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Periventricular-intraventricular hemorrhages (PIVH) and (diffuse) white matter injury (WMI) 
are the most important acquired brain lesions of the very and extremely prematurely born 
neonate. Both carry a high risk for death or adverse neurodevelopmental outcome. The 
first part of the review discusses the standard of care and latest insights with respect to 
prevention and/or reduction of PIVH and WMI, taking into account their etiopathogenesis 
which is tightly linked to (functional) immaturity of the cerebral vascular bed and nervous 
system and commonly encountered inflammation. The second part discusses repair of 
hemorrhagic- ischemic and post-inflammatory brain lesions as it is an increasingly 
important topic in newborn medicine. In the near future trials of trophic and (autologous 
or allogenic) cell-therapy in infants at risk of or demonstrating established PIVH and WMI 
will be started. The focus of these potential trials will be discussed.

Keywords: prematurity, brain hemorrhage, white matter injury in the preterm infant, neuroprotection, 
neuroregeneration

INTRODUCTION

The most important acquired brain injuries in very and extremely preterm infants born in 
developed countries are periventricular-intraventricular hemorrhages (PIVH) and diffuse white 
matter injury (dWMI, Figure 1; Stoll et  al., 2010; Hamilton et  al., 2013; Pierrat et  al., 2017). 
This brain injury may lead to cerebral palsy and learning difficulties, and can have major 
impact on the quality of life (Stoll et  al., 2010; Pierrat et  al., 2017).

The first aim of this review is to link the etiopathogenesis of PIVH and dWMI to the 
standard of care and its latest insights with respect to prevention and reduction of 
these complications.

The second aim is to focus on repair of the sequelae of PIVH and dWMI. There is 
increasing evidence that repair of perinatal brain injury with trophic and/or stem cell therapy 
is currently becoming a realistic and exciting option (Fleiss et  al., 2014; Fischer et  al., 2017; 
Wagenaar et  al., 2017). We  discuss this development in relation with repair of the sequelae 
of severe PIVH and dWMI.
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PERIVENTRICULAR-INTRAVENTRICULAR 
HEMORRHAGE

PIVH has still a high incidence in the developed world: 25–35% 
of preterm infants born before 30  weeks of gestation or a 
birth weight less than 1,500  g develop PIVH. PIVH develops 
from the fragile vascular network of the germinal matrix mostly 
within the first 3  days after birth with the highest incidence 
in extremely low birth weight infants being up to 45% (Jain 
et  al., 2009; Stoll et  al., 2010; Mukerji et  al., 2015). Although 
a minority of these infants develop severe PIVH grade III 
(intraventricular blood in dilated lateral cerebral ventricles) or 
IV (intraventricular blood with extension into the adjacent 
parenchymal region, more recently described as venous infarction) 
according to the Papile grading (Papile et  al., 1978), up to 
75% develop mild to severe PIVH-related sequelae in later 
life (Sherlock et  al., 2005; Luu et  al., 2009). PIVH remains 
therefore a major health concern.

Although multifactorial, the pathogenesis of PIVH and its 
extension to more severe stages is firmly linked to pulmonary 
immaturity. This is clinically represented by the idiopathic 
respiratory distress syndrome (IRDS), and (functional) 
immaturity of the cerebral vascular bed (Ozdemir et  al., 1997; 
Krediet et  al., 2006; Ballabh, 2014). IRDS may lead to hypoxia 
and hypercapnia, lack of cerebral autoregulation and the need 
for blood pressure support often causing fluctuations and 
hyperperfusion of the immature brain of the extremely and 
very preterm infant (Perlman et al., 1985; van Bel et al., 1987), 
although this mechanism may also be operative in the moderate 
and late preterm neonate with IRDS (Thygesen et  al., 2016). 

Cerebral hemodynamic instability often leads to PIVH, mostly 
originating in the germinal matrix, which has a dense but 
fragile vasculature (Ballabh, 2014). Moreover, IRDS has been 
associated with inflammatory processes and oxidative stress 
in  the immature lung. Several studies showed elevated 
pro-inflammatory cytokines, chemokines and indicators of 
oxidative stress in broncho-alveolar lavage fluid and blood in 
very preterm neonates with IRDS (Beresford and Shaw, 2002; 
Gitto et  al., 2004). A recent study showed that intra-amniotic 
inflammation and postnatal IRDS markedly increased the risk 
for PIVH (Oh et  al., 2018). PIVHs, which develop within 
12  hours of age, inflammation may play an important role as 
indicated by the strong association between early PIVH and 
pro-inflammatory cytokines and oxidative stress (Krediet et al., 
2006; Chisholm et  al., 2016; Chevallier et  al., 2017; Villamor-
Martinez et  al., 2018). Finally genetic factors can be  related 
to the occurrence of PIVH, but this issue is beyond the scope 
of this review (Bilguvar et  al., 2009; Harteman et  al., 2011; 
Ballabh, 2014).

Prevention and Reduction of PIVH: 
Standard of Care
Prevention and reduction of PIVH starts already in the womb: 
maternal corticosteroids during imminent preterm birth have 
shown to reduce the occurrence of PIVH and is common 
practice during preterm labor and imminent preterm birth in 
most high income countries since the late eighties of the last 
century (Ment et  al., 1995; Ballabh, 2014; Roberts et  al., 2017). 
A recent population study (EPICE Cohort) showed even a 
risk reduction of up to 50% of severe neonatal injury after 

A B

FIGURE 1 | (A) MRI of a preterm infant (gestational age 26 2/7 weeks, birthweight 965 g) with a large IVH and a large left-sided (arrowhead) and small right-sided 
venous infarct. Post-hemorrhagic ventricular dilatation was treated with CSF removal from a subcutaneous reservoir. T2 weighted coronal image at the age of 
8 weeks after birth. (B) MRI of a preterm infant (gestational age 32 2/7 weeks, birthweight 1,670 g) with several lesions in the periventricular white matter 
(arrowheads). T2 weighted coronal image at the age of 6 days after birth.
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antenatal corticosteroids administered shortly before birth 
(Norman et al., 2017). Mostly betamethasone or dexamethasone 
are used although there is an ongoing debate about their 
superiority (Brownfoot et  al., 2013). Besides the well proven 
effect of antenatal steroids on lung maturation with a positive 
effect on respiratory and hemodynamic systems (Roberts et al., 
2017), a maturational effect of steroids on the germinal matrix 
microvasculature has been postulated (Xu et  al., 2008). This 
will establish a decrease in permeability of the cerebral vasculature 
and stabilization of the endothelial basement membrane (Hedley-
Whyte and Hsu, 1986; Tokida et  al., 1990).

As antenatally administered corticosteroids induce lung 
maturation and pulmonary stabilization, exogenous surfactant 
application via the trachea does so postnatally (McPherson 
and Wambach, 2018). Surfactant may add therefore to a 
hemodynamic stabilization of the systemic and cerebral 
circulation leading to less disturbances of cerebral autoregulatory 
ability of the vascular bed (Lemmers et  al., 2006).

Several studies indicated a decrease in the incidence in 
PIVH after the introduction of surfactant therapy, especially 
regarding more severe PIVHs (Walti et  al., 1995; Greenough 
and Ahmed, 2013). An older meta-analysis, however, showed 
no clear benefits of surfactant therapy on the incidence of 
PIVH, although there was a tendency for a reduction of severe 
PIVH (Rojas-Reyes et  al., 2012). A recent systematic review 
and meta-analysis investigating the use of early surfactant, 
defined as surfactant administration within one hour after birth, 
with noninvasive ventilation and stress reduction found a 
decrease in severe PIVH with this strategy (Anand et al., 1999; 
Isayama et  al., 2015; Ng et  al., 2017).

Pharmacologic interventions aiming to prevent or reduce 
PIVH are numerous. Muscle paralysis was used in order to 
minimize swings in cerebral perfusion to influence the incidence 
of PIVH in artificially ventilated preterm infants. PIVH incidence 

indeed decreased sharply after muscle paralysis (Perlman et al., 
1985). More sophisticated ventilation modalities nowadays, 
including non-invasive ventilation makes muscle paralysis 
obsolete (McPherson and Inder, 2017). Phenobarbital sedation 
did not decrease PIVH incidence (Donn et  al., 1981; Bedard 
et  al., 1984). Vitamin E, a potent anti-oxidative agent, reduced 
the incidence of PIVH but routine use was not encouraged 
because of serious side effects (Brion et al., 2003). Ethamsylate, 
which has a stabilizing effect on the vascular basement membrane, 
was widely investigated in the 1980s, but had no positive effect 
on the PIVH incidence (Benson et  al., 1986).

Only prophylactic indomethacin made its way to the clinic. 
Indomethacin is a (nonselective) cyclo-oxygenase inhibitor which 
showed a positive effect on PIVH incidence and induced (early) 
patent ductus arteriosus closure (Vohr and Ment, 1996). Especially 
in the United  States prophylactic indomethacin administration 
(low dose indomethacin starting within 6  h after birth up to 
day 3–5) has been utilized in many centers (Nelin et al., 2017). 
Although, in 2001 the TIPP trial suggested that despite a 
decreased incidence of (severe) PIVH, long-term developmental 
outcome did not improve (Schmidt et  al., 2001). A recent 
large study did show improved survival after indomethacin 
prophylaxis in especially the extremely preterm infants (Nelin 
et  al., 2017). This seemed to be  confirmed by a recent meta-
analysis which showed a positive effect on mortality of a 
prophylactic indomethacin regime (Jensen et  al., 2018). It has 
been suggested that indomethacin promotes maturation of the 
cerebral vasculature (Ment et al., 1992; Ballabh, 2014). We suggest 
that also an indomethacin-induced stabilization of cerebral 
perfusion and improvement of cerebral vascular autoregulation 
plays a role with respect to reduction of PIVH. Earlier studies 
of our group in preterm fetal and neonatal lambs showed that 
indomethacin improved the autoregulatory ability of the 
cerebrovascular bed, probably due to its vasoconstrictive action, 

FIGURE 2 | Individual values of Carotid blood flow [Qcar (ml/min)], representing global cerebral blood flow, as a function of (mean) carotid blood pressure (MCBP; 
mm Hg), representing cerebral perfusion pressure, in pretreated with indomethacin (filled circles) and non-treated ventilated preterm sheep fetuses, representing 
a perinatal lamb model (van Bel et al., 1993,1994,1995). Note the lower Qcar values and better autoregulatory curve in the indomethacin-treated animals. 
The small black arrow indicates the lower limit of MCBP where cerebral autoregulation is still operative.
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preventing cerebral hyperperfusion as compared to placebo-
treated controls (Figure 2; van Bel et  al., 1993, 1994, 1995).

Head position and especially left or right deviation of the 
head of very and extremely preterm infants may affect venous 
drainage by partial occlusion of the jugular vein. This can 
induce a temporary increase in intracranial pressure. It has 
been postulated that this may contribute to the occurrence of 
PIVH (Goldberg et  al., 1983).

However, a meta-analysis of relevant studies where the infant 
was kept supine with the head in the midline position and 
the bed tilted in 30° to reduce PIVH incidence failed to show 
a decrease in PIVH incidence as compared to their control 
counterparts (Romantsik et  al., 2017). Additional studies 
are ongoing.

Prevention and Reduction of PIVH: 
Emerging Interventions
Suboptimal blood gas values and hypoxia due to pulmonary 
immaturity and IRDS play a role in the pathogenesis of PIVH 
(Ballabh, 2014). Experimental studies and clinical studies using 
near infrared spectroscopy (NIRS) showed that prolonged 
episodes of cerebral oxygen saturation lower than 40–45% were 
related to damage in the developing brain (Dent et  al., 2005; 
Hou et  al., 2007). With NIRS-derived monitoring of cerebral 
oxygenation and perfusion it is possible to timely identify and 
intervene during episodes of suboptimal oxygenation and 
perfusion of the immature brain (Skov et  al., 1991; van Bel 
et  al., 2008; Wintermark et  al., 2014; Alderliesten et  al., 2016; 
van Bel and Mintzer, 2018). Recently, a European randomized 
controlled multicenter intervention trial (the SafeboosC study) 
focusing on the reduction of hypoxia and/or hyperoxia, provided 
evidence that monitoring cerebral oxygenation with NIRS lowered 
the hypoxic burden in extremely preterm neonates in the first 
days after birth (Hyttel-Sorensen et  al., 2015), the episode in 
which most PIVH occur and/or extend. A follow-up study 
from this SafeboosC cohort showed that the (early) burden 
of hypoxia was associated with the occurrence of severe PIVH 
(Plomgaard et  al., 2017). To confirm that interventions on 
basis of NIRS-monitored cerebral oxygenation can decrease 
PIVH incidence a contemporary randomized controlled trial 
with adequate patient inclusions is mandatory. In this respect 
it is also important to emphasize that clinical application of 
NIRS in the neonatal intensive care unit, to assess (in) adequacy 
of cerebral oxygenation, requires international consensus with 
respect to normative values and understanding of cerebral 
oxygen utilization patterns (van Bel and Mintzer, 2018).

A potentially promising intervention to lower PIVH incidence 
is delayed cord clamping or DCC. The underlying mechanism 
may be  that a greater neonatal blood volume due to DCC 
gives rise to an improved cardiac preload leading to a stable 
cardiac output, stable blood pressure and intact cerebral 
autoregulation with less need for inotropic therapy (Hooper 
et al., 2015; Perlman et al., 2015; Wyllie et al., 2015). Consequently 
the stable hemodynamics may ensure an appropriate cerebral 
perfusion (Baenziger et al., 2007; Ersdal et al., 2014). Especially 
lack of cerebral autoregulation and use of positive inotropes 
seem to be  related to a higher incidence and extension of 

PIVH (Alderliesten et al., 2013). Several studies suggest a positive 
effect of DCC on PIVH incidence (Rabe et  al., 2008, 2012). 
However, a recent meta-analysis did not yet confirm this although 
there was a strong tendency for a reducing effect of DCC on 
PIVH incidence (Fogarty et al., 2018). A key issue with respect 
to the beneficial effects of DCC on PIVH incidence in very 
and extremely preterm infants to be  solved, is the optimal 
time of DCC. The delay time in the 27 studies included in 
the meta-analysis of Fogarty et al was very variable, from 30-up 
to-more than 120 s (Fogarty et al., 2018). It has been suggested 
by others that an optimal delay time should be  180  s which 
may optimize the beneficial effects of DCC (Yao et  al., 1969).

Preventive treatment with trophic factors and especially 
Erythropoietin (EPO) and Insulin Growth Factor-1 (IGF-1) and 
its binding protein 3 (IGF-1-BP3) are increasingly recognized 
to have neuroprotection and PIVH-reducing properties (Juul 
and Pet, 2015; Hellstrom et  al., 2016).

EPO stimulates red cell production, cell survival and 
differentiation and EPO receptors are detected on endothelial, 
glial and neuronal cells (van der Kooij et al., 2008; Chateauvieux 
et  al., 2011; Koulnis et  al., 2014; Rangarajan and Juul, 2014). 
EPO has also a modulating effect on glutamate toxicity, 
stimulating effect on antioxidative ability and anti-inflammatory 
effect protecting endothelial cells from apoptotic death (Yamaji 
et  al., 1996; Bernaudin et  al., 1999; Kawakami et  al., 2001). 
These latter properties of EPO may imply that recombinant 
human (rh) EPO can also have a positive impact on the PIVH 
incidence in premature neonates. An older study from Neubauer 
et  al showed indeed a decrease in the incidence of severe 
PIVH after early rhEPO (Neubauer et  al., 2010), although 
later studies showed conflicting results with respect to PIVH 
incidence after rhEPO (Ohls et al., 2014; Fauchere et al., 2015). 
A recent meta-analysis including 3,643 extremely and very 
preterm infants receiving early EPO therapy reported a reducing 
effect on PIVH incidence (Fischer et  al., 2017; Ohlsson and 
Aher, 2017).

IGF-1 is an endogenous protein which exerts several actions: 
its positive effect on proper vascularization (Hellstrom et  al., 
2001; Bach, 2015) and brain development are important for 
a normal neurodevelopment (Hellstrom et al., 2016). Following 
extremely preterm birth, serum IGF-1 levels are much lower 
than in utero serum concentrations at corresponding gestational 
ages. Inadequate endogenous postnatal IGF-1 production is 
regarded to be  the result of preterm birth related events such 
as hypoxia, inflammation and reduced nutrient availability 
(Hellstrom et  al., 2016). The fact that extremely preterm born 
infants have deficient serum IGF-1 and IGF-1-BP3 concentrations 
stimulated researchers and clinicians to perform studies in 
which suppletion of IGF-1 and its IGF-1 bounding protein 
BP3 were expected to have maturational effects on vascularization 
of the extremely preterm neonate (Ley et  al., 2013). Intranasal 
IGF-1 reduced germinal matrix hemorrhages in a preterm rat 
pup model (Lekic et  al., 2016). A clinical study of Hellstrom 
et al on the effects of IGF-1 on ROP, PIVH and bronchopulmonary 
dysplasia is ongoing (ClinicalTrials.gov: NCT01096784).

In summary, antenatal corticosteroids and the introduction 
of exogenous surfactant substantially reduced the PIVH incidence 
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of the preterm born infant in high income countries. Better 
and non-invasive ventilation techniques together with exogenous 
surfactant treatment and stress reduction during patient care 
had a further reducing effect on PIVH incidence, as did 
prophylactic indomethacin treatment.

Promising future therapies for PIVH prevention and/or reduction 
of severity are delayed cord clamping and early and adequate 
treatment with trophic factors such as erythropoietin and IGF-1. 
However, further research is mandatory here. Table 1 shows 
schematically the above discussed therapeutic considerations.

WHITE MATTER INJURY IN THE VERY 
AND EXTREMELY PRETERM INFANT

Extremely preterm born infants (or ELGANs) carry a 
substantial risk of diffuse white matter injury or abnormal 
white matter development (Volpe, 2009; Chau et  al., 2013). 
In the early days of neonatal intensive care, white matter 
injury (WMI; or periventricular leukomalacia) was 
encountered in the form of cystic periventricular leukomalacia 
(cPVL), as described by Banker and Larroche (1962). cPVL 
was hard to detect using CT, but could be  detected with 
the use of cranial ultrasound (cUS), in particular when 
used longitudinally after the first week after birth (de Vries 
et  al., 2004). The cysts of cPVL appear 10–20  days after 
an insult, and disappear around term equivalent age. 
Remaining injury can be  seen as widening and irregularity 
of the ventricles on cUS, and loss of white matter and 
delayed myelination on cranial MRI (Chau et  al., 2013; 
Martinez-Biarge et al., 2016). Later in life gliosis can be seen 
in the affected areas. The cysts of cPVL occur alongside 
the ventricles in preterm infants, whereas subcortical cysts 
are more common in term infants.

Several causes of cPVL have been suggested, including 
hypoxia-ischemia and inflammation. Fetal inflammation has 
been reported to be  common in preterm birth (reviewed by 
Hagberg et  al., 2015). Furthermore, preterm CSF appears to 
show a neuroinflammatory response compared to term infants. 
Although many have reported white matter injury after maternal 
chorioamnionitis with infection (reviewed by Paton et al., 2017) 
(O’Shea et  al., 2012; Strunk et  al., 2014; Paton et  al., 2017), 

a recent study failed to show a detrimental effect of 
chorioamnionitis (Bierstone et al., 2018). Reactive oxygen species 
are considered to play a role in the injury of the cerebral 
white matter of the preterm infant (Hagberg et  al., 2015).

Occurrence of cPVL has been demonstrated after severe 
hypocapnia and subsequent cerebral vasoconstriction 
(Groenendaal and de Vries, 2001). The incidence of cPVL is 
decreasing in modern neonatal intensive care to 1.3% of a 
NICU cohort of very preterm infants (van Haastert et  al., 
2011). Probably multiple factors may have contributed to the 
decrease of cPVL, such as monitoring of blood pressure, low 
carbon dioxide levels, blood glucose, and cerebral oxygenation 
using NIRS. The role of maternal antibiotics is still unresolved 
(Shepherd et  al., 2017).

Nowadays, diffuse white matter injury (dWMI), and ‘punctate 
white matter lesions’ are more commonly seen in extremely 
preterm infants (Kersbergen et  al., 2014a) (Figure 1). Diffuse 
WMI might even be  present in more than 50% of extremely 
and very preterm infants (Hinojosa-Rodríguez et  al., 2017).

A recent review by our group (van Tilborg et  al., 2018b), 
summarizing a substantial amount of preclinical studies, suggested 
that an arrest in maturation of oligodendrocyte precursors is 
responsible for hypomyelination as seen in experimental models 
of dWMI (van de Looij et  al., 2012; van Tilborg et  al., 2018a). 
As reviewed by Hagberg et al. (2015) pro-inflammatory cytokines, 
including IL-6, and TNF-alpha will lead to increased activation 
of microglia with adverse effects on developing oligodendrocyte 
precursors. Systemic inflammation in common in extremely 
and very preterm infants. Although beyond the aim of this 
review it is important to state that also in moderate and late 
preterm infants inflammation can lead to brain damage and 
adverse outcome (Gisslen et  al., 2016; Musilova et  al., 2018).

Preterm white matter can be  studied in far more detail 
using MRI, and longitudinal scans can visualize brain growth, 
including growth of specific brain regions, cortical folding and 
white matter development (Kersbergen et  al., 2014b), but 
identification of tissue microstructure is still challenging (Stolp 
et  al., 2018). Scoring systems have been developed to quantify 
the abnormalities seen at term equivalent age in this population, 
and the predictive power for neurodevelopment is under 
investigation (Inder et  al., 2005; Kidokoro et  al., 2013). At 
present, MRI might be  more informative in hospitals that are 
dedicated for neonatal MRI than in general.

Prevention and Reduction of (Diffuse) 
White Matter Injury
Antenatal and perinatal strategies are very important in the 
prevention of dWMI. Magnesium sulphate given antenatally to 
women at risk of preterm birth substantially reduced the risk 
of cerebral palsy of the infant (Crowther et  al., 2017). The 
mechanism of this neuroprotection is still unknown. Improved 
uterine perfusion through vasodilation, and a reduction of 
neonatal IVH have been proposed mechanisms. Although 
magnesium reduces EEG activity and the number of seizures 
in an animal model of preterm asphyxia (Galinsky et al., 2017; 
Bennet et  al., 2018b), blockade of NMDA receptors or other 
excitotoxic pathways is unlikely. Although plasma concentrations 

TABLE 1 | Summary of standard care and emerging therapies respectively, for 
the prevention and reduction of periventricular-intraventricular hemorrhage (PIVH) 
and (diffuse) white matter injury (dWMI).

PIVH and (d)WMI

Standard care

− Antenatal corticosteroids

− Exogenous surfactant instillation

− Non-invasive ventilation techniques/stress reduction

− Prophylactic early (<6 h) indomethacin

Emerging therapies

− Delayed cord clamping

−  Trophic factors i.e. erythropoietin (rhEPO) insulin growth factor-1 and its 
binding protein 3 (IGF-1/IGF-1BP3)
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achieved in mothers and fetuses are increased after maternal 
administration of magnesium, extracellular magnesium 
concentrations in the brain are probably lower than those 
needed for neuroprotection after experimental hypoxia-ischemia.
(Crowther et  al., 2017; Galinsky et  al., 2017).

A recent trial (NCT00724594) tested the pharmacokinetics 
of maternal and neonatal N-Acetylcysteine. Interestingly, 
umbilical cord concentrations frequently exceeded maternal 
concentrations (Wiest et  al., 2014). Future studies may aim at 
the use of N-Acetylcysteine to reduce free radical injury in 
preterm infants.

Delayed umbilical cord clamping has been advised in ‘vigorous’ 
preterm infants. It is associated with significant neonatal benefits, 
including improved transitional circulation, better establishment 
of red blood cell volume, decreased need for blood transfusion, 
and lower incidence of necrotizing enterocolitis, leading to 
massive systemic inflammation and subsequent white matter 
injury, and intraventricular hemorrhage (as already discussed 
above; (Practice, 2017). Thereby it may have an indirect beneficial 
effect on white matter injury (see also above: emerging therapies 
for prevention of PIVH (Mercer et  al., 2016)).

Reduction of severe IRDS not only reduces IVH (see above), 
but it may also important in the reduction of severe white 
matter injury. As through a reduction of severe respiratory 
illness large fluctuations in oxygen and carbon dioxide levels 
are avoided, production of reactive oxygen species may 
be reduced. Furthermore, stabilization of blood pressure reduces 
major swings in cerebral perfusion.

Postnatal pharmacologic interventions for reduction or 
prevention of dWMI are increasingly recognized as being 
potentially neuroprotective. Although early postnatal 
administration of the corticosteroid dexamethasone has been 
reported to be associated with cerebral palsy (Doyle et al., 2017), 
this may be  not the case for hydrocortisone (Karemaker et  al., 
2006). Recently a trial was finished comparing hydrocortisone 
versus placebo in ventilated preterm infants to reduce chronic 
lung disease (Onland et  al., 2011). Neurodevelopment of these 
infants will provide information on the benefits (or risks) of 
postnatal hydrocortisone. Postnatal use of caffeine resulted in 
improved neurodevelopmental outcome (Schmidt et  al., 2007). 
Neonatal caffeine therapy for apnea of prematurity improved 
visuomotor, visuoperceptual, and visuospatial abilities at age 
11  years (Murner-Lavanchy et  al., 2018).

It has been suggested that improvement of preterm nutrition 
may contribute to optimizing brain development. In particular 
the so-called microbiome-gut-brain-Axis axis is a proposed 
mechanism of interaction, including neural, endocrine, and 
immunological pathways (Cryan and Dinan, 2012). Nutritional 
components such as fatty acids and protein may stimulate 
brain growth and neurodevelopment (Uauy and Mena, 2015; 
Coviello et  al., 2018). Also probiotics might be  beneficial in 
reducing the incidence of necrotizing enterocolitis and thereby 
reduce white matter injury.

Monitoring of cerebral oxygenation with NIRS (as already 
discussed above in relation with prevention of PIVH) and of 
brain function (amplitude EEG [aEEG]), may also play an 
important preventing role with relation to dWMI.

Since very low arterial CO2 levels may contribute to cerebral 
hypoperfusion and white matter injury (Greisen and Vannucci, 
2001). Tools to monitor the neonatal brain oxygenation and 
function with NIRS and aEEG may contribute to optimize 
cerebral oxygenation (Hyttel-Sorensen et  al., 2015; Plomgaard 
et al., 2017), and early recognition and treatment of subclinical 
seizure activity (Glass et  al., 2017). Further studies are needed 
to describe the association with long-term neurodevelopment 
(Hyttel-Sorensen et  al., 2017; Thewissen et  al., 2018).

Pain and stress are shown to have negative effects on brain 
development (Duerden et al., 2018). Avoidance of pain appears 
to be useful. In very preterm infants on mechanical ventilation, 
continuous fentanyl infusion might protect the developing brain 
by relieving pain during the first 72 h of mechanical ventilation 
(Qiu et al., 2018). In contrast others have demonstrated impaired 
cerebellar growth in the neonatal period and poorer 
neurodevelopmental outcomes in early childhood of preterm 
infants after morphine use (Zwicker et  al., 2016).

To find an optimal balance between pain and stress reduction 
and use of opioids may aid in the reduction of white matter 
injury. Alternative strategies for stress and pain reduction, such 
as sucrose, use of pacifiers, or non-sedative analgetics need 
to be  explored further.

Inflammation
Extremely preterm birth is commonly associated with fetal 
and postnatal systemic inflammation which is likely to contribute 
to dWMI through adverse effects on oligodendrocyte precursors 
(Strunk et  al., 2014; Hagberg et  al., 2015). Novel strategies are 
explored to counteract these inflammatory pathways to counteract 
the deleterious effects on preterm white matter (see below).

Prevention and Reduction of (d)WMI: 
Emerging Pharmacologic Interventions
Many anti-inflammatory interventions have been suggested as 
a result from animal experiments (reviewed by Hagberg et  al., 
2015). Almost none of these have been tested in human infants.

Erythropoietin or EPO has been suggested to inhibit 
glutamate release, reduce accumulation of intracellular calcium, 
to induce antiapoptotic factors, to reduce inflammation and 
nitric oxide-mediated injury, and to contribute to regeneration 
(van der Kooij et  al., 2008; Chateauvieux et  al., 2011; 
Rangarajan and Juul, 2014).

In the EpoKids study in Switzerland very preterm infants 
were randomized to 3 doses of rhEPO (one before birth, 2 
after birth) versus placebo. The secondary outcome of MRI 
at term equivalent age showed less white matter injury in the 
EPO group compared with the placebo group (Leuchter et  al., 
2014). A meta-analysis of administration of rhEPO showed 
an improved the cognitive development of very preterm infants, 
as assessed by the MDI at a corrected age of 18–24  months, 
without affecting other neurodevelopmental outcomes (Fischer 
et  al., 2017). Several trials are still ongoing to study 
neuroprotection by EPO in preterm infants (Juul and Pet, 
2015). Given its positive effect on neurogenesis and angiogenesis 
a more prolonged course of appropriately (high) dosed rhEPO 
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(up to 2,500 IU/kg daily) may further optimize clinical outcome 
of the preterm infant (van der Kooij et  al., 2008; Chateauvieux 
et  al., 2011; Rangarajan and Juul, 2014).

In animal models melatonin has antioxidant properties 
by influencing several pathways, and reduces (neuro-) 
inflammation. Through reduction of proinflammatory 
cytokines pro-oligodendrocyte maturation could be preserved. 
Administration of melatonin to pregnant women with fetal 
growth restriction or pre-eclampsia is under investigation 
(NCT02395783 and NCT01695070). Neonatal administration 
of melatonin has been used in preterm newborns with sepsis, 
surgical procedures or chronic lung disease (Marseglia et al., 
2015). However, no beneficial effect on MRI parameters of 
the preterm brain at term equivalent age could 
be  demonstrated in the relatively low dose administered in 
this study (Merchant et  al., 2014).

IGF-1 plays a crucial role in fetal and postnatal brain 
development: IGF-1 is shown to stimulate neurogenesis and 
proliferation, differentiation and survival of brain cells. Regarding 
white matter development, IGF-1 also stimulates oligodendrocyte 
maturation and subsequent myelination (Cao et  al., 2003; Pang 
et  al., 2010; Cai et  al., 2011; Hansen-Pupp et  al., 2011; O’Kusky 
and Ye, 2012). Moreover, genetic studies in mice display lower 
total brain volumes and severe hypomyelination following IGF-1 
knockout (O’Kusky and Ye, 2012). Human studies relating serum 
IGF-1 levels to brain development show a positive association 
between postnatal serum IGF-1 concentrations and head 
circumference, brain volume measures and developmental scores 
at 2  years of age (Hansen-Pupp et  al., 2011). Main focus of 
previous studies with IGF-1 and its IGF-1- binding protein 3 
was the prevention of retinopathy of prematurity, but the incidence 
of PIVH will be  studied in addition (ClinicalTrials.gov: 
NCT01096784). Further studies are needed to explore potential 
neuroprotective effects of IGF-1 with respect to dWMI.

In summary, Injury to and subnormal development of 
the periventricular white matter is still very common in 
extremely preterm born infants. Although improved neonatal 
intensive care may contribute to improved outcomes, additional 
strategies to counteract (d) WMI may add to an improved 
neurodevelopmental outcome.

REPAIR OF SEQUELAE OF PIVH 
AND  dWMI

Increasing experimental evidence shows that regeneration of the 
injured immature brain with stem cell-based therapies is promising 
and may serve as an effective treatment strategy. Stem cells have 
an intrinsic potential for self-renewal and can differentiate into 
several cellular phenotypes (Fleiss et  al., 2014). Given their 
pluripotent capacity, embryonic stem cells seem the most obvious 
choice for repair of brain injury, but can induce formation of 
teratoma after transplantation. Their clinical application raises 
therefore considerable ethical concerns. This is also true for 
multipotent neural stem cells: although very attractive given their 
possibility to derive all neural lineages, their accessibility in humans 
is limited because they carry also a substantial risk for tumor 

formation (Comi et  al., 2008). Among all progenitor cells, the 
mesenchymal stem (or stromal) cell (MSC) is at this moment 
the most optimal choice for near-future use in (preterm) neonates 
because of the evident neuroregenerative properties and favorable 
immunological profile and, not for the least, of its favorable safety 
profile (Uccelli et al., 2008; Fleiss et al., 2014). MSCs are considered 
to adapt their secretome, after which paracrine signaling results 
in endogenous brain repair rather than direct cell replacement 
through MSC differentiation (Qu et al., 2007; van Velthoven et al., 
2011). Paracrine effects of MSCs include many growth factors 
such as insulin-like growth factor (IGF-1), brain-derived 
neurotrophic factor (BDNF), glial-derived neurotrophic factor 
(GDNF), and vascular endothelial growth factors (VEGF) (Kizil 
et  al., 2015; Ophelders et  al., 2016; Bennet et  al., 2018a). These 
factors can promote endogenous repair through brain cell formation 
in the sub ventricular zone as well as boost neuronal and glial 
cell proliferation, maturation and survival on other regions, 
Moreover, MSCs are shown to secrete anti-inflammatory cytokines, 
involved in reduction of neuroinflammation (Figure 3). Upregulation 
of neoneurogenesis and downregulation of genes involved in 
inflammation after MSC transplantation has been reported in a 
review (Wagenaar et  al., 2017).

MSCs can be  administered to the brain via several routes: 
intravenously, intracranially/intrathecally and nasally. The nasal 
route is non-invasive and seems more effective without loss 
of MSCs in other organ systems as compared to intravenous 
administration (Fischer et  al., 2009; Wagenaar et  al., 2017). 
In a neonatal stroke model in mice pups substantial beneficial 
effects on infarction size, motor function and cognition were 
demonstrated (Wagenaar et al., 2017). The nasally administered 
MSC cells were no longer detectable 3 days after the implantation, 
minimizing the risk for Graft-versus Host Disease and tumor 
growth (Donega et  al., 2014). This is confirmed by a long-
term safety study of our group (Donega et al., 2015). Moreover 

FIGURE 3 | Proposed actions of mesenchymal stem cells (MSC) when 
present in a (previously) hypoxic–ischemic environment: production of vesicles 
(exosomes) of various growth factors, (anti-inflammatory) cytokines, signaling 
proteins and mitochondria which give rise to recovery of affected neurons and 
to proliferation of endogenous paraventricular-situated neural stem cells to 
form oligodendrocytes, astrocytes and neurons.
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human trials on MSC therapy in adults and children did not 
provide evidence for serious long-term effects (Lalu et  al., 
2012). An important advantage of MSC-based cell therapy is 
that autologous as well as allogeneic transplantation can 
be applied. Autologous intravenous MSC-transplantations, mostly 
derived and cultured from MSC-rich umbilical cord tissue or 
cord blood, as well as allogeneic MSCs (see below) are already 
reported for clinical use in neonatal medicine (Chang et  al., 
2014; Cotten et  al., 2014). A detailed review concerning stem 
cell-based therapy in neonatology is beyond the scope of this 
review but is summarized in several recent reviews (Wagenaar 
et  al., 2017; Gronbach et  al., 2018; Niimi and Levison, 2018; 
Vaes et  al., in preparation).

Stem Cell-Therapy and PIVH
Experimental studies reported that cord-derived MSCs substantially 
attenuated reactive gliosis and cell death which went along with 
an increase of brain-derived neurotrophic factor (BDNF) (Mukai 
et  al., 2017). Further study showed that MSC-derived BDNF 
secretion was indeed a critical paracrine factor playing a central 
role in the attenuation of PIVH-induced brain injury (Ahn et al., 
2017). Preclinical data pointed to a repairing effect of MSCs 
on the sequelae of severe PIVH (Park et  al., 2017). Ahn et  al 
showed that in preterm rat pups (P4), in which severe IVH 
was induced, intraventricularly transplanted human umbilical 
cord-derived MSCs attenuated posthemorrhagic ventricular 
dilatation and the area of brain injury (Ahn et  al., 2013). They 
also showed that the window of effective treatment was at least 
up to 2 days after induction of brain damage (Park et al., 2016).

Clinical experience is still scarce. Some investigators consider 
DCC as a form of autologous cord blood transplantation 
since the number of nucleated cord cells in the newborn 
which also contain pluripotent stem cells increase (Bayer, 
2016). A recent small study from Poland in which very 
preterm infants were given autologous umbilical cord blood 
showed significantly higher concentrations of growth factors 
(among them insulin growth factor, epidermal growth factor 
and stem cell factor), whereas (severe) PIVH incidence seemed 
lower in the transplanted group as compared to a control 

group (Kotowski et  al., 2017). Although not directly related 
to the immature brain, a Korean safety and feasibility study 
in extremely preterm infants to lower the risk of 
bronchopulmonary dysplasia with allogeneic cord-derived 
MSCs (endotracheal administration) reported that allogeneic 
MSC transplantation seemed safe and well-tolerated by the 
infants (Chang et  al., 2014). A safety and efficacy study of 
the same group is currently including patients with PIVH 
(ClinicalTrial.gov: NCT02673788).

Although MSC transplantation seems very promising, it may 
be  clear that further clinical research is mandatory to proof 
its efficacy to attenuate the consequences of (severe) PIVH. 
In particular, optimization of dosing of MSCs, the preferred 
type of MSCs (cord-derived vs bone marrow-derived; (Chen 
et  al., 2009)) and most optimal route of administration are 
important pending questions, which have to be  elucidated.

Stem Cell-Therapy and Diffuse WMI
Treatment with MSCs in preterm neonates with or at risk for 
dWMI provides us with an exciting and potentially powerful 
therapy to reduce or even prevent damage to the vulnerable 
white matter of the preterm neonate. Experimental studies in 
which perinatal insults as inflammation and hypoxia-ischemia 
are used separately or in combination showed us already that 
the paracrine factors secreted by the MSCs promote 
oligodendrocyte lineage specification, myelination and maturation 
(Chen et  al., 2010; Jadasz et  al., 2013; Jellema et  al., 2013; Li 
et  al., 2016; Drommelschmidt et  al., 2017). It remains to 
be proven whether MSC-induced endogenous repair mechanisms 
also lead to substantial positive effects in diffuse WMI of the 
preterm infant in whom the interplay of inflammation and 
hypoxia-ischemia appears to be most relevant. Further research 
is emerging and mandatory.
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