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Physiological closed-loop controlled medical devices automatically adjust therapy
delivered to a patient to adjust a measured physiological variable. In critical care
scenarios, these types of devices could automate, for example, fluid resuscitation,
drug delivery, mechanical ventilation, and/or anesthesia and sedation. Evidence from
simulations using computational models of physiological systems can play a crucial
role in the development of physiological closed-loop controlled devices; but the utility
of this evidence will depend on the credibility of the computational model used.
Computational models of physiological systems can be complex with numerous non-
linearities, time-varying properties, and unknown parameters, which leads to challenges
in model assessment. Given the wide range of potential uses of computational patient
models in the design and evaluation of physiological closed-loop controlled systems,
and the varying risks associated with the diverse uses, the specific model as well
as the necessary evidence to make a model credible for a use case may vary. In
this review, we examine the various uses of computational patient models in the
design and evaluation of critical care physiological closed-loop controlled systems (e.g.,
hemodynamic stability, mechanical ventilation, anesthetic delivery) as well as the types of
evidence (e.g., verification, validation, and uncertainty quantification activities) presented
to support the model for that use. We then examine and discuss how a credibility
assessment framework (American Society of Mechanical Engineers Verification and
Validation Subcommittee, V&V 40 Verification and Validation in Computational Modeling
of Medical Devices) for medical devices can be applied to computational patient models
used to test physiological closed-loop controlled systems.

Keywords: mathematical physiological model, computational modeling and simulation testing, physiologic
closed-loop control systems, model credibility evidence, medical devices

Abbreviations: CO, cardiac output; COU, context of use; CPM, computational patient model; EtCO2, end-tidal
partial pressure of carbon dioxide; MAP, mean arterial pressure; PCLC, physiological closed-loop control; PID,
proportional-integral-derivative; PK/PD, pharmacokinetic-pharmacodynamic; SNP, sodium nitroprusside; V&V, verification
and validation.
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INTRODUCTION

Medical devices with PCLC technology automatically adjust
therapy being delivered to a patient based on a measured
physiological variable. Clinical environments such as critical
care units could benefit from automated technologies because
of the high number of required clinical actions (Embriaco
et al., 2007; Mealer, 2016) and extensive monitoring and
therapeutic devices already in use. For critically ill patients, PCLC
technology may be used at the bedside to provide supportive
therapy including automating fluid delivery (Kramer et al., 2008;
Rinehart et al., 2014), mechanical ventilation and oxygen therapy
(Morozoff and Saif, 2008; Tehrani, 2012), and/or anesthetic
delivery (Dumont et al., 2009). However, the presence of control
algorithms to automate therapeutic actions can introduce new
hazards (Parvinian et al., 2018) and thus a comprehensive safety
assessment is crucial to their success.

Physiological closed-loop control medical devices are life-
sustaining safety-critical systems and establishing their safety
requires characterizing the performance under inter- and intra-
patient variability, verifying system implementation, assessing
the system response during expected functional and clinical
disturbances, and assessing the clinical usability (Parvinian et al.,
2018). Evidence to demonstrate the performance and safety of
any medical device, in general, can include a combination of
data from bench, animal, clinical, and computational testing
(Faris and Shuren, 2017). For PCLC devices, the latter might
involve running computer simulations that use the devices or
models of the devices to control a computational model of
patient physiology. Closed-loop systems in a wide range of
engineering fields have a long history in model-based design and
evaluation, in which the control algorithm or the hardware device
is tested using computational models of the system. In the design
phase, this can allow the control designer to acquire insights
on system dynamics and enable rapid device iterations, lending
confidence to a control algorithm by conferring a sufficient level
of performance and robustness against conceivable variabilities
and challenging scenarios. Model-based evaluation approaches
can be used to rigorously stress controllers in a wide range
of simulated scenarios. The type of testing can be either using
completely in silico approaches where computational models
of the patient and device components are used or hardware-
in-the-loop methods where a CPM is used with the actual
medical devices, Figure 1. For PCLC devices, these approaches
have the potential to demonstrate performance and complement
clinical trials by evaluating the device under a broader range
of conditions that might not occur or be possible to evaluate
in a clinical setting. Therefore, computational testing with
mathematical models of patient physiology could advance the
development of novel PCLC medical devices, and positively
impact patient care, as long as the evidence is sufficiently credible
for performance assessment.

A challenge to performing and relying on computational
testing of PCLC systems is that it requires a computational model
of the patient’s physiology. The physiology of interest can be
complex with, for example, significant non-linearities and time-
varying components (Hester et al., 2011). The degree to which the

computational results can be relied upon as evidence of the device
performance will heavily depend on the evidence supporting
the credibility of the computational patient model to represent
the relevant physiology. Therefore, for computational testing of
safety-critical PCLC medical devices, the evidence supporting the
CPM is a critical component to interpret and generate credibility
in the computational testing simulations. The need for validating
physiological models in a systematic way to increase credibility
in the results that they generate has long been recognized
(Cobelli et al., 1984).

Establishing the credibility of a computational model involves
gathering evidence from different activities, such as verification
and validation (V&V), calibration, identifiability and sensitivity
analysis, uncertainty quantification, and applicability analysis
(see Table 1 for definitions). In the context of computational
models, verification asks the question, “did you solve the
equations correctly,” whereas validation asks, “did you solve
the correct equations?” Validation involves comparing model
results with real-world data. It is generally accepted that this
data should be distinct to data used in model development,
but otherwise the precise meaning of validation is subject to

TABLE 1 | Descriptions of terms important to establishing credibility of a
computational model.

Term Description

Context of use – COU A statement that defines the specific role and
scope of the computational model used to
address a question of interest (ASME, 2018).a

Verification The process of determining that a
computational model accurately represents the
underlying mathematical model and its solution
(ASME, 2018).b

Validation The process of determining the degree to which
a model or a simulation is an accurate
representation of the real world.

Sensitivity analysis The process of determining how a change in a
model input (e.g., parameters or initial
conditions) affects model outputs.

Identifiability analysis The process of determining the reliability of
parameter estimates from model structure and
experimental data.

Calibration The process of tuning or optimizing parameters
in a computational model to minimize the
difference between model outputs and real
world data.

Uncertainty quantification – UQ The process of determining the uncertainty in
model inputs (e.g., parameters or initial
conditions) and computing the resultant
uncertainty in model outputs (ASME, 2018).c

Applicability analysis The process of assessing the relevance of the
validation activities for a computational model
to support the use of that model for a COU
(ASME, 2018).d

Additional comments are provided in the footnote. a The COU can also include the
other sources of evidence that will support the question of interest. b Verification
activities are outside the scope of our review. c Common reasons for uncertainty in
model inputs are measurement error or inter-/intra-individual variability. d Detailed
discussion in Pathmanathan et al. (2017). UQ usually involves quantifying such
uncertainty using probability distributions.

Frontiers in Physiology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 220

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00220 March 26, 2019 Time: 12:6 # 3

Parvinian et al. Credibility Evidence for Patient Models

FIGURE 1 | Computational test setups for physiological closed-loop controlled medical devices. (A) Fully computational testing uses computational models of the
therapeutic delivery devices, sensors, and computational patient model. Initial conditions are set for the controller settings and patient, delivery device, and sensor
models. Simulated disturbance profiles such as timing of injuries or other therapies are input to challenge the controller. The testing may be run within a single
simulation environment. (B) Hardware-in-the-loop testing uses a computational patient model and one or more of the computational device models are replaced with
the physical devices. This requires the use of actuator transfer mechanisms to convert therapy delivery device outputs to digital signals received by the computational
physiological model and/or signal generators to convert the output of the computational patient model to signals that can be recorded by the patient monitor.

interpretation, both within communities (Roache, 2009) and
across communities (Bellocchi et al., 2011; Pathmanathan and
Gray, 2018). Calibration, or tuning, involves fitting parameters in
the mathematical equations (i.e., model form or model structure),
such that the output of the model has a “good” fit to experimental
data.1 Calibration is a model development activity and not
a model assessment activity; nevertheless, calibration often
results demonstrating good agreement are regularly presented
as evidence for credibility of physiological models. Identifiability
analysis evaluates the reliability of the parameter estimation
procedure and resulting parameters (Cobelli et al., 1984; Batzel
et al., 2012). Sensitivity analysis assesses how sensitive the model
output is to different values of the model inputs (Saltelli et al.,
2008). Uncertainty quantification involves identifying the sources
of uncertainty in the model, quantifying the uncertainty of the
sources using probability distributions, and then propagating
the uncertainty through the model to determine the impact
on the output (Smith, 2013). Applicability analysis involves a
systematic evaluation of the relevance of the validation evidence
to support using the computational model for the specific
proposed application of the model, or COU. This type of
analysis can be done if validation evidence is already gathered
or can be used for planning to gather evidence, and provides
transparency on the assumptions and decisions made to use a
model (Pathmanathan et al., 2017).

The model COU drives the rigor of and results from each
activity that is necessary to establish credibility. For example, a
CPM used in the early stages of designing a PCLC algorithm likely
does not require the same rigor as a CPM used to determine the
use population for the PCLC device. V&V-based processes for
model assessment are well-established in traditional engineering

1As a point of clarification, two models with the same equations but different values
of model parameters are considered to have the same model form.

disciplines, although they continue to evolve; however, the
same rigorous attention has yet to be given to biomedical
applications. Therefore, the American Society of Mechanical
Engineers Verification and Validation Subcommittee, V&V 40
Verification and Validation in Computational Modeling of
Medical Devices (ASME V&V 40) recently proposed a “risk-
informed credibility assessment framework” to help determine
the “amount of V&V” needed to support using a computational
model for applications related to medical devices (Morrison et al.,
2017; ASME, 2018). With this framework in mind, we present a
review of the current uses of CPMs in the development of critical
care PCLC devices and the evidence used to support the CPM
for that purpose. We focus on three PCLC device areas intended
for critical care medicine: hemodynamic stability, mechanical
ventilation, and anesthetic delivery.

Our objective was to review the potential roles of CPMs to
answer questions about PCLC system design and/or evaluation,
and to identify the credibility evidence that supported the
CPM for that purpose. The scope of this review included
CPMs that were mathematical models of individual physiological
systems, data-driven models, integrated physiological systems
models, or PK/PD models. We considered studies with PCLC
related to hemodynamic stability (primarily fluid resuscitation
or vasoactive drug delivery), anesthetic delivery, and mechanical
ventilation. Studies of animal or clinical testing of a PCLC
system without any computational testing using a CPM were
out of scope. Moreover, while models of the closed-loop system
components (e.g., physiological monitors, infusion pumps)
need to be considered for computational testing of PCLC
systems, these models were also out of scope. Furthermore,
it is important to distinguish between validating the controller
and validating the CPM; our reviewed focused solely on
the latter. We considered the following regarding the use
of the CPM:
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TABLE 2 | Application of the ASME V&V 40 risk-informed credibility framework to two different scenarios using computational models in the development of
physiological closed-loop controlled medical devices.

Scenario 1 Scenario 2

Question of interest Design a controller to keep the
physiological variable within X% of a
set-point

Is a controller stable under variable
patient conditions

Context of use The controller will be synthesized by
optimizing parameters to the
computational patient model

The computational patient model will be
used to perform a risk-based evaluation
of the controller performance before
being used in clinical studies.

Model risk Influence on decision High – no other evidence will be used
to support the decision

High – no other evidence will be used
to support the decision

Consequence of decision Low – following design of the controller,
a series of studies including additional
computational testing and animal
studies will be performed to evaluate
the controller performance before being
used on patients

High – use of the controller on patients
could lead to injury

Overall risk Medium High

Example credibility factors Qualitative: Parsimonious, low order,
transparent, physiological relevant
Quantitative: Linearizable, identifiable,
predictive accuracy, reproduces
uncertainty bounds

Qualitative: Transparent, physiologically
relevant Quantitative: Identifiable,
predictive accuracy, reproduces
uncertainty bounds, generalizable

Credibility activities Develop and perform plan to gather credibility evidence: experimental design, comparator (e.g., animal
model), data analysis plan

The two scenarios outline example model risk and credibility factors. The noted model risk components including influence on decision and consequence of decision are
different here to highlight how use of a model may influence the necessary evidence to support that use.

• the source of the model (whether designed for a specific
COU in the article or taken from previous works or
combination of two);
• information on the selection of parameter values including

if parameters were taken from previous studies, averaged
over population, calibrated during the model development
process, or combination of these methods;
• whether sensitivity and/or identifiability analyses

were performed;
• whether uncertainty quantification was performed;
• comparisons of model performance to experimental data

used in model development/training/calibration processes
(e.g., quality of fit)
• independent validation data, namely the comparisons

of model performance to experimental data not used
in any stage of model development (e.g., quality of
predictive performance)
• for models previously reported, justification provided to

support credibility for the current COU in the article;
• and, for models modified from previous reports,

justification provided as to why any previous validation
still supports the model use given the changes to
the model.

Sections “Closed-Loop Systems for Hemodynamic Stability,”
“Closed-Loop Systems for Mechanical Ventilation,” and
“Closed-Loop Systems for Anesthetic Delivery” review
the identified uses and validation approaches of CPMs
in the development and evaluation of PCLC systems
for hemodynamic stability, mechanical ventilation, and

anesthetic delivery systems, respectively. Section “Discussion”
discusses the results of the review, provides an appraisal of
the state of model credibility assessment in the reviewed
literature as a whole, and frames the content in relation to
physiological model validation frameworks and the recent ASME
V&V 40 framework.

CLOSED-LOOP SYSTEMS FOR
HEMODYNAMIC STABILITY

Use of Computational Patient Models
Physiological closed-loop control controllers have been
developed for resuscitation and vasoactive drug delivery systems
with the objective of performing fluid resuscitation and/or
hemodynamic stability. These devices monitor and control
hemodynamic variables such as MAP or CO. Controllers used in
hemodynamic stability systems adjust the infusion rate and/or
time of delivery of fluids (e.g., colloids, crystalloids, or blood)
and/or vasoactive drugs (e.g., SNP, phenylephrine). A variety of
controller designs have been tested with CPMs including single
input-single output adaptive and model predictive controllers
(Malagutti et al., 2013; Silva et al., 2017), rule-based learning
systems (Rinehart et al., 2011), PID controllers (Wassar et al.,
2014; Bighamian et al., 2016), and multi-input–multi-output
systems that control multiple drugs simultaneously (Held and
Roy, 1995; Huang and Roy, 1998; Rao et al., 2000). System designs
may include supervisory components that add a layer of safety by
monitoring for known system limitations, such as noise/signal
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artifacts in the sensed physiological variables that could adversely
impact the controller performance (Martin et al., 1992).

Multiple studies have used CPMs to assess controller
performance across a broad range of physiologic responses. This
type of testing can help establish patient populations for which a
new control algorithm may be safe for use by varying parameters
within the CPM to represent different types of patients and
expected responses. Kashihara et al. (2004) developed a model
to compare the robustness of various control algorithms to
the sensitivity of the MAP response to norepinephrine. The
evidence from the simulation studies were used to initiate animal
studies to further evaluate their controller designs. Bighamian
et al. (2016) developed 100 different configurations of a CPM
representative of hypovolemia to assess their PID controller for a
fluid resuscitation system against a range of autonomic, cardiac,
and hemodynamic conditions by varying gain parameters in their
model. Similarly, Rinehart et al. (2013) assessed the robustness of
their fluid resuscitation controller to varying patient weight and
cardiac contractility. These types of studies enable an estimate of
the potential distributions in controller performance metrics that
may be expected and can be used to identify patient conditions
that may result in unsafe controller performance.

Computational patient models are commonly used in the
design and evaluation of closed-loop hemodynamic stability
systems to assess controller performance and robustness to
changing patient conditions over time. This allows an assessment
of how the controller performs during intra-patient variability
simulated by changing model parameters over time. A model
of the MAP response to SNP designed to develop and test
a controller to maintain MAP by titrating delivery of SNP
(Slate, 1981) has been modified and further expanded on by
multiple groups for this purpose. These modified versions of
the model have been used to design and evaluate controllers
capable of tracking and responding to a patient with a changing
physiological state (Chen et al., 1997; Malagutti et al., 2013)
and to address non-linear elements in the cardiovascular
system (Polycarpou and Conway, 1998; Gao and Er, 2005).
For example, Malagutti et al. (2013) considered wide variance
ranges in parameters based on information in the clinical
literature to enable their controller to respond to potentially
unknown patient conditions. Wassar et al. (2014) designed a
stochastic non-linear model of MAP response to phenylephrine
that considered both inter and intra patient variability using
data from swine experiments. Additional model components
were added to model respiratory effects and disturbances
such as hemorrhage or the presence of other vasoactive
drugs. The model was used to design and investigate a
controller under various simulated scenarios before testing
the controller in swine experiments (Wassar et al., 2014).
Luspay and Grigoriadis (2015) designed a Kalman filter to
track time-varying parameters for continuous scheduling of
a robust linear parameter-varying controller. A non-linear
CPM was developed to test the controller during scenarios
where patients could be sensitive, nominal, or insensitive
to phenylephrine. This was done by drawing values for
each parameter from pre-defined probability distributions
(Luspay and Grigoriadis, 2015).

Held and Roy (1995) used a CPM of the canine cardiovascular
system to design and assess a controller intended to adapt
to patient SNP sensitivity and confirm that the controller
maintained SNP and dopamine within specified limits. Rao
et al. (2000) expanded the canine cardiovascular model to
develop a multi-input-multi-output controller. This controller
was intended for hemodynamic and anesthetic stabilization by
modeling multiple hemodynamic measurements and a depth
of anesthesia measure to control five vasoactive and anesthetic
drugs. A linearized version of the model was used as part of
their model predictive controller and a non-linear version able
to simulate multiple pathological conditions was used to evaluate
the controller performance as the simulated patient’s response
changed over time due to the condition (Rao et al., 2000).
Coté et al. (1995) modeled cerebral spinal fluid compartments
to design and evaluate the stability and robustness of a closed-
loop intracranial pressure regulation system against a range of
relevant conditions.

Real-time implementations of CPMs enable more realistic
testing of the complete system under expected functional
challenges that might be exhibited during normal use. Martin
et al. (1992) developed a pulsatile cardiovascular systems model
intended to test the PCLC system in real-time when faced
with infusion rate limits, rapid physiological changes in MAP,
and artifacts in the MAP signal. Woodruff et al. (1997)
expanded this by combining it with PK/PD models for multiple
vasoactive drugs. Moreover, they modeled the interactions
between drugs and baroreceptor components to provide a
generalized cardiovascular model for the design and evaluation of
closed-loop hemodynamic devices (Woodruff et al., 1997). Silva
et al. (2017) also enabled real-time testing of embedded controller
designs by implementing a model on an embedded system.

An additional use of CPMs for PCLC systems is to be used as
part of the control algorithm. For example, Urzua et al. (1999)
demonstrated that using a simplified model of arterial pressure
control within the arterial pressure controller proposed in Slate
(1981) could improve the MAP response time to the therapy.
To incorporate the numerous physiologic mechanisms involved
in arterial pressure control into their system design, Nguyen
et al. (2008) used a reconstructed version of Guyton’s model
within their SNP control system (Urzua et al., 1999). Frei et al.
(2000) used a model predictive controller to control MAP during
surgical stimulation by titrating anesthetic agents. A separate
model of the MAP response to stimulation was used to evaluate
the model predictive controller.

Credibility Evidence
The development of cardiovascular CPMs has a long robust
history. Therefore, many CPMs used for development of
PCLC systems for hemodynamic stability are modified versions
of previously described models. When existing CPMs were
modified, the impact of the modification on the model
performance was rarely assessed or validated for the new
COU. The model of MAP response to SNP initially developed
by Slate (1981) was used and modified by numerous groups
to evaluate controller designs during periods of disturbances
and time-variance in patient responses as well as handing of
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parametric uncertainty related to patient responses. Multiple
papers (Polycarpou and Conway, 1998; Gao and Er, 2005)
modified the Slate model to assess their controller performance
against drug sensitivity by modifying parameters to establish
the safety of the controller given unknown patient conditions.
However, additional credibility evidence was rarely provided to
support that the model output remained physiologically relevant
across the range of modified parameters.

Qualitative assessment of steady-state and dynamic responses
was commonly presented to support model use. Rinehart et al.
(2013) describe the simplicity and previous validation to support
using a Frank-Starling baroreceptor model (Upton R.N. and
Ludbrook G., 2005; Upton R.N. and Ludbrook G.L., 2005) to
assess their closed-loop fluid resuscitation system. The model
CO response to blood loss was presented to demonstrate that
their modifications produced a physiologically plausible response
(Rinehart et al., 2013). While acknowledging the limitations of
the model, the authors discuss the suitability for the questions
being addressed in the study. Bighamian et al. (2016) used a
previously developed model (Ursino, 1998; Ursino and Magosso,
2003) to simulate 100 different hypovolemic patient conditions.
An assessment of the distributions of hemodynamic variables
was made to consider if the hemodynamic responses generated
by the different parameter configurations were reasonable. The
author noted that the model did not include key physiological
elements such as urine excretion that may impact the fluid
volume and thus the model results. Urzua et al. (1999) provided
a detailed description of the physiological basis for their model
used within their controller. The qualitative behavior of the
model in the presence of disturbances was contrasted against
experimental data to demonstrate the physiologic relevance and
identify behaviors that may not be physiologic.

Woodruff et al. (1997) provide a comprehensive description
of the development and rationale behind the various components
of their cardiovascular simulator that allowed inputs for multiple
vasoactive drugs and presented qualitative and quantitative
assessments of model performance. A sub-model approach
to validation was used where additional components were
subsequently added to the model and then model predictions
were qualitatively and quantitatively compared to published
animal and clinical data (Woodruff et al., 1997). An assessment
of the realism of the model was also performed by having
anesthesiologists with varying levels of experience control SNP
using a simulator.

A series of articles built on the canine cardiovascular model
developed and evaluated in Yu et al. (1990). Held and Roy (1995)
provided a qualitative assessment of the dynamic and steady-state
behavior of the model under specific conditions with a discussion
of how this relates to expected physiological changes following
their modifications to improve the run-time and agreement
with experimental results. Rao et al. (2000) added of a PK/PD
model for propofol to use the model for testing simultaneous
hemodynamic and anesthetic control systems. The authors note
that they varied circulatory parameters to ensure that MAP and
heart rate responses matched experimental observations, and
propofol model parameters were then tuned so that the model
matched steady-state results (Rao et al., 2000). The results of

the calibration procedure were presented along with simulation
results to assess the model predicted hemodynamic responses due
to increasing propofol infusion.

Kashihara et al. (2004) developed a data-driven model of
the MAP response to norepinephrine from experimental data
tracking MAP during infusion of norepinephrine. Data from
three experiments were used to fit the model, and a comparison
of the experimental and simulated responses from a single
animal was presented to support the model performance. Nguyen
et al. (2008) also used data from animal experiments to tune
parameters in an SNP infusion model that was connected with a
larger cardiovascular systems model. Qualitative assessment was
presented that compared the blood pressure response to SNP on
the calibration data used to tune the SNP infusion model.

Wassar et al. (2014) used data from swine experiments to
develop a stochastic model of MAP response to phenylephrine
that enabled varying the sensitivity of MAP to the infusion rate
of phenylephrine. An initial portion of experimental data was
used to identify model parameters and then those parameters
were applied to the model and predict the remaining portion
of the experimental data. Results were presented from at least
one animal used in development of the model that showed
the measured and predicted responses; the authors noted that
similar results occurred for the other animals. The model
was determined to be appropriate by the authors because it
included saturation effects and allowed for inter and intra subject
variability to be assessed.

Frei et al. (1997, 2000) evaluated the trade-off between model
performance and model order when considering the appropriate
model to use for testing the response of their MAP controller
to anesthesia and disturbances. In the manuscript, they note
the challenges with using high order physiological models and
present evidence of their model performance on a single case of
experimental data.

CLOSED-LOOP SYSTEMS FOR
MECHANICAL VENTILATION

Use of Computational Patient Models
The controllers employed in closed-loop mechanical ventilation
devices adjust ventilation parameters to maintain blood gas levels
or other respiratory-related variables within a physiologic range
of interest. Computational modeling of the cardiorespiratory
system plays a key role in design (Martinoni et al., 2004; Jiang
et al., 2016; Pomprapa et al., 2017) and evaluation (Morozoff and
Saif, 2008) of closed-loop mechanical ventilation algorithms. The
majority of efforts behind the closed-loop design and evaluation
of a mechanical ventilation device is to continuously adjust
blood oxygenation levels [i.e., SpO2 (Tehrani, 1993, 2012; Iobbi
et al., 2007; Morozoff and Saif, 2008) and SaO2 (Yu et al., 1987;
Pomprapa et al., 2017)], carbon dioxide levels [end-tidal CO2
fraction (Martinoni et al., 2004; Hahn et al., 2012; Kim et al.,
2016)] or respiratory variables including respiration rate and tidal
volume (Flechelles et al., 2013). Adjustments are made by varying
the level of therapeutic settings on the device including fraction
of inspired oxygen (FiO2) (Morozoff and Saif, 2008; Pomprapa
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et al., 2017), tidal volume (Martinoni et al., 2004), and positive
end expiratory pressure (Tehrani, 2012; Flechelles et al., 2013).
A wide range of controller types have been applied including
model predictive controllers (Fernando et al., 1995; Pomprapa
et al., 2017), PID and fuzzy controller (Morozoff and Saif, 2008),
robust controllers (Sano et al., 1988; Pomprapa et al., 2013), and
rule-based expert systems (Fernando et al., 1995).

Yu et al. (1987) and Sano et al. (1988) both developed transfer
functions to relate blood oxygen levels to FiO2 by linearizing the
gas transport model in order to simplify the controller design
process. These models were used to design controllers to adjust
PaO2 by titrating FiO2. Sano et al. (1988) further developed a
linearized model relating rate of breathing to blood CO2 levels.

Many CPMs used in the design and evaluation of
PCLC mechanical ventilation devices were developed from
foundational studies in modeling of cardiorespiratory system
such as Fincham and Tehrani (1983); Rideout (1991) and
Morozoff et al. (1993) and then with improvements from
Tehrani (1993) and Morozoff and Saif (2008). Fincham and
Tehrani (1983) improved on past models of respiratory systems
by accounting for physiological processes such as respiratory
work output and internal body feedback systems. This model
forms the basis for design and evaluation of closed-loop
oxygenation devices in adults (Tehrani, 2012). The performance
of the control system was evaluated in simulation experiments
representing different physiological conditions including
low respiratory compliance and hypoventilation. The model
presented in Fincham and Tehrani (1983) involved mass
balance dynamics of gas transport and exchange, metabolism
dynamics, chemoreceptors, and endogenous respiratory control
mechanisms. The original model was modified by adding
characteristics of the neonatal respiratory system such as lung
shunts to enable design of controllers intended for neonatal
oxygenation control (Tehrani, 1993). Morozoff et al. (1993)
and Morozoff and Saif (2008) developed a model that consisted
of submodels representing the cardiovascular system and the
respiratory system including the effect of shunts. They first
developed a model for adult cardiorespiratory system and then
used an allomeric approach and proportional scaling to derive
model parameters for neonatal applications. They evaluated
fuzzy logic and PID controllers by using this model to simulate
various neonatal conditions including changing oxygen affinity,
desaturation pulse duration, patient motion conditions, and
combinations of these.

Data-driven models of EtCO2 have been presented for
controller development (Hahn et al., 2012; Kim et al., 2016).
Kim et al. (2016) described lowering the order of compartmental
models to capture CO2 transport dynamics with and without
CO2 transport delay that could be used to design and test
controllers. Hahn et al. (2012) developed an empirical low order
model relating EtCO2 to minute ventilation to design a PI
compensator using clinical data to identify the model parameters.

Pomprapa et al. (2017) evaluated a Policy Iteration Algorithm
(PIA) controller based on a model of blood oxygenation. The
model was used to evaluate the performance of various iterations
of the PIA controller in terms of settling time. The parameters of
the model were identified by changing FiO2 settings and inducing

acute respiratory distress syndrome in a large animal experiment.
For further implementation of control system design, they
approximated the non-linear identified model with a simplified
linearized model. Iobbi et al. (2007) reported a model of oxygen
transport to evaluate a controller intended to adjust FiO2 based
on pulse oximetry feedback. They assumed second order transfer
functions with delays to relate blood oxygen saturation levels to
inspired oxygen. The model was used to simulate hypoxic events
from artificial disturbances representing variable fluctuations in
patient pathophysiology.

Credibility Evidence
Yu et al. (1987) provided model formulation and descriptive
information of the physiological process behind blood
oxygenation, relying on their previous work to justify the
structure of a first order transfer function relating arterial
partial pressure (PaO2) to FiO2. They selected ranges for model
parameters but did not provide any information about the
validation of these ranges or the sources they were derived
from. Similarly, Sano et al. (1988) designed a model of both
O2 and CO2 gas transport for robust controller design. Their
rationale for constructing a new model was that the previously
developed cardiorespiratory models were too complex for
control system design.

The foundational studies presented in Fincham and Tehrani
(1983) and Morozoff and Saif (2008) generally provided great
details of model formulation and structure. The modeling
approach and rationale for inclusion of model components, for
example dynamics and chemical control of gas levels in blood,
were provided. In Fincham and Tehrani (1983) model evaluation
involved comparing the model performance at various conditions
including hypoxic, hypercapnic, and exercise conditions. Direct
comparison with experimental results reported in literature
were performed only for resting and hypercapnic conditions.
Specifically, the comparison included numerical values of
selected model outputs (e.g., arterio-venous gas difference) and
not of the entire range of variables that would be utilized in
future studies involving design and evaluation of closed-loop
mechanical ventilation devices such as Tehrani (2012).

Morozoff et al. (1993) described a model with simplifying
assumptions such as not accounting for the removal of oxygen as
CO2 during expiration in the mass balance of O2. A more detailed
compartmental model of the respiratory and cardiovascular
systems was described in Morozoff and Saif (2008). The
cardiovascular system model was compared with the model
presented in Rideout (1991), although the level of agreement
and specific conditions were not specified. The study provided
a clear list of assumptions for the cardiovascular model such
as uni-directionality and non-pulsatile blood flow and perfect
mixing of blood. The authors used proportional scaling and
parameter values of mammals similar in weight and surface area
to neonates to select model parameters specific for neonatal
patients circulatory and respiratory systems. The authors state
that the model was validated in stages first using Rideout data
(Rideout, 1991) for the adult cardiovascular system and then
using published data for the neonatal model. For neonates, the
model was compared qualitatively with physiology text books.
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Martinoni et al. (2004) provided a simplified model of that
presented by Chiari et al. (1997) where they assumed constant
CO and constant oxygen saturation in both arterial and venous
blood. The model was “considered sufficiently descriptive for
closed-loop control purposes” (Chiari et al., 1997).

Iobbi et al. (2007) used a model of the oxygen dissociation
curve proposed by Severinghaus (1979). They assumed that the
oxygen response is a function of three factors: a baseline oxygen
partial pressure, a driving partial pressure which was modeled
as a sinusoidal function, and a patient oxygen flow dependent
term which was modeled as a second order differential equation
whose parameters were selected from literature. The authors
acknowledged that the parameters selected are based on average
values and do not represent patient variability.

Pomprapa et al. (2013) described the input–output
relationship of minute ventilation and EtCo2 and compare
a first order linear model and a non-linear model. The authors
used root-mean-square-error (RMSE) of an estimated dataset
and a “validated” dataset to compare the model results. They
also provided qualitative comparison of linear and non-linear
models. Model parameter values were calibrated by collecting
experimental data from a single healthy human subject with
homogenous lungs and normal body mass index. The authors
suggested that the model was validated using the single human
subject data by mentioning comparison of the estimated model
“with a validated dataset,” although it is unclear from the
manuscript how this dataset was developed and whether the
validation dataset involved measurement of model output
independent of model calibration.

Hahn et al. (2012) developed an empirical model with
coefficients identified from data. The authors demonstrate the
similarity between their affine model relating minute ventilation
to EtCO2 concentration to pharmacological modeling. They
use this analogy to provide physiological interpretation of the
model as having two compartments representing body and lungs.
Respiratory data of 18 pediatric patients from an anonymized
repository were used for model calibration. Model fit was
quantitatively compared with experimental data set using RMSE
and coefficient of determination. Kim et al. (2016) identified
model parameters from clinical data. They demonstrated that
inclusion of transport delay resulted in model prediction
improvement compared with the same model without transport
delay. Unlike the model with transport delay, the parameter
estimation on the model without transport delay resulted in
parameter values that are not physiologically plausible.

CLOSED-LOOP SYSTEMS FOR
ANESTHETIC DELIVERY

Use of Computational Patient Models
Computational physiological models have been widely used to
design and evaluate closed-loop anesthetic delivery systems. The
systems control level of consciousness (Elkfafi et al., 1998; Bibian
et al., 2006a,b; Dumont et al., 2009; Hahn et al., 2012; Kharisov
et al., 2012; Merigo et al., 2017), analgesia (Gentilini et al., 2002;
Ionescu et al., 2014), neuromuscular blockade (Zhusubaliyev

et al., 2014; Almeida et al., 2017) or combinations of these goals
(Fang et al., 2014; Silva et al., 2014; Jin et al., 2018). Additionally a
series of studies designed closed-loop propofol delivery with the
specific aim of inducing and maintaining pharmacologic burst
suppression based on processed EEG signal (Liberman et al.,
2013; Westover et al., 2015). PCLC devices intended for control of
hypnosis delivered propofol and used feedback variables such as
bispectral index (BIS) (Kharisov et al., 2012; Merigo et al., 2017),
WAVcns (Dumont et al., 2009; Hahn et al., 2012), or auditory
evoked response (Elkfafi et al., 1998) to titrate anesthetic agents
including propofol and isoflurane. Some studies combined the
closed-loop delivery of hypnosis with analgesia leading to closed-
loop co-administration of propofol and remifentanil (Ionescu
et al., 2014; Jin et al., 2018). Neuromuscular blockade agents
such as rocuronium and atracurium were used and controlled
using feedback variables based on muscle movement (Silva et al.,
2015; Almeida et al., 2017) and in some studies combined with
closed-loop hypnosis delivery (Linkens and Mahfouf, 1992; Fang
et al., 2014; Silva et al., 2014). Gentilini et al. (2002) used
hemodynamic variables such as MAP and plasma concentration
to titrate drug delivery.

Most CPMs used for design and evaluation of closed-loop
anesthesia delivery systems have been derived using existing
PK/PD models for the anesthetic drug of interest. Fang et al.
(2014) constructed a library of widely used virtual subject models
after investigating and collecting numbers of reported patient
models for propofol, isoflurane, remifentanil, and atracurium
administration. They combined the model database with a
control algorithm database including PID control and model
predictive control while facilitating four control modes (manual,
automatic, switching from manual to automatic, and switching
from automatic to manual). This created an anesthesia simulation
platform imitating the clinical situation. A patient response
PK/PD model of hypnotic drug isoflurane was adopted in
Sreenivas et al. (2009) to generate, by varying the PK/PD
parameters, 16 representative patients selected to cover the
range of observed sensitivity from 972 patients. These 16
virtual patients were then used to evaluate and compare
performance, including robustness and stability for expected
surgical disturbances across six different controllers designed for
hypnosis regulation, using BIS as the controlled variable. Liu
and Northrop (1990) modeled patient perceived pain using a
PK model of fentanyl, a triexponential weight function, and a
steady state biochemical kinetic model. This was to represent
the relationship between brain tissue drug level and CNS
unbound opioid receptor ratio. They also used a relaxation pulse
frequency model to convert pain to button pressing frequency
(Liu and Northrop, 1990). This model was then used to assess
performance of four controller algorithms in the presence of
simulated patients with minimum, average, and maximum pain
sensitivity. Alongside real world data Méndez et al. (2016) used a
simulation to assess a fuzzy logic controller to regulate BIS using
propofol. Simulation of patient response was conducted using
a PK/PD model after choosing parameters to match real data
from patients undergoing similar surgery procedures and with
the same drugs as those used in the control experiments. Struys
et al. (2004) developed a simulation methodology to compare
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performance between multiple controllers to control BIS using
propofol. Virtual patients were generated using a computational
model which incorporated PK/PD modeling along with effect
relations modeling.

Nogueira et al. (2017) studied the performance of the
controller proposed in Nogueira et al. (2014) to regulate BIS
using propofol and remifentanil under the presence of model
parameter uncertainties and introduced a retuning strategy for
the model to recalibrate itself. Six simulated patients were
developed by setting parameters of the model based on the data
of real patient’s subjected to general anesthesia under propofol
and remifentanil manually controlled by an anesthetist. Dumont
et al. (2009) used PK/PD model results of a number of patients
from different groups to choose controller parameters to design
robust PID controllers and robust controllers based on fractional
calculus to regulate hypnotic state of anesthesia using intravenous
administration of propofol. Gentilini et al. (2002) used a PK-PD
model as a part of their controller to control MAP by controlling
analgesics. Puebla (2005) used a model (Gentilini et al., 2001) to
design a cascade controller to control end-tidal anesthetic agent
concentration in response to BIS sensor.

Mahfouf et al. (2003) published a series of studies using a
multivariable model of anesthesia that combined various models
obtained from classical PK/PD models, published literature,
and the authors own identification experiments (Linkens and
Mahfouf, 1992). These experiments involved collecting drug
infusion rates (inputs) and MAP (outputs), although it is unclear
if this was done on measured or simulated data. They used the
models to synthesize a model predictive controller that would
enable the next control action to be determined based on the
output of the models. Méndez et al. (2016) developed a fuzzy
model predictive controller based on fuzzy modeling of the
patient PK/PD response.

Westover et al. (2015) used Schinder’s PK/PD models of
propofol (Schnider et al., 1999; Schnider and Minto, 2008) to
construct a robust PID controller for maintenance of burst
suppression. The authors used an identification procedure to
determine subject-specific PD parameters in a rodent study.
PK variability was determined using published estimates of the
coefficient of variation in PK parameters. The approach was
similar to a series of studies in Bibian et al. (2006a,b), Dumont
et al. (2009), and Hahn et al. (2012) on closed-loop control
of hypnosis using propofol that leveraged classical PK models
of Schüttler and Ihmsen (2000) and classical modeling of PD
using the Hill equation. The authors used such models to build
controllers robust to parametric variability and disturbances.
Minto et al. (2000) and Jin et al. (2018) continued the work done
by Hahn et al. (2012) and designed a coordination controller that
recursively adjusts the reference targets based on the estimated
dose–response relationship of a patient using a classical PK/PD
model of propofol and remifentanil.

Silva et al. (2014, 2015) introduced a Wiener model consisting
of linear dynamics and a static non-linearity to characterize
the response (train-of-four – TOF) to neuromuscular blockade
drugs. The studies focused on developing minimal model for the
purpose of controller design. Almeida et al. (2017) used Silva’s
model presented in Silva et al. (2015) to design an adaptive

controller to titrate rocuronium and control muscle movement,
and Nogueira et al. (2017) used it to design a non-linear controller
for controlling depth of hypnosis by titrating propofol.

Kharisov et al. (2012, 2015) designed a model for the purpose
of designing a controller for automatic delivery of isoflurane
based on BIS. The model was developed using clinical trial data
collected in earlier studies (Lin et al., 2004; Beck et al., 2007;
Kramer et al., 2008). In Kharisov et al. (2012) a black-box model
was developed for the purpose of controller design, whereas in
Kharisov et al. (2015) the same clinical data were used to estimate
parameters of a gray-box linear time-invariant model structure
for controller design. Subspace identification methods were used
to construct models for six patients for the black box model
while for gray box modeling, explicit parameters representing
mean biases and an adaptive gain parameter capturing the time-
varying nature of patient tolerance to the anesthetic agents
were formulated.

Credibility Evidence
Numerous studies relied on established PK/PD relationships
previously reported for the drug of interest. Gentilini et al.
(2002) adopted a PK model with parameters from literature
and approximated the PD model with parameters based on
anesthesiologists knowledge and experience. A linear relationship
between MAP and effect site concentration was assumed, and
the gain for the PD relationship was determined based on expert
opinion. Qualitative and descriptive information of the model
were provided. Linkens and Mahfouf (1992) leveraged PK/PD
models from published literature combined with physiological
models of blood pressure. Parameters for the Atracurium
PK/PD model were taken from literature and measurements
in the operating theater. The hypnotic effect of isoflurane
was identified using published clinical data (Millard et al.,
1988a,b). Descriptive information for structure and formulation
of submodels (e.g., the isoflurane to muscle relaxation interaction
model) were limited. Mahfouf et al. (2003) used a circulatory
and inhalational anesthesia model structure previously reported
in literature with a blood pressure delay parameter from their
own previous work. They also combined the physiology model
with a model of anesthetic phase change (Mahfouf et al., 2003).
Unknown model parameters were identified using 400 points
from isoflurane delivery rate (input) and MAP (output) data with
a fit quantitatively evaluated using RMSE.

Liu and Northrop (1990) provided detailed description of the
model and source of calibration data. Model parameters were
fit so that the model output follows actual patient responses
reported in previous work. Struys used the Schnider PK model
and the PD model developed previously in their clinical work
(Gentilini et al., 2002; Struys et al., 2004). Ten virtual patients
were selected to represent different pharmacodynamic profiles
defined by drug effect site concentration and effect relation
combined with a delay parameter. The authors relied on their
previous work and published articles of Schnider to create the
virtual data (Gentilini et al., 2002). Similarly, Ionescu et al. (2014)
designed a model predictive controller using established PK/PD
models from Schnider and Minto (2008) along with their clinical
experience to obtain model parameters.
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Merigo et al. (2017) used the PK model with parameters from
Gentilini et al. (2002) held at nominal values. They identified the
PD parameters for the standard Hill equation. Elkfafi et al. (1998)
provide qualitative description of how the model was designed
to show the rate of change of depth of anesthesia with respect to
propofol infusion rate.

A number of studies (Bibian et al., 2006a,b; Dumont et al.,
2009; Hahn et al., 2012; Westover et al., 2015) have reported
the design and evaluation of robust controllers by considering
the variability associated with patient parameters for PK/PD
models reported in literature. The structure and form of the
compartmental PK and effect site PD models used in these studies
were reported. The range of PK model parameters were obtained
from published evidence while the PD model parameter ranges
were identified using clinical data in Bibian et al. (2006a,b),
Dumont et al. (2009), and Hahn et al. (2012) and animal data in
Westover et al. (2015). Credibility evidence included references
to previous studies.

Unlike previous studies that adopted classical PK/PD models,
Méndez et al. (2016) developed a model of propofol impact
on BIS using fuzzy modeling. Information on the form of the
fuzzy model and rules was provided. To develop the model,
experimental data from a clinical study that captured input
(propofol) and output (BIS) measurements was divided into two
training (15 patients) and validation (10 patients) sets. The fit of
the fuzzy model was reported as compared with compartmental
model for one patient, but it is unclear if this case represents a
calibration scenario or is from a separate independent validation
data set. Méndez et al. (2016) acknowledged that, because
of actual population variability and presence of disturbances
during surgery that may not have been captured in the model,
the controller performance in operating room could vary with
respect to the simulated results.

Silva et al. (2014, 2015) provided studies of identification
of NMB and hypnosis. Weiner models to be used for closed-
loop system design. The main emphasis of these studies was
to develop parsimonious models by lowering the model order
to make it amenable to controller design. Such models were
subsequently adopted in Teixeira et al. (2014); Almeida et al.
(2017), and Nogueira et al. (2017) for the purpose of controller
design. Original modeling studies by Da Silva et al. (2012)
mentioned validity of the previous model and note that the
current model needs to be modified for the current COU. They
reduced the model order by lumping the parameter values into a
single parameter.

Kharisov et al. (2015) provided a description of their model
and its formulation. Model parameters were estimated by
calibrating the model to previously conducted clinical data.
Portions of the patient’s data were selected during isoflurane
infusion to identify model parameters. The model was evaluated
using the same clinical trial data, and the output of the model
was reported for one patient. The model did not appear to
follow the experimental data beyond the portions in which
calibration was performed. It appears that the segmentation and
selection of intervals for parameter identification was based on
the COU of the model which was to be used for BIS levels
below 70. The model predictive capability was not evaluated on
independent data that did not take part in parameter estimation.

In Kharisov et al. (2012), the authors provided a description of
the model and formulation. The fit of the calibrated model was
quantitatively evaluated on the same clinical data and the authors
determined that the fit achieved was “acceptable” for their COU.

DISCUSSION

By harnessing the power of model-based design and evaluation, it
is possible to perform rigorous stress testing of PCLC controllers
to study the system behavior under challenging functional
and clinical scenarios. Advantages and benefits of model-based
design and evaluation will become more pronounced as system
complexity continues to grow. The future of automated critical
care may include not only closed-loop control of a single
physiological variable but simultaneous control of multiple
physiological variables from independent devices (Bracco, 2011).
These controllers will need to work in tandem to maintain the
patient in a stable physiologic condition. There is a possibility,
however, that the controllers may adversely affect one other,
potentially creating hazardous conditions for the patient. Model-
based design and evaluation has the versatility to quantitatively
and systematically (i.e., in a modular approach) assess the
potential impact of each controller on patient physiology and
elucidate and properly mitigate potential risky conditions in
which the controller(s) may fail or malfunction. However,
the increased complexity in the control systems will require
increasingly complex and sufficiently accurate patient models,
and thus mechanisms to assess model credibility will need to
be more rigorously employed. We identified several uses for
CPMs in the design and evaluation of PCLC systems ranging
from systematic design of controllers and control law, as part
of the controller (e.g., model predictive control), evaluating
controller performance to different patient responses, evaluating
controller performance to changing responses over time, and
integrating with the PCLC physical system to assess real-time
performance and implementation of safety supervisory modes.
We further provide a review of the credibility evidence provided
to support a broad range of those uses and will discuss the ASME
V&V 40 framework.

Modeling for Systematic and Iterative
Design
Computational patient models used for design purposes may
be termed “control oriented” or “control relevant” models
characterized by low order, parsimonious in parameters, and
linearizable models to enhance controllability and observability
(Silva et al., 2015, 2017; Kim et al., 2016). They are generally
used to synthesize a controller around an operating point
and may not be applicable to a broad range of clinical (e.g.,
patient variability) and functional (e.g., noise disturbance)
uncertainties. With this COU, CPMs are used with varying
degrees of influence on controller function. For example,
CPMs may be used for tuning PID controller gains (Westover
et al., 2015), to inform the next action and set point of
a controller (e.g., adaptive and model predictive controllers)
(Malagutti et al., 2013) or to synthesize controllers robust against
uncertain conditions (Dumont et al., 2009; Hahn et al., 2012).
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Establishing the credibility of the CPMs for such uses may include
evaluating qualitative (e.g., model order, simplicity, transparency)
and quantitative (e.g., linearizability, identifiability, predictive
accuracy) characteristics. However, the rigor of these activities
may vary. For example, a model predictive controller may need
more rigor in validation evidence as compared to a conventional
PID controller due to influence of the model on controller output.

Modeling for Evaluation of Controller
Designs
Although controllers are constantly evaluated in an iterative
manner to enhance design, CPMs may also be used for final
evaluation of controllers to inform risk analysis. Such evaluation
may be conducted either completely in silico (Kovatchev et al.,
2009; Parvinian et al., 2018) or using a physical system integrated
with the computational model (Parvinian et al., 2018) (Figure 1).
This COU for the CPM requires them to represent a broad
range of clinical and functional scenarios to be able to stress-
test the controllers. The CPMs used for this context generally
are more complex (i.e., have higher order and more parameters)
compared to models used for systematic design of controllers.
The credibility-related requirements for this COU overlap to
some degree with those used for the design. For example, in both
cases the models are expected to have identifiable parameters
and model predictive accuracy. However, in the case of models
used for final evaluation the rigor for each credibility factor may
be higher due to the influence of the model on decision and
decision consequences.

Few of the studies in both engineering and physiology fields
included in this review have rigorously tackled the fundamental
question of what makes a model sufficiently credible for a
specific task in the design and evaluation of PCLC systems.
With regards to evidence needed to assess credibility, we
found a broad spectrum in the type and rigor of credibility
evidence presented for CPMs, but there was no clear link
between how the CPMs were used and the rigor and extent
of the credibility evidence. The evidence ranged from mostly
qualitative descriptive information and in some cases quantitative
assessment of the model performance, although it is not always
clear if this was performed on independent data or calibration
data. The authors usually did not report on how the decision was
made about the type and rigor of the credibility evidence needed
to support the CPM and typically the details of such evidence
were limited. Our review of CPMs for the COU of designing
controllers indicates that most studies focus on developing
and using simplified models through lumping of parameters
and model order reduction in order to enhance feasibility of
controller synthesis. In other words, most studies focused on
whether a controller can be designed and not whether it should
be designed using the investigated CPM. The degree to which
quantitative credibility-related requirements such as predictive
accuracy were considered is unclear for various applications in
anesthesia, mechanical ventilation, and hemodynamic stability
articles reviewed.

While most of the studies presented some qualitative
assessment of model output, the application of more formal

assessment techniques that provide systematic and quantitative
information about the model performance, such as sensitivity
analyses, uncertainty quantification, and comparisons to
independent experimental data to assess the predictive capability
of the model was limited.

Role of Uncertainty Quantification in
PCLC Design and Evaluation
A significant model attribute affecting credibility of models
used for both systematic design and evaluation of PCLC
controllers is the ability of the model to capture interpatient
and intra patient variability as well as variability in disturbance
scenarios experienced by critical care patients. This variability
inherently establishes merit for using a closed loop system
to account for the effect of variability and disturbances on
the system output and transfer it to the manipulated variable.
Adequate characterization and quantification of uncertainty
for an application can therefore result in much more robust
controller design and more meaningful controller evaluation
methods. Recently some of these challenges related to uncertainty
in patient and system response to disturbances have formed the
impetus for synthesizing PCLC controllers based on modern
control synthesis methods based on robust control theory (Bibian
et al., 2006a,b; Dumont et al., 2009). While this type of controller
presents a powerful tool with the potential to guarantee that
control specifications such as stability and robustness are met,
the models used in such methods need to produce clinically
relevant and widely variable disturbance scenarios. Furthermore,
uncertainty due to oversimplifying assumptions embedded in
a CPM need to be considered. For robust control applications
(Dumont et al., 2009; Westover et al., 2015), overall model
uncertainty and the uncertainty bounds must be quantified and
validated for model based design and evaluation. In medicine,
such bounds will be a function of the patient population, patient
characteristics, type of procedure, amount of drug infused, drug
co-administration, and concomitant therapies.

Another method of handling inter-patient/intra-patient
variability has been to design model predictive controllers
(Mahfouf et al., 2003; Méndez et al., 2016). In this context, the
model used for design of controllers is not static (as is the case
with robust control). The model directly affects the outcome of
the controller as it is part of it. For example, in model predictive
control of anesthesia, a forecast of the output is communicated
to the controller based on a mathematical model (Mahfouf
et al., 2003). As such the credibility evidence needed to establish
validation and uncertainty quantification of such models for this
COU may require greater rigor due to the consequence of model
output on the control function.

The issue of modeling uncertainty in anesthesia and critical
care environment specifically is further complicated by multi-
endpoint nature of therapy. For example, delivery of anesthesia
is inherently a multiple-input-multiple-output system consisting
of hypnosis, analgesia, and NMB (Beck, 2015). Most PK/PD
models are designed for single input system and do not
account for potential drug interactions. Furthermore PK/PD
models are empirical and lack mechanistic insight into the
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physiological systems affecting the response. For example
the pharmacodynamic parameter that represents sigmodicity
of the effect does not have physiological relevance (Beck,
2015). This may complicate parameter uncertainty quantification
particularly for designing controllers to maintain and adjust
physiological endpoints such as respiratory rate, cardiac output,
and mean arterial pressure. This challenge is likely to surface
when PCLC devices intended for anesthesia are designed to work
in tandem with, for example, PCLC mechanical ventilation and
hemodynamic stability devices.

Previous Work on Computational
Physiological Model Validation
There are a number of contributors who helped lay the
foundation for validation of physiological models. Cobelli et al.
(1984) introduced a validation process for simple and complex
physiological models. Simple models were regarded as those
with plausibility of performing classical identification procedures
whereas complex models were those with numerous parameters
that made system identification and parameter estimation not
possible. Their work outlines fundamental concepts to address
credibility of models. They introduced concepts of model
internal consistency, algorithmic validity, and external validity
concepts such as empirical, theoretical, heuristics, and pragmatic
validity. They also provide a step by step procedure for testing
validity of simple models by first examining identifiability
properties, followed by the goodness of fit, analysis of residual
errors, and, finally, overall plausibility of model attributes
(e.g., parameter, structure, behavior). For complex (and simple)
models with unidentifiable parameters and for models with a
small number of variables accessible for direct measurement, they
recommend first employing model simplification, decomposition
of a complex model into simpler sub-models, and improving
experimental design/testability of the model, followed by
performing adaptive fitting and finally checking for model
plausibility. Batzel et al. (2009) provided steps for model
validation including classical and generalized sensitivity analysis,
subset selection, evaluation of local characteristic of parameter
estimation process, experimental design and data quality checks,
and global analysis. Summers et al. (2009) also recognized
that whenever possible, model outputs should be compared
with experimental outcomes for more consequential conclusions
about model validity. They summarized three criteria for
supporting the validation of large-scale integrated physiological
models including a qualitative assessment of changes in the
model output and a quantitative assessment of the steady-
state and dynamic response of the model, while noting that
these activities should be performed considering the clinical
COU of the model (Summers et al., 2009; Hester et al., 2011).
Some recent articles proposed systematic assessment methods
relevant to physiological models and these two in particular
discuss the importance of identifying and, when possible,
quantifying uncertainty (Friedrich, 2016; Patterson and Whelan,
2017). While these frameworks present different methods for
performing validation and assessing model performance, they
do not present a method for determining the level of rigor

or the extent of the evidence needed to determine that the
model is sufficiently credible for a specific COU. Therefore, to
complement the foundation studies, we present an overview of
a new consensus standard from the subcommittee ASME V&V
40. The standard presents a risk-informed credibility assessment
framework developed by a broad range of stakeholders in the
medical device industry (ASME, 2018).

ASME V&V 40 Framework
The framework presented in the ASME V&V 40 Standard builds
upon established V&V methodologies and does not present a
step-by-step guide on how to perform V&V; rather it guides
the user (see Figure 2) to determine the necessary rigor of the
V&V activities to deem the model credible for a COU. Thus,
the framework begins with the user defining the question(s) of
interest, which includes identifying a decision to be made, and the
COU, a statement that describes the specific role and scope of the
computational model. The level of rigor of the V&V is driven by
model risk, the possibility that using the computational model to
inform a decision can result in undesirable effects, such as patient
harm. The main tenant of the V&V 40 framework is that the level
of credibility required is commensurate with model risk. Model
risk is determined by assessing both the influence of the model
on the question of interest as compared to the other available
evidence, and the decision consequence, which is the potential
outcome of an incorrect decision. It is important for the user of
the framework to carefully consider these two aspects of model
risk, because once model risk is established for a COU it is used
to drive the selection of credibility goals for the activities to be
performed to establish model credibility.

The risk-informed credibility assessment framework provides
a means to determine the level of credibility needed, and the
associated activities, to support the computational model for a
COU. The mechanism that drives credibility determination is
13 ‘credibility factors,’ which define different steps in the V&V
process. As discussed above, the general V&V process includes
verification, validation and applicability analysis. These are well
defined in other documents, such as the NASA standard for
model credibility assessment (Administration NAAS, 2013) and
a Sandia National Laboratories report (Oberkampf et al., 2007).
The V&V 40 framework breaks down verification, validation, and
applicability analysis into more discrete steps. For example, in
the process of validation, it is critical to examine the details of
the experimental comparator as well as the computational model.
Therefore, the credibility factors for validation include: “model
form” and “model inputs” for the computational model, and “test
samples” and “test conditions” for the experimental comparator.
For the computational model, the credibility factors assess the
rigor of the sensitivity analysis and uncertainty quantification
performed and for which parameters these should be performed.
With respect to the experimental comparator, which can be
data from bench, animal, or clinical experiments, the two
credibility factors assess the samples on which the experiments
are performed, the quantity of samples, the conditions under
which the experiments are performed, and the variety and
variability of those experiments, along with the assessment and
quantification of experimental uncertainty. Furthermore, for
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FIGURE 2 | Process diagram of the ASME V&V 40 risk-informed credibility assessment framework. Modified from Morrison et al. (2017).

FIGURE 3 | Workflow for generating evidence computational patient models during development of a physiological closed-loop controlled medical device using. The
process begins with considering the question of interest (Box 1) that the computational patient model will be used to address. Next are the design of the
computational test setup (Box 2) as well as establishment of the computational patient model credibility goals (Box 3). These are used to determine the evidence
needed to support the use of the computational patient model (Box 4) for the particular question of interest. The evidence supporting the computational patient
model credibility can be used to interpret the evidence from the computational device testing.

validation is a credibility factor that involves the assessment
of the nature and types of comparison between the outputs
from the computational model and the experimental comparator
(i.e., qualitative or quantitative), along with the level of
agreement between computational model and experimental data.
The level of agreement is an outcome from the comparison;
whether the level of agreement is sufficient is linked to the
requirements for the COU.

Finally, there are two credibility factors related to applicability
analysis, the relevance of the validation activities to the COU,
and the relevance of the model outputs that were validated to the
model outputs used in the COU.

The V&V 40 framework requires that a credibility goal
be defined for each credibility factor, ideally before data are
collected. After establishing credibility goals, activities to achieve
the credibility goals are planned and then executed to gather the
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V&V evidence (see Figure 2). Other pertinent information that
supports credibility may include historical evidence of the model
predictive ability for other COUs. It is then assessed whether
the credibility goals were met, i.e., that the model is sufficiently
credible for the COU. If the credibility goals are not achieved,
then the COU or aspects of the model can be changed (e.g., to
reduce the model risk and therefore the credibility requirements),
or additional V&V activities can be performed. The final stage is
to document the findings and include the rationale to support
the assumptions and credibility goals for using the model in
the proposed COU.

The ASME V&V 40 framework can serve as a guide for
using CPMs in a variety of research roles such as hypothesis
generation. The primary question of how it applies to questions
such as generating hypotheses for future experimental studies
comes to how risks associated with inaccurate predictions in
these scenarios are evaluated. In these scenarios, the model will
typically be responsible for 100% of the decision made, but the
decision consequence of an inaccurate prediction comes in terms
of wasted experimental time and cost rather than patient safety,
as we are considering in the current work. Depending on how
a researcher values the risks associated with the hypothesis they
will test, they can use those risks to determine credibility goals
and follow the V&V 40 framework accordingly. They could also
use the approach to determine what might be necessary for using
that same model for potential future uses as well by reviewing
each credibility factor. This may lead to better planning of future
studies and the information that it will be necessary to gather to
support the CPM.

Application of V&V 40 to Computational
Patient Models for Testing PCLC Medical
Devices
A simplified representation of how the V&V 40 framework
may apply to the use of CPMs in PCLC testing is presented
in Figure 3. The first steps of the V&V 40 framework are to
define the question of interest and the COU of the physiological
model. Box 1 of Figure 3 highlights several COUs we identified
that computational testing has been used for in the design
and evaluation of PCLC devices. These include confirming
the performance of supervisory systems and fallback modes in
the presence of known disturbances (Martin et al., 1992) and
assessing the controller performance to maintain a physiological
variable within a certain range under a range of patient conditions
(Bighamian et al., 2016). These two COUs may not require the
same CPM or the same levels of evidence demonstrating CPM
performance, as discussed in our recent case study examining
how the ASME V&V 40 framework could be applied to evaluating
automated fluid resuscitation systems (Scully et al., 2018). When
assessing the system against disturbances, a simple model of
the physiological system may be sufficient, but the realism of
the different disturbance modes (such as signal noise in an
arterial pressure waveform) will impact the credibility of the
testing results. When representing a range of patient conditions,
a more complex CPM may be needed resulting in assessment
of the CPM across the range of physiologic conditions used for

testing to ensure that the model produces realistic and expected
results. These specific requirements should consider the question
of interest being addressed (Box 3 in Figure 3). The V&V
40 framework requires an analysis of the risk associated with
relying on the modeling results. For example, if test results from
comprehensive animal studies are used alongside computational
results to answer the question of interest, the influence of the
model is lower and thus the credibility requirements may be
lower. Alternatively, if results from computational testing alone
will be used to make a high consequence decision, such as
identifying a patient population a PCLC system is expected to
safely be applied to in a clinical study, the credibility requirements
for the model are expected to be higher.

In many of the articles reviewed, the CPM was used for both
design and evaluation of controllers. Such overlapping roles for
models with two distinctly different contexts of use requires the
model to have credibility evidence for both uses. For example,
the model needs to be simple and transparent enough to lend
itself to controller design and at the same time be comprehensive
enough to include the uncertainty and frequently occurring
disturbances experienced by the patient and system. As models
for design of controllers are often linearized, using the same
model to challenge the controller and evaluate its safety may not
be meaningful since the physiological process that the controller
will be faced with is likely highly non-linear. Table 2 provides
examples of how use of a computational model for design and
evaluation may lead to different credibility goals when following
the credibility framework.

One credibility factor assessed within the V&V 40 framework
is the model form, that is, the overall structure of the model
including the specific equations used. For a CPM, this includes
the physiological systems, dynamic properties, and interactions
between physiological systems that are modeled, together with
the equations used to model those systems, properties and
interactions. It may also include whether non-linearity or time-
variance in parameters are considered. Much of this information
may be supported by existing knowledge of physiology. The
specific questions of the controller that will be addressed should
be considered when determining the systems and properties
important to the model. Uncertainty in the model form may
come from physiological systems that are not modeled but known
to interact with the system of interest, higher order dynamics
that may have been linearized or simplified in the model, time-
varying changes associated with physiological conditions or
treatments, or stochastic properties in natural systems. Because
of the myriad of possibilities that may influence the uncertainty
of the model form, validation evidence comparing modeling
results to independent experimental data to support that the
model behaves as expected is a critical component of previous
computational physiological model validation strategies (Cobelli
et al., 1984; Hester et al., 2011). When developing credibility goals
to support a specific use of a model, one should consider how
these attributes may affect the specific testing results.

Model inputs is another credibility factor in the V&V 40
framework. For CPMs, this include parameters determining
the physiological properties of the modeled systems, initial
conditions, boundary conditions, and any external conditions
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including those provided by the PCLC device. When using
a CPM to assess inter-patient variability, the range of initial
conditions that the model produces valid results for should be
established. The selection of parameters their sensitivity may
impact the CPM. Parameter uncertainty during calibration or
any data-driven fitting process may need to be evaluated. Initial
conditions that may need to be considered include the current
physiological state of the patient that may be affected by the
amount of drug already given to the patient at the start of
closed-loop therapy, for example. For closed-loop devices that are
applied while patient physiological and clinical conditions may
be changing, the loading conditions (disturbances) of the model
and simulation need to be considered in relation to the dynamics
of the system. For example, if system identification techniques
are used to develop a data-driven model from experiments
with a known input (e.g., a fixed hemorrhage followed by
constant infusion of fluids), the performance of the model under
different input conditions may not be captured (Bighamian et al.,
2018). This could result in the need to compare the model to
a variety of experimental conditions that are expected in the
clinical scenario.

The final credibility factor considered here is the applicability
of the V&V activities to the COU. In general, there are
differences between how a model is validated and how it will
be used (Pathmanathan et al., 2017), and for CPMs these
differences can be considerable. For CPM with COUs geared
toward PCLC testing, this may include species differences if
animal experiments are used to validate the CPMs that will
then be used for human physiology, or differences in patient
populations if, for example, a healthy volunteer study is used
to validate a model used to test a device that will be used
on critically ill patients. Another difference might be the
timescale of the validation tests as compared to the COU
simulations. For example, validation tests that occur over a
short time period may not adequately test whether the model
replicates slow or delayed physiological changes that could be
important in the COU simulations. Therefore, additional support
can aid in establishing credibility of COU predictions given
these differences between the validation and COU settings.
For example, this may include physiological justification that
validation using animal experiments is sufficient, considering the
known differences of that species with humans. Other laboratory,
clinical and experimental conditions can be contrasted to how the
PCLC device will be used.

CONCLUSION

Given the large body of work to advance control technology in
other fields, the challenge for advancing PCLC medical devices

in critical care medicine may not come from the availability of
control strategies but instead result from sufficient understanding
and modeling of patient physiology. There are fundamental
questions with regards to the rigor of credibility evidence that
need to be addressed to validate CPMs for design and evaluation
of PCLC devices. With well-characterized and credible models,
model-based strategies can be applied to design, iterate, and
evaluate PCLC devices. Current evidence for demonstrating that
a model is credible in PCLC development varies considerably,
and rationales linking the evidence supporting a model
for a specific use are limited in scope and presentation.
Presenting this evidence, ideally by following a pre-specified
framework, can aid in establishing the credibility of PCLC
testing with CPMs.
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