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University of Belgrade, Serbia

Reviewed by:
Andreas Voss,

Institut für Innovative
Gesundheitstechnologien (IGHT),

Germany
Antonio Roberto Zamunér,

Catholic University of the Maule, Chile

*Correspondence:
Solveig Vieluf

vieluf@sportmed.upb.de

Specialty section:
This article was submitted to

Autonomic Neuroscience,
a section of the journal
Frontiers in Physiology

Received: 09 September 2018
Accepted: 25 February 2019

Published: 29 March 2019

Citation:
Vieluf S, Hasija T, Jakobsmeyer R,

Schreier PJ and Reinsberger C (2019)
Exercise-Induced Changes

of Multimodal Interactions Within
the Autonomic Nervous Network.

Front. Physiol. 10:240.
doi: 10.3389/fphys.2019.00240

Exercise-Induced Changes of
Multimodal Interactions Within the
Autonomic Nervous Network
Solveig Vieluf1* , Tanuj Hasija2, Rasmus Jakobsmeyer1, Peter J. Schreier2 and
Claus Reinsberger1

1 Institute of Sports Medicine, University of Paderborn, Paderborn, Germany, 2 Signal and System Theory Group, University
of Paderborn, Paderborn, Germany

Physical exercise has been shown to modulate activity within the autonomic nervous
system (ANS). Considering physical exercise as a holistic stimulus on the nervous
system and specifically the ANS, uni- and multimodal analysis tools were applied to
characterize centrally driven interactions and control of ANS functions. Nineteen young
and physically active participants performed treadmill tests at individually determined
moderate and high intensities. Continuous electrodermal activity (EDA), heart rate (HR),
and skin temperature at wrist (Temp) were recorded by wireless multisensor devices
(Empatica R© E4, Milan, Italy) before and 30 min after exercise. Artifact-free continuous
3 min intervals were analyzed. For unimodal analysis, mean values were calculated, for
bimodal and multimodal analysis canonical correlation analysis (CCA) was performed.
Unimodal results indicate that physical exercise affects ANS activity. More specifically,
Temp increased due to physical activity (moderate intensity: from 34.15◦C to 35.34◦C
and high intensity: from 34.11◦C to 35.09◦C). HR increased more for the high (from
60.76 bpm to 79.89 bpm) than for the moderate (from 64.81 bpm to 70.83 bpm)
intensity. EDA was higher for the high (pre: 8.06 µS and post: 9.37 µS) than for the
moderate (pre: 4.31 µS and post: 3.91 µS) intensity. Bimodal analyses revealed high
variations in correlations before exercise. The overall correlation coefficient showed
varying correlations in pretest measures for all modality pairs (EDA-HR, HR-Temp, Temp-
EDA at moderate: 0.831, 0.998, 0.921 and high: 0.706, 0, 0.578). After exercising
at moderate intensity coefficients changed little (0.828, 0.744, 0.994), but increased
substantially for all modality pairs after exercising at high intensity (0.976, 0.898,
0.926). Multimodal analysis confirmed bimodal results. Exercise-induced changes in
ANS activity can be found in multiple ANS modalities as well as in their interactions.
Those changes are intensity-specific: with higher intensity the interactions increase.
Canonical correlations between different ANS modalities may therefore offer a feasible
approach to determine exercise induced modulations of ANS activity.

Keywords: canonical correlation analysis, multimodal approach, electrodermal activity, heart rate, temperature
regulation, physical activity, autonomic nervous system

Abbreviations: ANS, autonomic nervous system; BVP, blood volume pulse; CAN, central autonomic network; CCA,
canonical correlation analysis; ECG, electrocardiogram; EDA, electrodermal activity; HR, heart rate; mCCA, multiset
CCA; PCA, principal component analysis; SC, source component; Temp, skin temperature at wrist; VO2max, maximal
oxygen consumption.
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INTRODUCTION

Complex functionality of the autonomic nervous system
(ANS) is achieved by task-specific modulation of the
organization of several organ-specific subnetworks as well
as their interrelation (Jänig, 2006; Shaffer et al., 2014). Organ-
specific regulative mechanisms of ANS, like heart-rate (HR)
control or electrodermal activity (EDA), are integrated via a
via a central autonomic network (CAN). The CAN consists
of a network of cortical structures, such as left amygdala,
right anterior and left posterior insula, and midcingulate
cortices and subcortical structures (which form the “core” of
the ANS control network), such as thalamus and brainstem
(Beissner et al., 2013; Critchley and Harrison, 2013; Macey
et al., 2016). ANS activity is therefore characterized by a
finely coordinated interplay between activation, mediated
by sympathetic modulation, and inhibition, mediated by
parasympathetic modulation, for nearly all organs and body
systems. Usually, i.e., within one organ-specific subsystem,
sympathetic and parasympathetic activity are antagonistic but
rely on intact central regulation and are subject to high day-
to-day variations with poor systematics (Bellenger et al., 2017).
More systematic central alterations of the CAN due to specific
stressors like physical exercise may perturb organ functions
(Tulppo et al., 2011) and thus alter ANS activity. Indeed, the
interactions across several ANS subsystems are indicative of
various ANS states (Bartsch et al., 2015; Schulz et al., 2016).
Therefore, the analysis of the interrelation of subsystems of the
ANS in addition to analyzing changes within each subsystem
may provide additional insights into alteration of ANS control to
physical exercise.

In the context of sports and exercise, the best described
subsystem of ANS is the cardiac autonomic control. HR is a direct
result of sympathetic and parasympathetic influences on the heart
(Achten and Jeukendrup, 2003; Buchheit, 2014; Bellenger et al.,
2017). Besides changes in the cardiac system, changes in the
electrodermal and the thermoregulatory system have also been
described. Due to its unique neurotransmitters (acetylcholine is
used pre- and postganglionically) EDA represents sympathetic
activity that is mediated by sympathetically stimulated eccrine
sweat glands, which is linked to arousal and other stimuli
(Boucsein, 2012). Moreover, skin temperature represents an
additional easily obtainable parameter that is involved in
thermoregulatory sympathetic processes in the ANS (Venables,
1991; Yoshihara et al., 2016). In general, regulation of ANS
activity depends on a variety of factors (e.g., age and gender,
psychology, circadian rhythm, etc.) resulting in high inter- and
intraindividual variability (Al Haddad et al., 2011; Bellenger
et al., 2017). As a consequence, ANS parameters have high
sensitivity but poor specificity. Based on these findings, physical
exercise might affect all subsystems of the ANS including their
control, and therefore multimodal or multifaceted consideration
of ANS subnetworks by assessing various organs and combining
parasympathetic and sympathetic parameters may help generate
additional insights into regulative processes in the CAN.

Besides the type of exercise, intensity is decisive for the
strength of effects on regulative function in ANS, e.g., the

balance between parasympathetic and sympathetic activity
(Borresen and Lambert, 2008). For example, HR increases
depend on exercise intensity (Seiler et al., 2007; Borresen
and Lambert, 2008; Al Haddad et al., 2011). This effect is
described during and right after exercise. However, sports
and exercise-related effects also occur long-term, resembling
adaptations to chronic stimuli. Focusing on the time scale
of effects on ANS regulation during and in the context
of exercise, a differentiation in acute (minutes to hours)
and probably long-term effects (month and years following
exercise) might be appropriate (Task Force of The European
Society of Cardiology and The North American Society of
Pacing and Electrophysiology, 1996). Changes within the
cardiac autonomic balance depend on exercise intensity,
while higher intensity was associated with post-exercise
changes in autonomic balance indicating sympathetic
predominance (Parekh and Lee, 2005; James et al., 2012;
Esco et al., 2015). However, a combined analysis of exercise-
induced effects in different ANS subsystems or modalities
is rare. Boettger et al. (2010) reported changes of heart
rate variability (HRV) and EDA in a study on incremental
exercise levels and reported correlations between EDA and
cardiac measures for low exercise intensities. Nevertheless,
systematic approaches to analyze multimodal measures
are still missing.

In this study, we aimed at detecting exercise-induced changes
within different ANS subsystems and the change of their
interactions after physical exercise. We selected HR, EDA,
and skin temperature (Temp) as relevant measures of ANS
subnetworks because physiological mechanisms as well as
practical applications are well described within each subsystem.
Also, all subnetworks are interrelated on different timescales.
Further, they show a high practical relevance in the field
of sports and exercise, and they are easy to measure. As
physical activity induces sympathetic stress to the ANS, we
assumed that for unimodal measures of EDA, HR, and Temp,
the mean level increases in the acute setting. Further, we
assumed that this effect becomes stronger with increasing
intensity of the exercise. As cross-modal correlations might
allow inferring CAN activity, we added analysis of multimodal
interactions to unimodal analysis. For this multimodal analysis
we expected that interrelations change from pre- to posttest.
To analyze multimodal interactions among different ANS
measures, we employed canonical correlation analysis (CCA)
and multiset CCA (mCCA). These two techniques have
been widely applied in numerous fields to study linear
dependence among data sets (Hotelling, 1936; Thompson,
1984; Correa et al., 2010). However, the results obtained
from these techniques are misleading when the number of
observations (in this study, the number of participants) is
small compared to the dimensions of the data sets (in this
study, the number of time points in the recorded ANS time
series) (Pezeshki et al., 2004). To overcome this challenge,
we apply a technique specifically developed for this setting
to reliably determine the number of correlated components
and their correlation strengths among different ANS measures
(Song et al., 2016).
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TABLE 1 | Characteristics of participants included in the final sample.

Age in
years

Height
in cm

Weight
in kg

velocity at
60%

VO2max

velocity at
95%

VO2max

VO2max

Mean 24.16 183.68 79.18 9.54 15.11 48.84

SD 2.89 5.98 10.84 1.18 1.87 7.57

MATERIALS AND METHODS

Participants
Data of 5 min recordings during rest before and after exercise
from 24 male students were recorded (see Table 1 for detailed
characteristics of final sample). All participants were examined by
an experienced sports physician (including resting and exercise
ECG) and found healthy without limitation on physical exercise.

Experimental Procedure
The study protocol was approved by the ethics committee
of the Medical Board Westphalia-Lippe and Muenster
University (2016-229-f-S; ANS-profile) and determined to
be in agreement with the Declaration of Helsinki. Written
informed consent was obtained from all participants prior to
enrolment in the study.

Subjects participated in 6 treadmill tests (Figure 1). The
initial appointment was used for the medical exam (including
resting and exercise ECG) and determination of aerobic fitness
VO2max (MetaLyzer 3B, Cortex Biophysik GmbH, Leipzig,
Germany) by a step protocol (start at 6 km/h with an
increase of 2 km/h every 3 min) on a treadmill (HP Cosmos
Pulsar 3P, Nussdorf – Traunstein, Germany). Based on the
results from this appointment individual running intensities
for 60% (moderate), 85%, and 95% VO2max (high) were
calculated. 60% VO2max is defined as the transition zone
between aerobic and anaerobic energy supply, which corresponds
to the first ventilatory threshold and therefore represents
moderate intensity (Scharhag-Rosenberger and Schommer,
2013). Furthermore, the intensity zone between 50 and 60%
VO2max is characterized by regulative influences switching from
parasympathetic to sympathetic dominance (Tulppo et al., 1998).
85% VO2max corresponds to the second ventilatory threshold
(respiratory compensation point) and is therefore defined as
high intensity at steady state. Based on observations during

the tests, we concluded that the 85% intensity was perceived
and performed very differently by the participants. This was
confirmed by different durations during the test, subjective
rating of exhaustion (Borg scale) and results. Therefore, we
present the results in the Supplementary Material only (see
Supplementary Table 1).

Ninety-five percentage VO2max is defined as high demanding
intensity close to maximum load but at least performable
over a longer period of time (Scharhag-Rosenberger, 2010).
Appointments two and three were used to familiarize the
participants with the procedure of ANS diagnostics and treadmill
running at an individual intensity at moderate speed.

In the following three appointments individual running at
the three predefined intensities, in the same order of 60, 85,
and then 95% for all participants, for a maximum of 20 min
was performed. Prior to all appointments, a warm-up phase
of 5 min was executed. At least 48 h of rest was required
between appointments. To standardize for circadian rhythmic,
we chose the same time of measurement for all appointments of
an individual subject.

ANS signals were recorded by wireless multisensor devices
(Empatica R© E4, Milan, Italy). The sensor was placed at the
participants’ left wrists. Successive data series of HR (sampling
rate 1 Hz), EDA (sampling rate 4 Hz), as well as Temp
(sampling rate 4 Hz) at the wrist were acquired during 5 min in
supine position prior to exercise and 30 min post exercise. We
selected 30 min post exercise to account individual time needed
for cool down, exudation, and taking a shower to minimize
thermoregulatory adaptions. Based on personal conversation
with our subjects all had a shower at pleasant water temperatures,
nobody showered specifically hot or cold.

Data Analysis
Data analysis was performed using Matlab (R2017a, The
MathWorks Inc., Natick, Massachusetts, United States).
From each measurement a time window of three continuous
minutes were manually selected to control for data quality
and avoid movement artifacts. Based on data quality, 5
participants were excluded from further analysis, either
due to loss of sensor connection, an incomplete HR
recording, or lack of a movement-free segment. HR data
was derived from the standardized manufacture software
and was based on blood volume pulse (BVP) data and
inter-beat-interval estimation (Garbarino et al., 2014). Raw

FIGURE 1 | Visualization of the experimental procedure. Appointments were at least 48 h apart and took place at the same time for each participant.
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data of the EDA signal were detrended, low-pass-filtered
(butterworth filter 4th order with cut of frequency of 0.4 Hz)
and smoothed (by using a moving average filter with the
factor 9). Rejection of artifacts was performed manually for
EDA. The rejected part was replaced by cubic, spline, or
linear interpolation based on visual inspection according
to the development of the EDA signal. Temp data was
smoothed (factor 4).

For the unimodal analysis, mean Temp, mean EDA, and mean
HR were calculated for each pre- and post-exercise segment.
Statistical analysis was performed with SPSS (IBM, Version
22). Pre-Post (2; pre, post) × Intensity (2; moderate, high)
repeated measures ANOVAs were conducted. Effect sizes were
reported as partial Eta squares (ηp

2). Whenever sphericity was
violated, Greenhouse-Geisser correction was applied. The level of
significance was set at 5%. If sphericity was violated, Greenhouse-
Geisser corrected p-values were reported. Significant effects were
followed by Bonferroni-corrected pairwise comparisons.

CCA and mCCA were used to analyze bimodal and
multimodal interactions between EDA, HR, and Temp data
sets (Hotelling, 1936; Kettenring, 1971). The data sets for each
modality were generated such that the recorded times series from
each subject forms a column of the data matrix. Thus, the size of
the data matrix for each modality is the number of time points
times the number of participants.

Canonical correlation analysis linearly transforms the data
sets and determines the so-called canonical correlations that
measure the strength of linear association between the two
data sets. These canonical correlations are normalized between
0 and 1 and ranked in decreasing order of their values.
A canonical correlation equal to 1 indicates that a component
in a data set is perfectly correlated with another component
in the other data set, whereas a canonical correlation of 0
indicates an uncorrelated component. Therefore, the number of
nonzero canonical correlations, r, represents the dimension of
the correlated subspace or simply the number of components
correlated between the two data sets. However, for this work,
not only the number of correlated components but also their
strength of correlation is interesting. This can be measured
with an overall correlation coefficient, ρc (Schreier and Scharf,
2010), which can be computed as a function of the nonzero r
canonical correlations as

ρc = 1−
∏r

i=1

(
1− k2

i
)
,

where ki denotes the ith canonical correlation. This overall
correlation coefficient also relates to the mutual information
between the two data sets if the two data sets were Gaussian
distributed. Thus, high values of ρc may be interpreted to mean
that the two data sets share more information.

The canonical correlations can be computed in closed form
using the auto- and cross-covariance matrices of the data sets
(Scharf and Mullis, 2000). However, in practice, the covariance
matrices are unknown and must be estimated from samples
(in our case, each subject is regarded as one sample). If the
number of samples is not large compared to the dimensions
of the data (in our case, this corresponds to the number

of time points in the recorded time series), the canonical
correlations are significantly overestimated, i.e., their estimated
values are much higher than the true values. In this work,
the number of samples (subjects) is much smaller than the
dimensions of the data sets (number of time points). In this
case, many estimated canonical correlations are equal to 1,
irrespective of the true number of correlated components,
and all of them are nonzero (Pezeshki et al., 2004). This
is the main challenge when applying CCA with a small
number of samples.

A common solution to address this problem is to use
a dimension-reduction preprocessing step [typically principal
component analysis (PCA)], applied to each data set individually.
The complication, however, is that PCA is designed to extract
components that account for most of the variance within one
data set, but these components are not necessarily the ones
that account for most of the correlation between two data
sets. Therefore, the number of dimensions in each data set
to be kept by PCA needs to be determined jointly with the
number of nonzero canonical correlations. To accomplish this,
Song et al. (2016) presented three related techniques, which
are adaptations of the classical Bartlett-Lawley test (Bartlett,
1941; Lawley, 1959) to the case of small number of samples.
In this work, the hypothesis-test-based detector (Detector 1)
from Song et al. (2016) is applied for the bimodal analysis
of the physiological data. These techniques have also been
successfully applied in biomedicine for fusing brain imaging
data from different modalities (Levin-Schwartz et al., 2016).
This approach is based on a sequence of binary hypothesis
tests, and the level of significance for each test was set to
5%. It could be hypothesized that the higher the number of
correlated components between modalities, the more complex
their interaction is. If the interaction is limited to a linear
relationship in a single dimension, this should indicate a rather
simple interaction. On the other hand, multiple correlated
components would indicate a more complex type of relationship
between modalities.

There are several different ways of extending CCA to
multiple data sets in order to investigate the interactions
jointly across all three modalities, summarized in Kettenring
(1971). All of these extensions fall under the common
term mCCA. The idea is to extract one component from
each data set such that these are maximally correlated with
each other. The extracted components are commonly called
source components (SCs). Subsequent components are extracted
in a same way except that these are to be uncorrelated
with previously extracted components. It is shown in Li
et al. (2009) that mCCA enables blind source separation for
multiple data sets.

Kettenring (1971) presented five different versions, for
different cost functions, to perform mCCA. Thus, unlike CCA,
mCCA is not unique and depends on the chosen cost function.
However, all five versions reduce to CCA when the number of
data sets is two. In this work, the generalized variance (GENVAR)
cost function is used to perform mCCA. For GENVAR, the
SCs are extracted such that they minimize the determinant of
the SC correlation matrix. The SC correlation matrix, R, is a
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square matrix of dimension equal to the number of data sets
and measures how the SCs are correlated with each other. For
instance, the absolute value of the ijth element of R is the
correlation coefficient between the extracted components of the
ith and jth data sets, which is normalized between 0 and 1. The
GENVAR mCCA has been widely applied in biomedicine, for
instance in analyzing functional MRI data (Adali et al., 2015)
and for fusing functional MRI, EEG, and structural MRI data
(Levin-Schwartz et al., 2016).

However, mCCA suffers from the same problems as CCA
when the number of samples is small compared to the dimensions
of the data sets. The correlation coefficients for the extracted
components are significantly overestimated and do not reflect the
true correlation structure among these components (Asendorf
and Nadakuditi, 2015). One possible solution is to again use a
dimension-reducing pre-processing step (such as PCA) for each
data set individually. But as with CCA, the components extracted
from a PCA pre-processing step do not necessarily correspond
to the components correlated across multiple data sets. There
is no technique yet that jointly determines the required PCA
dimensions and simultaneously performs mCCA. Our proposed
solution is to estimate the PCA dimensions returned by the joint
PCA-CCA detector of Song et al. (2016) for each pair of data
sets and to choose the maximum dimension for each data set.
This approach is based on the fact that the components correlated
across all data sets are also correlated across a given pair of data
sets. Hence, these components are retained in the dimension-
reduced data sets using the PCA rank estimated by the joint
PCA-CCA detector.

RESULTS

Performance Diagnostics
Average maximum oxygen intake (VO2max) was
49.80 ± 7.65 ml/min/kg (see Table 1), which can be
considered as moderate to high fitness level for this age
group (Edvardsen et al., 2013). Average running speed was
9.7± 1.19 km/h for 60% and 15.4± 1.88 km/h for 95% VO2max
(see Table 1). The treadmill running lasted 20 min at maximum,
but was significantly shorter (mean time = 6 min 12 s) at
95% VO2max.

Unimodal Results
Descriptive data are presented in Figure 2 and Table 2. Statistical
analysis revealed a main effect of intensity for mean EDA
[F(1,18) = 7.913, p = 0.003, ηp

2 = 0.305] with EDA level being
lower at moderate than at high intensity. For HR measures,
we obtained a significant interaction effect [F(1,18) = 8.278,
p = 0.010, ηp

2 = 0.315]. Follow-up pairwise comparisons revealed
a significant difference between 60% and 95% in the posttest
(p = 0.026), with HR being higher after exercising at high than
at moderate intensity, but not for pretest measures (p = 0.188).
Pre- and post-test measures differed for 60% (p = 0.085) and 95%
(p < 0.001). The latter showed a significant main effect of pre-
post-test for HR [F(1,18) = 36.240, p < 0.001, ηp

2 = 0.668]. For
Temp the main effects pre-post-test [F(1,18) = 15.374, p = 0.001,
ηp

2 = 0.461] was significant, with Temp being higher for post-
than for pre-test. All other effects failed to reach significance.

Bimodal Results
Model selection using the joint PCA-CCA approach of Song
et al. (2016) revealed significant correlated components in all
measures for most modality pairs (Table 3). The maximum PCA
rank was set to seven in accordance with the rules of Song et al.
(2016). In the pre-test the number of correlated components
differs between modality pairs and intensities. For the post-60%
intensity, HR shows one correlated component with EDA and
Temp each, while EDA and Temp show two components. In the
95% intensity condition, the number of components increases to
two for all modality pairs and the canonical correlations increase
for all components. This is summarized in Figure 3, which shows
how the overall correlation coefficient varies from pre to post-
exercise. The overall correlation coefficient, ρc is computed from
the canonical correlations in Table 3 for each modality pair and at
both moderate and high intensity. At moderate intensity, exercise
does not seem to have a clear and specific effect on ρc. However, at
high intensity, there is a substantial and clear increase in ρc from
pre- to post-test for all three modality pairs.

Multimodal Results
The first two SCs from pre- and post-test data for both intensities
are extracted using mCCA. The dimension of each data set after
applying PCA is equal to seven. This is the maximum PCA rank
estimated by the PCA-CCA detector for each pair of data sets. The

FIGURE 2 | Mean EDA (left), mean HR (middle) and mean Temp (right) averaged for pre- and post-tests of each intensity. Colored thick marker represents group
mean and each gray dot represents one participant.

Frontiers in Physiology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 240

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00240 March 27, 2019 Time: 17:51 # 6

Vieluf et al. Exercise Changes Interactions Within ANS

TABLE 2 | Mean and SD of HR (bpm), mean EDA (µS) and Temp (◦C) are
presented per group.

Modality Intensity Pre Post

(% VO2max) Mean SD Mean SD

HR 60 64.81 10.31 70.83 16.29

HR 95 60.76 10.69 79.89 8.52

EDA 60 4.31 8.30 3.66 3.91

EDA 95 8.06 8.40 9.37 6.51

Temp 60 34.15 1.48 35.34 0.90

Temp 95 34.11 2.78 35.09 1.81

TABLE 3 | Number of significant components and their strength of correlation are
presented for each modality pair during pre- and post-test measures at moderate
and high intensity.

Pre-test Post-test

Modality
pair

Exercise
intensity

Number of
significant

components

Canonical
correlations, (ki)

Number of
significant

components

Canonical
correlations,

(ki)

EDA-HR 60% 2 0.8, 0.73 1 0.91

HR-Temp 3 0.97, 0.93, 0.84 1 0.88

Temp-EDA 1 0.96 2 0.97, 0.95

EDA-HR 95% 1 0.84 2 0.94, 0.89

HR-Temp 0 0 2 0.86, 0.78

Temp-EDA 1 0.76 2 0.88, 0.82

correlation matrices of the SCs show the joint interactions among
the extracted components. An example of the correlation matrix
of the first SC from pre-exercise data at 60% intensity is shown
in Figure 4. The values indicate how strongly the components
jointly extracted from the three modalities are correlated. The
corresponding heat map is also shown.

In Figure 5, a heat map of correlation coefficients between
the first two SCs from pre-exercise data is shown. The magenta-
framed rectangle contains the correlations among the SCs at
60% intensity. The 3 x 3 off-diagonal blocks within the magenta
rectangle are almost zero as the second set of components (SC2)
is extracted under the constraint that they be uncorrelated with
the first set (SC1). Similarly, the green-framed rectangle displays

FIGURE 3 | The overall correlation coefficient, ρc, estimated for each modality
pair at (A) 60% exercise intensity and (B) 95% exercise intensity is illustrated

FIGURE 4 | The heat map of the correlation matrix of first source component
(SC) for pre-exercise data at 60% intensity. Color coding indicates the
strength of correlation between pairs of modalities.

the correlations among the two SCs extracted at 95% intensity.
In line with bimodal results, the correlations among the pre-
exercise components at both intensities are generally not very
high and quite variable across the modalities. Finally, the blue-
colored rectangle shows the correlation coefficients among the
components at 60% and 95% intensities. These components are
almost uncorrelated.

Similarly, Figure 6 shows the correlation coefficients between
the extracted components from the post-exercise data. As in the
bimodal results, the correlations between the SCs at 95% intensity
are high. Moreover, these components have high correlation
coefficients across all three modalities, as opposed to pre-95%
intensity data, where the components (green-colored rectangle
in Figure 5) have high correlations only among one or two
pairs of modalities. Finally, the first and the second SCs at
60 and 95% intensities, respectively, have higher correlation
coefficients (average 0.6) than pre-exercise SCs, indicating that
these are related components. This can be seen in the blue-
framed rectangle.

DISCUSSION

The aim of the current study was to elucidate changes within
and between ANS subsystems related to physical activity.
Considering the ANS as a complex network whose functionality
is affected by the situation-specific adaptation of the interplay of
several subsystems (Jänig and Häbler, 2000; Shaffer et al., 2014;
Bartsch et al., 2015; Schulz et al., 2016), we aimed to illustrate
how physical exercise, as a stimulus leading to central ANS
modulations, alters these interactions. The resting state of ANS
activity depends on the central processing of a variety of afferently
transmitted information to the central network of the ANS. If
a strong afferent stimulus alters this central regulation, efferent
control of ANS subsystems are altered. To gain insights into those
exercise-induced changes, we analyzed time series of HR, EDA,
and Temp data during rest pre and post exercise in each modality,
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FIGURE 5 | Illustration of the correlation structure within pre-test measures. On the x and y axis the first 2 source components (SC) are depicted. Highlights indicate
the correlation of the maximally correlated source components within (pink and green square) and between intensities (blue square).

and we proposed analysis tools to reveal bimodal and multimodal
interactions and presented the results. Unimodal results indicate
that physical exercise affects the ANS. Bimodal analysis showed
high variations in pre-test correlations, while in post-test the
correlations were higher especially after high-intensity exercise.
We used mCCA to infer ANS state changes based on signal
interactions across all modalities. Our results indicate that in
measures taken before the exercise, cross-modality interactions
exist but do not seem to follow a specific pattern, while in post-
exercise measures the cross-modality interactions increase and
show similarities between the different intensity tests, indicating
an exercise-specific organization of the ANS modalities EDA,
HR, and Temp.

Physical Activity as a Holistic Stimulus
Affects the Autonomic Network
In this study we confirmed that physical exercise has an
impact on several subsystems of the ANS. The previously
described sympathetic activation due to physical exercise
(Parekh and Lee, 2005; James et al., 2012; Esco et al.,
2015) most likely affects all ANS modalities reported in this
study depending on the intensity. More precisely, from pre-
to post-test Temp and HR increase (for similar results for
HR see: Seiler et al., 2007; Borresen and Lambert, 2008;
Al Haddad et al., 2011), the latter more so with higher
intensity. Furthermore, the HR differs between intensities

only after and not before exercise, indicating similar cardiac
activity levels before exercising, which could be expected
as the time of measurement was kept constant for each
subject. EDA level is higher with higher intensity. However,
large intra- and inter-individual variability might mask these
effects. Especially pre-test measures underlie a high day-to-
day variability as previously described (Al Haddad et al., 2011;
Bellenger et al., 2017). In general, the variability within the group
is reduced after exercise, which might indicate that the ANS of
different individuals reorganizes in a similar way to exercising,
which decreases the influence of day-to-day variability. In
addition to analyzing the changes within each subsystem, we
used CCA to infer the centrally moderated changes in the
interaction of subsystems.

Bimodal interactions were tested via PCA-CCA analysis.
Analysis confirms the day-to-day variability in a sense that
the correlation structures differ strongly in pre-test measures.
In post-test measures the number of correlated components
is similar across modality pairs. However, the strength of
correlation differs between modality pairs. Especially EDA and
Temp show strong correlations (see also Figure 6), which
might be the result of common or similar anatomical and
functional pathways and the contribution to thermoregulation.
However, similar correlations between HR and EDA, as well as
HR and Temp indicate that post-test measures cannot solely
be due to thermoregulatory effects. The results also show
intensity effects. In the post-test the number of correlated
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FIGURE 6 | Illustration of the correlation structure within post-test measures. On the x and y axis the first 2 source components (SC) are depicted. Highlights indicate
the correlation of the maximally correlated source components within (pink and green square) and between intensities (blue square).

components and their strengths are higher for the high than
for the moderate intensity. For the high intensity, all pairwise
correlations show an increase from pre- to post-test, while
the picture is mixed for the moderate intensity. Moderate
intensities may have a more regenerative effect on the ANS,
so that homeostasis is reestablished, and physical stress might
already be diminished 30 min after exercise. On the other
hand, the high intensity presents a stronger effect that lasts
longer, and therefore sympathetic activation, especially indicated
by increases in EDA, is prominent in our post-test measures.
Subsystems might still underlie a joint central control that
contributes to reestablishing homeostasis and balance within
the ANS. In line with the bimodal results and based on the
idea of a jointly centrally interconnected regulation of ANS
subsystems, a multimodal approach may offer an approach
to characterize the central integration of multiple modalities.
On a descriptive level, components with correlations across
three modalities, with average correlations higher than 0.8,
can be detected. Detected components are higher in the
post- than in the pre-test measures. Especially in the high-
intensity condition the post-test correlations increase strongly
and are higher than for the moderate intensity, providing
a first hint toward the assumed integration of subsystems
in a CAN (Beissner et al., 2013; Critchley and Harrison,
2013; Macey et al., 2016). The finding that the post-test
components correlate across intensities offers an interesting

starting point for further investigations to describe exercise-
specific organizations of the ANS.

In a broader sense, our results resemble findings in other
domains. Changes in ANS states have been frequently described
for psychological stress (for an overview see Oken et al., 2015).
Looking at the dynamic responses of the ANS to a stressor shows
that it is pushed away from a baseline state and may shift to a
less efficient attractor state, i.e., a specific network organization
related to the physiological response of the ANS to the stressor
(Oken et al., 2015). Returning to the original state is related to
an allostatic load that depends on the strength of the stressor
and the system’s ability to recover (Oken et al., 2015). Besides
psychological stress we showed that physiological stress induces
specific changes within the ANS that alters the organization
within and between ANS subnetworks (Borresen and Lambert,
2008; Stanley et al., 2013; Bär et al., 2016). However, the method
we propose in this paper to jointly analyze ANS signals was
so far used in an explorative way and therefore offers several
possibilities for modifications and expansions.

PCA-CCA and mCCA to Access
Multimodal Interactions
A joint PCA-CCA technique (Song et al., 2016) was employed
for bimodal analysis of different ANS measures. The usefulness of
this technique is that it not only provides the degree of similarity
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between two different measures but also detects the number of
correlated components between them. This is essential especially
in this study as the number of participants is small compared to
the number of time points in each ANS measure.

Both CCA and mCCA are designed to extract components
that are highly correlated, i.e., explain most of the linear
dependence among two or more data sets. While CCA has a
closed form and a unique solution, it is limited to two data sets.
For more than two data sets, the components extracted using
CCA from different pairs of data sets have to be related to each
other to analyze their correlation across all the data sets. This can
be difficult, especially in case of small sample support. mCCA
extends CCA by jointly analyzing all the data sets. However,
mCCA in small sample support has not yet received the attention
it deserves. One of the challenges is to apply a pre-processing step
like PCA to reduce the dimensions of all the data sets such that
all the correlated components for the mCCA step are retained.
Furthermore, testing the correlation structure of the extracted
components from mCCA remains a challenge. For example, for
three data sets, a SC could be highly correlated across only a
pair of data sets and uncorrelated with the third set. There could
be another component moderately correlated across all the data
sets. Therefore, detecting the number of components along with
their correlation structure for a small number of samples still
remains an open problem in the literature. In this context, it
needs to be emphasized that so far, there exists no technique to
determine which of the correlations between components (e.g.,
as shown in Figures 5, 6) are statistically significant. While the
PCA-CCA detector in Song et al. (2016) detects the number of
correlated components, the mCCA approach used in this work
only computes correlation coefficients between components but
does not estimate the number of correlated components.

Limitations and Outlook
Our study has several shortcomings. Based on the multimodal
device we obtained data with comparably low sampling rates.
On the other hand, it offers a precise synchronization of the
different time series, which is beneficial for joint analysis. Also, by
choosing one single device for the measurement we were limited
in modality selection. Future studies might add respiratory rate
or blood pressure changes over time to the analysis. A central
source of the described ANS changes can only be assumed based
on ANS anatomy and physiology, since interactions within ANS
subsystems are modulated by a central network (Jänig, 2006).
Proofing the central origin of mCCA changes in peripheral
ANS channels might be methodologically challenging, but will
be of interest for future studies. Based on our pre-post-test
design, we cannot illustrate the evolution of the signals or their
interrelation. Measuring the post-test 30 min after exercising
allows participants to cool down and exudate, but it offers
insight only into a very specific window of regulative procedures
related to exercise. We have not controlled individual strategies
of recovery after exercise. Neither water temperature, nor body
position for relaxation nor clothing was standardized in the
30 min after exercise. Future studies should control this phase
more precisely and systematically control laboratory settings
like temperature or humidity. Since the experiments were very

time-consuming, we included only 24 participants, but a bigger
sample size would lead to more reliable results. If a bigger cohort
is difficult to recruit, one might consider analyzing changes
in the ANS in relation to stronger stimuli, like psychological
stress or neurological diseases such as epilepsy with a focus
on seizure-induced changes, which are all known to alter the
ANS. A longer intervention might also alter the organization
within the ANS. However, other intensities would have to be
used as our participants could not maintain the high intensity
for 20 min. Different test durations at different intensities might
also impact our current data. Additionally, it would be of great
interest to test each intensity several times to also see if the
variability between days differs between intensities with the aim
to establish baseline measures. Also, the evaluation of ANS
interactions at other respiratory and metabolic thresholds might
be of interest in the future. Another limitation of our study is
the selection of modalities. We selected HR, EDA, and Temp
based on their physiological meaning of regulation of ANS
activity and the availability of continuous measures. This might
be of interest in future studies in order to better characterize
the interplay of the sympathetic and parasympathetic branches
within multiple organ systems.

CONCLUSION

In sum, the current study confirmed that subsystems of the ANS
exchange information at all times. These interactions presumably
allow flexible adaptation to different situations, but they result in
high pre-test variability. Therefore, unimodal approaches might
underestimate effects. We propose a multimodal analysis based
on CCA to gain additional insights into cross-modality changes.
Our results suggest that physical activity seems to be a holistic
stimulus that alters the overall interrelation of the subsystems.
The effect of physical exercise depends on the intensity and seems
to have different effects on altering the regulative functioning.
This might be of future interest for training control as the
monitoring can provide information on what kind of intensity
is best to achieve a certain ANS state, e.g., for the last training
before a race or match. Based on these stimulus-specific changes
we conclude that the signals’ correlation structure might be
indicative for a stimulus specific organization of the ANS.
Further studies should be performed with bigger data sets
and other stimuli.
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