers using nested numerical integration schemes. Note
that while the above derivation has been performed for the case
of planar volume conductors, Farina et al. (2004) have derived a
similar model for cylindrical volume conductors, which is much
more appropriate for the simulation of limb muscles.

The numerical solution of the (simplified version of) Equation
(32) is computationally moderately expensive (Carriou et al.,
2016a), refer to section 3 for a discussion of computation times.
Fortunately, this only has to be done once for each fiber before
the actual simulation, to calculate the SFAPs of all fibers. During
the simulation, multiple shifted versions of these SFAPs are then
superposed to generate the actual EMG measurement

EMG(t) =

n
∑

i=1

Ni
∑

j=1

MUAPi(t − tij), (33)
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FIGURE 3 | Simulated SFAPs evoked by a single firing muscle fiber as

detected by three surface electrodes positioned close to the NMJ (solid), in

between the NMJ and the fiber end (short dashes) and above the fiber end

(long dashes). The constant kEMG represents an arbitrary, static EMG

scaling factor.

where n denotes the number of MUs, Ni the number of firing
events of that MU, and

MUAPi(t) =

ηi
∑

j=1

SFAPij(t) (34)

the motor unit action potential, which is obtained by summing
over the SFAPs of all muscle fibers j belonging to MU i. For a
discussion of how to evaluate Equation (32) efficiently especially
in the HD-sEMG case, refer to Carriou et al. (2016a). The
simulated SFAPs correctly reproduce the dependency of the SFAP
shape on the relative position of the recording electrode and
the depth of the muscle fiber, as well as the distinction between
propagating and localized signal components at the NMJ and the
two fiber ends. In particular, the SFAPs display the experimentally
observed end-of-fiber extinction components.

2.7. Force Twitches
Each MUAP generates a corresponding force contribution,
denoted as a force twitch fi(t). Most previously proposed muscle
models (Fuglevand et al., 1993; Dideriksen et al., 2010a) have
employed the force twitch parameterization of Milner-Brown
et al. (1973), in which a force twitch is entirely described by
its twitch rise time Tri and its peak twitch force P. This model,
however, does not allow setting the half relaxation time Thr

independently of Tri, which is essential for modeling different
muscle fiber types (refer to Figure 1.2 in Merletti and Parker,
2004, for example). For this reason, we propose the use of
a different model. Raikova and Aladjov (2002) introduced an
additional degree of freedom to obtain the following force twitch
model of increased expressiveness:

fi(t) =

{

0, t < TEMD,i,

pi · (t − TEMD,i)
m · e−κ(t−TEMD,i), t ≥ TEMD,i

(35)
with

pi = Pi · e
−κTri,i(logTri,i−1), (36)

FIGURE 4 | Force twitches generated by every tenth MU of the muscle

simulated in section 3. These are the same MUs for which the rate coding

characteristics are shown in Figure 2. The constant kf represents an arbitrary,

static force scaling factor.

m = κ · Tri,i, (37)

and

κ =
log 2

Thr,i − Tri,i log(Thr,i/Tri,i)− Tri,i
. (38)

This model satisfies fi(Tri,i) = Pi, and fi(Thr,i) = Pi/2. The
parameter TEMD denotes the electromechanical delay between
the onset of electrical and mechanical activity of the motor unit.
The three parameters Tri, Thr and TEMD are sampled from a
Weibull distribution for each MU, as proposed (for the former
two) by Contessa and De Luca (2013). Figure 4 shows some
exemplary force twitches generated by this model. Note that
fixing m = 1 and freely selecting pi and κ results in the force
model of Milner-Brown et al. (1973).

Kernell et al. (1983) have found experimentally that there is a
nonlinear relationship between generated isometric muscle force
and firing rates of MUs: At high firing rates, the force twitch
amplitude decreases. The proposedmodel includes this nonlinear
relationship by scaling individual force twitches in the impulse
train of a particular MU by a factor

gij(λ̃ij) =











1 0 ≤ λ̃ij ≤ 0.4

0.4

λ̃ij(1−γ2)

(

1− γ2e
(0.4−λ̃ij)

γ1

)

λ̃ij > 0.4,
(39)

with γ2 and γ1 constant muscle parameters, as proposed by
Contessa and De Luca (2013). Here, gij denotes the gain factor

assigned to the jth firing of MU i, and λ̃ij is the normalized
instantaneous firing rate at that firing event:

λ̃ij = Tri,i/ISIj. (40)

Finally, the total force generated by a muscle is calculated as the
superposition

F(t) =

n
∑

i=1

Fi(t) =

n
∑

i=1

Ni
∑

j=1

fi(t − tij) (41)
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of the individual force twitches of all MUs, with n the number
of MUs in the muscle, Fi(t) the force contribution of MU i over
time, Ni the number of firing events of MU i, and tij the j

th firing
instant of MU i, calculated following Equation (10).

2.8. Excitation-Force Relationship and
Physiological Force Control
Motor unit firing rate models such as the model of De Luca
and Hostage (2010) described in section 2.3 usually define the
firing rate as a function of the desired normalized muscle force
F̃ref = Fref/Fmax, i.e., they choose the common drive input as
CD ≡ F̃ref. This choice is a consequence of the fact that these
models are derived from experimental measurements of MU
firing rates at different muscle force levels. Defining the firing
rates λi of all MUs (e.g., as described in section 2.3) as a function
of the force target F̃ref and also defining the force generating
properties of theseMUs (e.g., as described in section 2.7) uniquely
determines the generated muscle force F, see Figure 1. It is,
however, by no means guaranteed that the generated muscle
force F will be equal to the force reference Fref that has been
used as an input to the firing rate model. In other words,
the generated muscle force output does not match the desired
muscle force. This discrepancy is a consequence of the fact that
the rate coding/recruitment model is not adjusted to the force
generating capacity of the simulated muscle (or vice versa). Both
have been defined individually, in parts based on physiological
measurements, but they need to be adapted to each other. Note
that this is a general problem that every EMG-force model needs
to solve.

Dideriksen et al. (2010b) and Venugopal et al. (2017) solved
this issue by introducing a simple PID controller for adjusting
the model input, such that the error between desired and
actual force output is minimized. This method corresponds
to the introduction of an artificial feedback loop in Figure 1.
In their model, parameters change over time (simulating
fatigue), rendering the introduction of such a feedback loop
an elegant solution to the problem of time-varying input-
output consistency. Contessa and De Luca (2013) introduced
a similar force feedback loop, although they implemented the
feedback in an offline instead of online fashion, updating the
input signal in hindsight and re-running the simulation if the
force output deviated too strongly from the desired output.
While all three articles (Dideriksen et al., 2010b; Contessa and
De Luca, 2013; Venugopal et al., 2017) include some remarks
on physiological feedback processes, neither model was meant
to replicate properties of actual physiological feedback control,
but rather to account for the fact that the rate coding and
force generation model components had not been adjusted to
each other. One significant drawback of this method is that the
feedback loop unpredictably distorts the characteristics of the
assumed rate coding model, effectively leading to a different
model being used in simulation than the one that has been
initially described. Finally, note that many researchers have
worked on understanding and modeling actual physiological
feedback control (Wolpert and Ghahramani, 2000; Todorov and
Jordan, 2002; Dideriksen et al., 2017).

FIGURE 5 | Illustration of two physiological force control schemes.

Traditionally, authors have followed approach (A), in which the controller needs

to compensate for the nonlinearity of the muscular force generation model in

addition to external disturbances and time-varying parameters (Dideriksen

et al., 2010b; Contessa and De Luca, 2013; Venugopal et al., 2017). This

nonlinearity is not a physiological property but rather results from the fact that

the rate coding model is not adjusted to the force generating capacity of the

simulated muscle (or vice versa). We propose the use of control scheme (B), in

which a static nonlinearity is used to adjust the rate coding model to the force

generation model, yielding an adjusted, exactly linearized model of muscular

force generation and leaving the feedback controller only with the task of

compensating for external disturbances and time-varying model parameters.

While there certainly is a feedback element in physiological
force control, we consider it reasonable that this feedback is
mainly required to compensate for external disturbances and
changing muscle properties, not to account for a static input-
output inconsistency of the neuromuscular system. For these
reasons, we propose to model physiological force control as the
combined action of two separate components:

1. a feed-forward component that adjusts the rate coding and
recruitment model to the force generation model such that
in the undisturbed and static case, the muscle’s force output
equals the desired target force, and

2. a feedback component that processes sensory information to
counteract external disturbances and changing muscles
properties due to muscular fatigue and changes in
muscle geometry.

Figure 5 illustrates the proposed force control scheme, as
opposed to the scheme used traditionally (Dideriksen et al.,
2010b; Contessa and De Luca, 2013; Venugopal et al., 2017). In
this article, we focus on describing a comprehensive feed-forward
model of muscular EMG and force generation, and hence we only
consider the first of the two components here. Our approach to
themodeling of the feed-forward component is based on a simple,
static input nonlinearity that is applied equally to all MUs in
the muscle.

The general idea is as follows: denoting the desired normalized
muscle force by F̃ref ∈ [0, 1], our aim is to choose the common
drive CD(F̃ref) ∈ [0, 1] to the MU pool such that

F̃(CD(F̃ref)) = F̃ref ∀ F̃ref ∈ [0, 1], (42)
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where F̃(CD) is the normalized generated force output. To
achieve this aim, we evaluate F̃(CD) for all CD ∈ [0, 1], i.e., the
normalized generated muscle force as a (nonlinear) function of
the common drive. Utilizing the inverse

CD = F̃−1(F̃ref) (43)

as the common drive input to the firing rate model then yields
a simulation model that satisfies condition (42). Next, we will
derive an analytical expression for the nonlinear function F̃(CD)
that can be evaluated efficiently.

Averaging over individual firing events, the mean generated
muscle force as a function of the common drive is given by

F̄(CD) =

n
∑

i=1

gi (λi (CD)) ·�i · λi (CD) , (44)

where

�i =

∞
∫

0

fi(t) dt = pi · κ
−m−1 · Ŵ (m+ 1) , (45)

with Ŵ (x) the Gamma function, denotes the total impulse
generated by a single force twitch fi(t) of MU i, gi denotes the
nonlinear force gain factor defined in Equation (39), and x̄ in
general denotes the mean over time of a variable x. By evaluating

˜̄F =
1

F̄max
·

n
∑

i=1

g (λi (CD)) ·�i · λi (CD) (46)

for different values of the common drive CD, one can determine
˜̄F(CD). Employing CD = ˜̄F−1( ˜̄Fref) as the common drive input to
the firing rate model then yields a simulation model that satisfies

F̄(CD( ˜̄Fref))

F̄max
= F̃ref ∀ ˜̄Fref ∈ [0, 1]. (47)

Condition (47) ensures that while there may be differences
between desired and generated muscle force at individual time
instants due to the stochastic nature of the firing instants (see
section 2.4), the two forces agree on average.

The model described above for the feed-forward component
of physiological force control corresponds to the static input
nonlinearity also depicted in Figures 1 and 5 determining the
common drive input to the rate coding and recruitment model
as a function of the target force level. The introduction of this
static input nonlinearity represents an adjustment of the firing
rate model to the force generation model, since the rate coding
model now no longer receives F̃ref as an input, but rather its
nonlinear transformation F̃−1(F̃ref). The consequences of this
model adjustment will be assessed in the following section, and
we will discuss its plausibility. Note that from a control theoretic
point of view, the approach presented here represents an exact
linearizing transformation of the control plant, as indicated in
Figure 5B.

3. SIMULATION RESULTS

Using the mathematical model presented in the previous section,
a numerical simulation of the rectus abdominis muscle has
been implemented as a test scenario, using the R programming
language (R Core Team, 2017). In total, 300 MUs have been
simulated, each consisting of between 30 and 150 muscle fibers,
organized into three separate muscle bellies of each of the two
recti (left and right). Single differential detection was assumed for
the EMG signals, with the two electrodes placed on the linea alba
between the second and third belly. Parameter values obtained
from physiological measurements of the rectus abdominis have
been chosen for those parameters where they were available (Delp
et al., 2001; Rankin et al., 2006; Teyhen et al., 2012). A series
of constant-force isometric contractions has been simulated at
progressively increasing force levels in steps of 5%MVC up to
100%MVC. Each step lasted 4 s, adding to a total simulation
time of 80 s at a simulated sampling frequency of 1024Hz. Using
parallel processing on an Intel Core i7-6700K 4.0GHz quad core
processor with 32GB of memory, the generation of one such
muscle and the calculation of the corresponding sEMG twitch
shapes took approximately 3.5 h, while the subsequent simulation
of the described contraction using this muscle model took (on
a single core) approximately 1 d. In order to assess the effect
of the inherent randomness of the MU placement algorithm,
the muscle generation procedure and the subsequent simulation
each have been executed five times. The simulated signals are
available online at the Dryad data repository (Petersen and
Rostalski, 2019).

Figure 2 shows a comparison of the two discussed rate
coding models with and without the static input nonlinearity
introduced in section 2.8. It can be observed that the input
nonlinearity introduces an increase in the slope of the firing
rate curves of all MUs at high activation levels in both models.
This is in perfect agreement with the experimental findings
of Erim et al. (1996) and also makes sense from an intuitive
point of view: Once most MUs are recruited, firing rates must
increase faster than before in order to achieve an increase in
muscle force output. It hence appears that the introduction
of this static input nonlinearity, calculated by considering
all model parameters simultaneously, increases the degree of
similarity between experimental observations and models of rate
coding and recruitment. The non-smoothness of the adjusted
rate coding characteristics is a consequence of the same non-
smoothness in the original activation-force relationship, due
to new MUs being recruited at discrete levels of excitation.
Accordingly, the non-smoothness of the adjusted rate coding
characteristics is required to obtain a smooth input-output force
relationship. Note that for lack of better data, we employed rate
coding model parameter values similar to the ones described
by De Luca and Hostage (2010) for the vastus lateralis (VL)
muscle, values that have been selected to match isometric
measurements between 20%MVC and 100%MVC (De Luca
and Hostage, 2010). This may be a reason for the relatively
high initial firing rates observable in Figure 2, as compared to
physiological measurements (Erim et al., 1996). The following
further results have all been obtained using the model of
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De Luca and Hostage (2010), since no experimentally justified
parameters values for our newly proposed rate coding model are
currently available.

Figure 6 shows the amplitude distribution of the simulated
EMG signal, which resembles a smoothed Laplacian distribution.
This type of distribution has been reported previously for the
amplitude distributions of real measurement signals (Clancy and
Hogan, 1999). Figure 7 displays the simulated series of isometric
contractions; Figure 8 shows the coefficient of variation and the
standard deviation of the simulated force signal at different levels
of muscle activation. Both force variability graphs resemble those
reported by Barry et al. (2007) for experimental measurements
of index finger force steadiness. Finally, Figure 9 shows the
sEMG-Force relationship calculated over the simulated series of
isometric contractions.

4. DISCUSSION AND CONCLUSION

In this article, a comprehensive, feed-forward model of
surface EMG and force generation during voluntary isometric
contractions in skeletal muscles has been described. The model

FIGURE 6 | Amplitude distribution of the simulated sEMG signal over the

course of a series of isometric contractions at progressively increasing

activation levels (solid line). Superimposed are a Gaussian (dashed line) and a

Laplacian (dotted line) distribution. The constant kEMG represents an arbitrary,

static EMG scaling factor.

FIGURE 7 | Simulated force signal of the simulated recti during a series of

isometric contractions. The constant kf represents an arbitrary, static force

scaling factor.

consists of a large number of linear PDEs, ODEs, and various
static, sometimes stochastic nonlinear relationships, some of
which are solved analytically, while others are calculated
numerically. Particular emphasis is placed on choosing electrical
and mechanical MU properties so as to achieve realistic EMG-
force relationships, and physiological justification is provided
for every component of the model. The model consolidates
and extends several previously presented results regarding the
different components of the physiological system, incorporating
recent advances in understanding of physiology. In addition to
combining previously isolated results in a unified model and
rigorously deriving a more intuitive formulation of the EMG
model of Farina and Merletti (2001), new models for several
subcomponents of the muscular system have been proposed.

Firstly, a novel nonlinear input transformation is proposed
which ensures that the generated muscle forces match the target
force level in the isometric, undisturbed case, and which adjusts
the rate-coding and recruitment characteristics of the model
in a physiologically meaningful way to the force generating
capabilities of the model. While previous studies (Dideriksen
et al., 2010b, 2017; Contessa and De Luca, 2013; Venugopal et al.,
2017) have used PID feedback control to solve this problem, we
propose to separate the tasks of

1. adjusting the different model components (rate
coding/recruitment and force generation) to each other,
and

2. compensating for external disturbances and time-varying
parameters.

While the second task inevitably must be (and physiologically
is) solved using feedback control, the first one can be solved
by means of a static nonlinear transformation between the
desired output force level and the common drive input to
the rate coding model, as proposed here. This solution entails
several useful consequences. On the one hand, it allows for
an analytic derivation of the rate coding scheme adjusted to
the force generating capabilities of the muscle, as illustrated
in Figure 2. It can be observed that the adjustment introduces
physiologically reasonable modifications to the model, such as
an upwards bend in the firing rate curves at high activation
levels (Erim et al., 1996). This is especially interesting since the
properties of sEMG-force models have been found to depend
strongly on the assumed rate coding model and parameters
(Keenan and Valero-Cuevas, 2007). On the other hand, from
a control theoretic perspective, the introduction of this static
nonlinearity represents an exact linearization of the control plant,
which significantly simplifies the feedback control task as well
as a subsequent analysis of the closed-loop system. Note that in
this article, only the feed-forward component of the model has
been considered; combining the presented model with an actual
feedback controller is an obvious next step (refer to Figure 5 for
an illustration of the two discussed force control schemes).

Secondly, the classical Fuglevand model (Fuglevand et al.,
1993) has been extended to reflect findings regarding the
dependence of MU and muscle fiber properties on MU
and fiber size. In particular, not only the recruitment
threshold and the peak twitch force are considered
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FIGURE 8 | Coefficient of variation (A) and normalized standard deviation (B) of the simulated force signal of one belly of the simulated recti during a series of isometric

contractions as a function of muscle activation. Shown are mean ± standard deviation of these values over two simulation runs (including repeated MU placement).

FIGURE 9 | Steady-state sEMG-Force relation of the simulated recti

abdominis over the course of the simulated constant-force isometric

contractions. The first 250ms of each contraction were discarded, and mean

force and mean absolute value (MAV) of the EMG signal were calculated over

the remainder of the contraction. Both values were normalized to their minima

and maxima over all contractions. Shown are the means of these values over

five simulation runs (including repeated MU placement).

size principle parameters (Henneman, 1957; Henneman
et al., 1965), but also the electrical conduction velocity,
the time to peak force, the single fiber action potential
(SFAP) amplitude and the single fiber peak twitch force.
By describing the latter two quantities as a function of
MU size, we have introduced an implicit measure of
fiber size (fiber diameter) that depends on MU size. This
model reflects the differences between small and large
MUs and the different fiber types, while still maintaining
a continuous distribution of MU and fiber properties
that has been found to represent physiological findings
better than discrete types with different properties
(Enoka and Fuglevand, 2001; Heckman and Enoka, 2012).

Thirdly, a new model of individual MU firing rates has been
proposed, which combines several desirable features: A steep,
initial slope of the characteristics transitions smoothly into a
flatter, linear region at higher activation levels. The onion skin
principle is followed, i.e., earlier recruited MUs retain higher
firing rates at all points. The initial firing rate trend, i.e., the

development of the firing rates of each MU at the point of
recruitment, can be freely adjusted to be either increasing or
decreasing. And, finally, the convergence behavior of the firing
rates of all MUs for high activation levels can also be adjusted
freely. By combination with the aforementioned nonlinear input
transformation, the model also displays the experimentally
observed (Erim et al., 1996) increased slopes starting from the
point of full recruitment. Currently, this model has not been fit
to any physiological data; this is of course an obvious avenue for
future work.

The described model of muscular force generation is in no
way to be considered fixed: any component of the model can
and should be exchanged for other models of that particular
physiological subsystem, e.g., to increase or reduce model
complexity, or to take future physiological insights into account.
If, for example, more complex and realistic geometries are to be
taken into account, the analytical, planar volume conductor and
action potential propagation model used here can be exchanged
against much more detailed models proposed in the literature
(Lowery et al., 2004; Mordhorst et al., 2015), while still using
the MU pool model, rate coding and recruitment models and
force control concepts described in this article. To further
increase physiological realism, regionalized MU placement could
be modeled, e.g., as proposed by Robertson and Johnston (2017).
Currently, effects due to the presence of muscle fatigue are not
modeled; these could further be added to the model, e.g., by
employing the metabolic model of Dideriksen et al. (2010a) and
a force feedback loop (Dideriksen et al., 2010a; Venugopal et al.,
2017). For the simulation of limb muscles, the employed model
of the volume conductor should be exchanged for the cylindrical
model presented by Farina et al. (2004) or a more flexible finite-
element model (Lowery et al., 2004; Mordhorst et al., 2015).
The restriction to isometric contractions could be resolved by
implementing time-varying muscle geometry (and hence time-
varying MU-electrode transmission paths), and by considering
the force-length and force-velocity characteristics of skeletal
muscles (Yamaguchi, 2001). And finally, an important challenge
is raised by recent insights into the effect of neuromodulation on
the neuromuscular system (Heckman et al., 2009), an effect that
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has to the authors’ knowledge not been taken into account in any
computational neuromuscular models so far.

The proposed model may be useful, among others, for the
simulation of realistic sEMG and force signals for the validation
of signal processing algorithms, for analyzing the sensitivity
of the recorded signals to various physiological parameters, as
well as to enhance the general understanding of physiology by
evaluating the impact of model or parameter modifications on
the system behavior. Preliminary versions of this model have
already been used successfully for the validation of algorithms
for the separation of inspiratory and expiratory activity in
sEMG measurements of the respiratory muscles (Buchner et al.,
2016; Petersen et al., 2017), as well as for the derivation of a
novel algorithm for sEMG-basedmuscular activity quantification
(Olbrich et al., 2018).
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APPENDIX A: PROOFS

Lemma 1. The expressions given in Equations (11) and (15) to (18)
are equivalent, assuming that ψ ∈ C∞.

Proof: Expanding all terms in Equation (11) yields

ı̂(z, t) =
d

dz

[

ψ (z − zi − vt)H(z − zi)
]

−
d

dz

[

ψ (z − zi − vt)H(z − zi − L1)
]

−
d

dz

[

ψ (−z + zi − vt)H(z − zi + L2)
]

+
d

dz

[

ψ (−z + zi − vt)H(z − zi)
]

. (A1)

Note that the derivatives in Equation (A1) can only be
understood in the sense of distributions, since the derivative of
the Heaviside function H(z) can not be defined in the classical
sense at z = 0. For some basic properties of distributions, refer to
Appendix B.

Assuming ψ ∈ C∞ and recalling that 〈(ψH)′, ζ 〉 = 〈ψ ′H +
ψδ, ζ 〉 (refer to Appendix B), the duality 〈ı̂(t), ζ 〉 can hence be
formulated as

〈ı̂(t), ζ 〉 = 〈ψ ′
zi+vtHzi , ζ 〉 + 〈ψzi+vtδzi , ζ 〉

− 〈ψ ′
zi+vtHzi+L1 , ζ 〉 − 〈ψzi+vtδzi+L1 , ζ 〉

+ 〈ψ
′
zi−vtHzi−L2 , ζ 〉 − 〈ψzi−vtδzi−L2 , ζ 〉

− 〈ψ
′
zi−vtHzi , ζ 〉 + 〈ψzi−vtδzi , ζ 〉

=〈ψ ′
zi+vt(Hzi −Hzi+L1 )+ ψ

′
zi−vt(Hzi−L2 −Hzi ), ζ 〉

+ 〈(ψzi+vt + ψzi−vt)δzi , ζ 〉

− 〈ψzi+vtδzi+L1 + ψzi−vtδzi−L2 , ζ 〉 (A2)

with notations f (x) = f (−x), fa(x) = f (x − a) and f a(x) =
f (−x+a). This is exactly equivalent to Equations (15) to (18).

Lemma 2. For compactly supported ψ(z), the IAP model given
in Equations (15) to (18) [or equivalently, Equation (11)] yields
a formulation of ı̂(z, t) that satisfies the condition (19). This also
holds true if the characteristic functions p1/2(z) are replaced by
smooth window functions w1/2(z) which fulfill

w1(zi + L1) = w1(zi) = w2(zi) = w2(zi − L2) = 0 (A3)

and which yield products ψ(z)w1/2(z) that are differentiable with
an integrable derivative.

Proof: First, we consider the case of ı̂(z, t) as described
by Equations (15) to (18), i.e., using the characteristic
functions p1(z), p2(z). For compactly supported ψ(z),

∞
∫

−∞

ψ ′(z) dz = 0 (A4)

generally holds. Furthermore,

∞
∫

−∞

GEN(t)δ(z − zi) dz = 2ψ(−vt) = 2

−vt
∫

−∞

ψ ′ (z) dz, (A5)

∞
∫

−∞

EOF1(t) δ (z − zi − L1) dz = −ψ (L1 − vt)

= −

L1−vt
∫

−∞

ψ ′ (z) dz, (A6)

and equivalently for EOF2. Combining everything yields

∞
∫

−∞

ı̂(z, t) dz = 2

−vt
∫

−∞

ψ ′ (z) dz −

L1−vt
∫

−∞

ψ ′ (z) dz −

L2−vt
∫

−∞

ψ ′ (z) dz

+

zi+L1
∫

zi

ψ ′(z − zi − vt) dz+

zi
∫

zi−L2

ψ ′(−z + zi − vt) dz

=0. (A7)

Secondly, considering the case of smooth window
functions w1/2(z), we have

∞
∫

−∞

ı̂(z, t) dz =

∞
∫

zi

d

dz
[ψ (z − zi − vt)w1 (z)] dz

−

zi
∫

−∞

d

dz
[ψ (−z + zi − vt)w2 (z)] dz (A8)

=0

by the fundamental theorem of calculus if the conditions on
w1/2(z) stated in the lemma hold.

APPENDIX B: DISTRIBUTIONS

A distribution T is a continuous linear mapping T : D → R,
where D is a given set of so-called test functions. In the following,
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the value of a distribution T acting on a test function ζ shall be
denoted by the duality 〈T, ζ 〉, with test functions chosen from the
set D of compactly supported, smooth functions. Furthermore,
two basic properties of distributions are

〈ηT, ζ 〉 = 〈T, ηζ 〉 ∀ η ∈ C
∞, ζ ∈ D

and

〈T′, ζ 〉 = −〈T, ζ ′〉 ∀ ζ ∈ D.

Moreover (following from the above), considering η ∈ C∞,

〈(ηH)′, ζ 〉 = −〈ηH, ζ ′〉 = −

∞
∫

−∞

(ηH) (x) ζ ′ (x) dx

= − [ηζ ]∞0 +

∞
∫

0

η′ζ dx = 〈δ, ηζ 〉 + 〈η′H, ζ 〉

= 〈η′H + ηδ, ζ 〉.

For more background on distributions (i.e., continuous linear
functionals), refer to, e.g., Clarke (2013).
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