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The electrocardiographic imaging (ECGI) inverse problem highly relies on adding

constraints, a process called regularization, as the problem is ill-posed. When there

are no prior information provided about the unknown epicardial potentials, the Tikhonov

regularization method seems to be the most commonly used technique. In the Tikhonov

approach the weight of the constraints is determined by the regularization parameter.

However, the regularization parameter is problem and data dependent, meaning that

different numerical models or different clinical data may require different regularization

parameters. Then, we need to have as many regularization parameter-choice methods

as techniques to validate them. In this work, we addressed this issue by showing that

the Discrete Picard Condition (DPC) can guide a good regularization parameter choice

for the two-norm Tikhonov method. We also studied the feasibility of two techniques:

The U-curve method (not yet used in the cardiac field) and a novel automatic method,

called ADPC due its basis on the DPC. Both techniques were tested with simulated

and experimental data when using the method of fundamental solutions as a numerical

model. Their efficacy was compared with the efficacy of twowidely used techniques in the

literature, the L-curve and the CRESO methods. These solutions showed the feasibility

of the new techniques in the cardiac setting, an improvement of the morphology of the

reconstructed epicardial potentials, and in most of the cases of their amplitude.

Keywords: inverse problem, Tikhonov, regularization, electrocardiography, MFS, ill-posed, ECG, body surface

potentials

INTRODUCTION

Cardiovascular diseases causes 17.9 million deaths every year, accounting for 31% of all global
deaths. Electrocardiographic imaging (ECGI) is a non-invasive technique that reconstructs
epicardial potentials and epicardial activation maps by combining body surface measurements
with respective epicardial and body geometries. In a recent manuscript comparing the non-invasive
ECGI with prior invasive techniques (Duchateau et al., 2018), the authors summarized the use of
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ECGI in different pre-clinical and clinical settings. While
(Duchateau et al., 2018) highlights the favorable outcome
of ECGI for treatment response prediction of cardiac
resynchronization and ablation guidance for atrial fibrillation
and ventricular tachycardia; it also states the need of further
work on the ECGI inverse problem to improve its accuracy.

The ECGI inverse problem of computing epicardial potentials,
8E, from the body surface measured potentials, 8T , (MacLeod
and Brooks, 1998; Ramanathan et al., 2004; Oostendorp et al.,
2011; Wang et al., 2011; Oosterom van, 2012; Haissaguerre
et al., 2013; Rudy, 2013; Cochet et al., 2014; Dubois et al., 2015;
Shah, 2015) is an ill-posed problem (MacLeod and Brooks, 1998;
Milanič et al., 2014; Cluitmans et al., 2015; Shah, 2015; Figuera
et al., 2016). By introducing additional information, by using
regularization techniques, we can overcome this ill-posedness
(MacLeod and Brooks, 1998; Milanič et al., 2014; Cluitmans et al.,
2015; Shah, 2015; Figuera et al., 2016).

Two recent manuscripts (Milanič et al., 2014; Figuera
et al., 2016) studied the performance of different regularization
techniques and concluded that due to the little differences among
the more than 13 techniques used in each study, the most
likely method to solve the ECGI problem in absence of prior
information about the epicardial potentials was the two-norm
Tikhonov regularization technique.

The two-norm Tikhonov regularization method (from now
on referred to as Tikhonov) constrains the solution to be
smooth or to have a small signal energy resolution. The
Tikhonov regularization parameter weights the residual norm
against the solution norm. Its role is to find a balance between
solutions based on the body surface potential measurements
and solutions that are constrained too much. Parameter-choice
methods therefore became very data dependent (Hansen, 2010).
Finally, regularization parameters that may perform well for
a determined numerical model, may perform poorly when
changing key factors of the model, such as the discretization
or the boundary conditions (Hansen, 2010; Chamorro-Servent
et al., 2016a,b). Then, for solving different clinical problems
(different data) and different numerical models, it is preferable
to have several automatic parameter-choice algorithms available
(Hansen, 2010; Chamorro-Servent et al., 2016a,b).

In many cases, the regularization parameter, α, from
the Tikhonov method is selected manually. This is done
by subjectively choosing the value that provides the best
results from a sequence of regularization parameters. The
procedure becomes user dependent and time consuming
and less likely reproducible. Several automatic methods
have been suggested to overcome this problem. These
include: (i) Strategies requiring prior knowledge of the
noise (such as unbiased predictive risk estimator method, the
discrepancy principle method, or the normalized cumulative
periodogram), and (ii) strategies that do not need a priori
information (such as zero-crossing method, Composite
Residual and Smoothing Operator, L-curve, generalized cross-
validation) (Hansen, 2010). For the ECGI, we will focus on
the latter. In addition, from this latter group, we will focus
on regularization parameter-choice methods that can easily
be extended to the new goals (i.e., methods that not only

consider information about the residual norm but also about
the solution norm). This choice is due to the recent interest
in improving the ECGI inverse solution by introducing
physiological-based prior information on the regularization
term (Figuera et al., 2016; Duchateau et al., 2018).

The automatic regularization parameter-choice method
previously used in the ECGI literature, when using the
method of fundamental solution (MFS) (Rudy, 2004;
Wang and Rudy, 2006), without prior information, is the
Composite Residual and Smoothing Operator (CRESO)
technique (Colli-Franzone et al., 1985). The CRESO method
has been found to provide the minimum root-mean-
square error (RMSE) between the computed epicardial
potentials (8E) and the measured ones (Rudy, 2004).
When other numerical models were used to solve the
ECGI problem (such as the Boundary Element method),
the community has commonly used the L-curve method
to find the regularization parameter (Milanič et al., 2014;
Cluitmans et al., 2015; Figuera et al., 2016).

Both the CRESO and the L-curve methods have shown
efficacy in the wide inverse problems’ bibliography (Ruan
et al., 1999; Rudy, 2004; Wang and Rudy, 2006; Hansen,
2010; Milanič et al., 2014; Cluitmans et al., 2015; Figuera
et al., 2016). However, it becomes challenging to find an
automatic regularization parameter-choice method for
Tikhonov regularization that is suitable for all ill-posed
inverse problems (Hansen, 2010). The CRESO and the L-
curve techniques may require a priori information and/or
manual adjustment (Rudy et al., 2006), due to an over-
regularization of the solution. In addition, the convergence
of the L-curve has failed in some cases, when the generalized
Fourier coefficients of the data decayed at the same rate
or a lower rate than the singular values (SVs) of the
operator (Vogel, 1996).

PC Hansen showed that a necessary mathematical condition
for the existence of a meaningful solution for Tikhonov
regularization is the Discrete Picard Condition (DPC) (Hansen,
1990, 2010). DPC says exactly that “a good regularization
parameter avoids SVs decaying to zero faster than the respective
Fourier coefficients of the data.” The DPC has been used as
a visual verification tool when studying the suitability of a
regularization parameter for Tikhonov in several fields (Hansen,
1990, 2010; Chamorro-Servent et al., 2011), including ECG
(Greensite et al., 1998). However, to the best of our knowledge
an automatic DPC-based method does not exist yet.

Finally, the U-curve method has been introduced to overcome
some drawbacks caused by the L-curve method in other fields
(Krawzyck-Stando and Rudnicki, 2007; Chamorro-Servent et al.,
2011; Chen et al., 2016), such as: (i) its non-convergence, (ii)
the over smoothing of its solution, (iii) its lack of computational
robustness when dealing with large scale problems. The L-curve
computational cost has already been questioned in the ECGI
setting (Figuera et al., 2016).

The target of this paper is to show the feasibility of
the U-curve method, never used in the cardiac inverse
problem setting, and to develop a new automatic DPC-
based method, named ADPC. Both techniques are validated
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when using the MFS with simulated and experimental
data. Their efficacy (in terms of amplitude and morphology
preservation of the reconstructed potentials and dV/dT
patterns) is compared with the existent L-curve and
CRESO methods.

As a first step, we present the MFS and the Tikhonov
regularization method, we summarize the role of the
DPC in the Tikhonov regularization, and we introduce
the different regularization parameter-choice methods.
Afterwards, we describe the in-silico and experimental data,
as well as the statistical analysis performed to compare the
results. Later, we summarize the main results obtained.
Finally, we draw conclusions and discuss the issues and the
limitations raised.

METHODS

The Method of Fundamental Solution (MFS)
and l2-Norm Tikhonov Regularization
In the MFS (Wang and Rudy, 2006), the potential expression
is defined as a linear combination of the Laplace fundamental
solutions over a discrete set of virtual source points. The
necessary virtual source points are located outside of �, where
� is the domain of interest, specifically the volume conductor
enclosed by the body surface (ΓT) and the epicardial surface
(ΓE) . The potential 8 for xǫ� is stated as 8(x) = a0 +
∑NS

j=1 f
(∣

∣x− yj
∣

∣

)

aj, where the
(

yj
)

j=1..NS
are the NS fixed

locations of the virtual sources points
(

yj /∈ �
)

, and the
(

aj
)

j=1..NS
are their respective coefficients. Here, f stands for

the Laplace fundamental solution, f
(

x, yj
)

= 1
4πr , where

r =
∣

∣x− yj
∣

∣ is the 3D Euclidean distance. The NS =

NT + NE virtual sources locations are fixed by deflating
the

(

xEi
)

i=1,2,··· ,NE
locations at ΓE (by a numerical factor

0.8) and inflating the
(

xTi
)

i=1,2,··· ,NT
electrodes locations at

ΓT (by a factor 1.2), relatively to the geometrical center of
the heart. This deflation and inflation schemes are based
on (Wang and Rudy, 2006).

The potentials on ΓE , 8E =
(

8
(

xEi
))

i=1,··· ,NE , can be
also expressed by the equation above as 8

(

xEi
)

=

a0 +
∑NS

j=1 f
(
∣

∣xEi − yj
∣

∣

)

aj, where the only unknowns are

the coefficients of the virtual sources
(

a0, a1, · · · , aNS

)

. Such
coefficients are found in (Wang and Rudy, 2006) by imposing on
ΓT the Dirichlet (8 = 8T) and the zero-flux or homogeneous
Neumann (∂n8 = 0) boundary conditions in an equivalent
weight. This is done by using potential definition and the values
of its normal derivatives, and it yields to solve the linear system

8

(

xTi

)

= a0 +
∑NS

j=1
f
(

|xTi − yj|
)

aj =8T ,

∂n8

(

xTi

)

= a0 +
∑NS

j=1
∂ni f

(

|xTi − yj|
)

aj =0

where 8T = (8i)i=1,··· ,NT
are the potentials recorded on the

(

xTi
)

i=1,2,··· ,NT
torso electrodes locations.

This system can be written in a matrix notation as
Ma = b, being

M =





























1 f
(

|xT1 − y1|
)

· · · f
(

|xT1 − yNS|

)

...
. . .

...

1 f
(

|xTNT
− y1|

)

· · · f
(

|xTNT
− yNS |

)

0 ∂n1 f
(

|xT1 − y1|
)

· · · ∂n1 f
(

|xT1 − yNS |
)

...
. . .

...

0 ∂nNT
f
(

|xTNT
− y1|

)

· · · ∂nNT
f
(

|xTNT
− yNS |

)





























,

a =
(

a0, a1, · · · , aNS

)T
ǫR1+Ns and b =





8T

0



 ǫR2NT .

Then, finding the sources coefficients (aǫR1+Ns ) results in
solving a quadratic minimization problem

J (a,α) =
1

2

∥

∥Ma− b
∥

∥

2

+
α2

2
‖a ‖2 ,

where α > 0 is the Tikhonov regularization parameter.
The Tikhonov solution can be defined in terms of singular

values (SV) decomposition of M (M = USVT), by equaling the
gradient of J (a,α) to zero and writing I = VVT

∇Ja (a,α) =
1

2
∇

(

(

Ma− b
)T (

Ma− b
)

+ α
2IaTa

)

=

(

MTM
)

a−MTb+α2Ia = 0,

aα =

(

MTM + α2I
)−1

MTb =
∑min(2∗NT,NS+1)

i=1

σ 2
i

σ 2
i + α2

uTi bvi =
∑min(2∗NT,NS+1)

i=1

σ 2
i

σ 2
i + α2

uTi b

σi
vi,

where σi are the SVs (the elements of the diagonal matrix S) in
descending order, σ1 ≥ · · · ≥ σmin(2∗NT,NS+1 ).

Once the Tikhonov regularization problem has been solved,
we can calculate the epicardial potentials, 8

(

xEi
)

.

Discrete Picard Condition (DPC)
The DPC is satisfied “if the so-called Fourier coefficients of the
right-hand side (when expressed in terms of the generalized
SV decomposition coefficients),

∣

∣uTi b
∣

∣, decay to zero faster
than the respective generalized SVs, σi’s.” In other words, the
regularization parameter must be used to control the undesired
high-frequency oscillations that contaminate the solution.

The Picard plot (Hansen, 1990, 2010), depicts the
∣

∣uTi b
∣

∣ and
σi-values against their respective quotient in a same logarithmic
scale plot.

In ill-posed problems the solution coefficients

∣

∣uTi b
∣

∣

σi
increase

for larger values of the index i. Hence, the computed solutions

(aα =
∑min(2∗NT,NS+1)

i=1
σ 2
i

σ 2
i +α2

uTi b

σi
vi above) are completely

dominated by the smallest SVs. In these cases, if we want
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to calculate a satisfactory solution by means of Tikhonov
regularization, the DPC must be fulfilled (Vogel, 1996; Hansen,
2010). The DPC allows to balance how well the regularized
solution approaches the unknown (i.e., the exact solution). The
σi above the regularization parameter α (useful SVs) must decay
to zero less quickly than the corresponding right-hand side
coefficients,

∣

∣ uTi b
∣

∣. In other words, the DPC says that an ill-
conditioned system must be regularized if a suitable solution is

to be obtained and a solution based on a vector

∣

∣uTi b
∣

∣

σi
that only

increases is generally not useful.

Automatic Regularization Techniques
Composite Residual and Smoothing

Operator (CRESO)
The CRESO method (Colli-Franzone et al., 1985) was presented
as a practical method but has turned out to be extensively
accepted as the preferred parameter choice-method in widely ill-
posed bioelectric inverse problems (Ruan et al., 1999). It chooses
the parameter value which produces the first local maximum of
the difference between the derivative of the regularization term
and the derivative of the residual term

C (α) =

{

d

d
(

α2
)

(

α2 ‖a (α)‖2
)

−
d

d
(

α2
)

∥

∥Ma (α) − b
∥

∥

2
, α > 0

}

L-Curve
The L-curve has become the best-known method for assessing
a regularization parameter-value in widely ill-posed problems
fields (Hansen, 1990; Hansen and O’Leary, 1993; Ruan et al.,
1999). It is defined in terms of

L (α) =
{(∥

∥Ma (α) − b
∥

∥ , ‖a (α)‖
)

, α > 0
}

If we plot the L-curve, it has a L-shape and we can choose the
regularization parameter value by using Hansen and O’Leary’s
criterion (Hansen, 1990; Hansen and O’Leary, 1993). This
criterion chooses the α-value corresponding to the point of
maximum curvature on the log-log plot of the L-curve.

U-Curve
TheU-curve (Krawzyck-Stando and Rudnicki, 2007) is defined as
the log-log scale plot of the sum of the inverse of the regularized
solution norm ‖a (α)‖ and the respective residual error norm
∥

∥Ma (α) − b
∥

∥, for α > 0

U (α) =
1

∥

∥Ma (α) − b
∥

∥

2
+

1

‖a (α)‖2

The U-curve plot has a U-shape. The optimum regularization
parameter is the value for which the U-curve achieves its
minimum. And the sides of the U-curve correspond to the
regularization values for which either the solution norm or
the residual norm dominates. When dealing with large scale
problems, the U-curve is computationally efficient. This is
due to its a priori interval definition where the appropriate
regularization parameter is located (Krawzyck-Stando and
Rudnicki, 2007; Chamorro-Servent et al., 2011; Chen et al., 2016).

ADPC: A New Regularization Parameter

Choice Method
As mentioned previously, an optimal regularization value, α,
for Tikhonov method, when dealing with l2-norm constraints,
must fulfill the DPC (Hansen, 1990, 2010). This means that the
σi above the suitable α must not decay to zero faster than the
corresponding

∣

∣uTi b
∣

∣, to avoid the computed Tikhonov solutions
(aα) from being entirely dominated by the smallest SVs.

Based on the DPC, we performed an automatic regularization
parameter-choice algorithm (Figure 1):

1. We computed the SV decomposition of the MFS matrix, M,
to find the SVs (σ i) and the left singular vectors (ui).

2. For each time step, tk (ms), we calculated the log(
∣

∣uTi btk
∣

∣ )

and log(
∣

∣uTi btk
∣

∣ / σ i) and we fit both of them by two

polynomials p
(

i, log
(∣

∣uTi btk
∣

∣

) )

tk
and q

(

i, log
∣

∣uTi btk
∣

∣ / σ i

)

tk

of degree from 5 to 7, where k = 1, · · · ,Nt are the time
instants. Hence, we obtained: pt1 ,··· ,ptNt and qt1 ,··· ,qtNt , two
polynomials set for each time step tk.

3. For each pair of polynomials at each time step, tk, we found:
αtk = σmax{i} (σ0 ≥ σ1 ≥ · · · ≥ σr > 0) , such that DPC
was fulfilled.

4. The suitable ADPC regularization parameter was defined as:
α = median

(

αtk

)

.

Steps two and three of this algorithm consists in the lower
limit that any suitable Tikhonov regularization value can attain
to still fulfill the DPC. Step three consists of looking for the
index i, which corresponds to the last SV, before the small
SVs coefficients start to dominate the solution. That means,
previously log (σi) starts to decrease faster than log(

∣

∣uTi btk
∣

∣ ).

The fitting of the log(
∣

∣uTi btk
∣

∣ ) and log(
∣

∣uTi btk
∣

∣ / σ i) by two
polynomials in step two is done to simplify the automatic
achievement of the optimal index i (in step three).

In-silico and Experimental Data
A total of sixteen datasets were used to test our algorithms, eight
in-silico data and eight experimental data. In both cases, body
surface potentials and epicardial potentials were provided.

In-silico Data
To test the effect of the new approaches described and to
compare them with previous ones, eight in-silico different
activation patterns were used (Duchateau et al., 2017). This
included, one single site pacing in the right ventricular free
wall, three single sites pacing in the left ventricular (lateral
endocardial wall, mid wall, and lateral epi) and four single
spiral waves. A monodomain reaction-diffusion model was
simulated in a realistic 3D model of the human ventricles
to mimic the propagating activation (Duchateau et al., 2017).
The Ten Tusscher et al. model for the human ventricular
myocyte (Ten Tusscher et al., 2004) was used to compute
the transmembrane ionic currents. These currents were used
to calculate the extracellular potential distribution all over the
torso, by solving a static bidomain problem in a torso mode
at 1mm resolution (Potse et al., 2009). The torso model had
heterogeneous conductivity, with anisotropic skeletal muscle,
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FIGURE 1 | Flowchart illustrating the algorithm.

lungs, and intracavitary blood. The heart model comprised of
right and left ventricles at 0.2mm spatial resolution. From the
rule-based fiber orientation derived an anisotropic conduction in
the heart model. Both, heart and thoracic anatomies were based
on MRI data (Figure 2). In-silico 8T and 8E every 1ms were
provided by these simulations.

Experimental Data
To test how much the regularization parameter-choice depended
on the datasets chosen and to facilitate later comparison with
other possible algorithms, we decided to use, in addition to
the simulated data, eight datasets from the Experimental Data
and Geometric Analysis Repository (EDGAR) (Aras et al., 2015)
hosted by the SCI Institute at the University of Utah and freely
distributed. The purpose of EDGAR is to share and collate
electrocardiological data, specifically for the validation and
advancement of ECGI problems among a worldwide consortium
of academic institutions.

In the EDGAR data used, both potentials from the body
surface and epicardial were simultaneously measured. The

data selected for this study was: Sinus rhythm and paced
beats from (i) a canine experiment (paced from the epicardial
left ventricular apex) (Aras et al., 2015; Cluitmans et al.,
2017) and (ii) from a pig experiment (Aras et al., 2015;
Bear et al., 2015). And a control and three myocardial
ischemia from a canine experiment, where the high right
atrium was paced while an occlusion to the LAD induced
ischemia (Aras et al., 2015).

In (Cluitmans et al., 2017), a computed tomography scan
was first performed to localize the electrodes and epicardial
surface, second, the body-surface potentials were recorded
with 192 electrodes simultaneously to 67 electrodes implanted
around the epicardium via a thoracotomy. In Bear et al. (2015)
epicardial electrodes were placed with a custom-made elastic
sock containing 239 unipolar silver-wire electrodes (5-to 10-mm
spacing) drawn over the ventricles, after which the thorax was
closed, and air expelled. Flexible strips (BioSemi, Amsterdam,
The Netherlands) containing 184 electrodes (30- to 45-mm
spacing) were attached to the body surface. Epicardial and
body surface potentials were bandlimited (0.05–1,000Hz) and
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FIGURE 2 | Geometries and meshes of the in-silico used data. (A) Body surface and heart geometries, and body surface mesh. (B) Heart geometry and mesh.

recorded simultaneously at 2 kHz using separate acquisition
systems (UnEmap, Auckland Uniservices Ltd, Auckland, New
Zealand and ActiveTwo, BioSemi, respectively). Magnetic
resonance imaging from the heart and thorax were acquired by
placing contrast markers on the sock and body surface strips
to localize the electrodes. Finally, the signals were temporally
aligned by identifying the onset of a short burst of square 2ms
pulses recorded simultaneously on a single channel in both
the systems.

Statistical Analysis
We computed the potentials on the epicardium for the diverse
regularization parameters choices.

Afterwards, correlation coefficients (CCs) and relative root-
mean squared errors (rRMSEs) were computed over the time
steps as specified below.

CC =

∑NL∗

i=1

(

8TEi − 8TEi

) (

8CEi − 8CEi

)

√

∑NL∗

i=1

(

8TEi − 8TEi

)2
√

∑NL∗

i=1

(

8MEi − 8MEi

)2

rRMSE =

√

√

√

√

√

∑NL∗

i=1

(

8CEi − 8TEi

)2

∑NL∗

i=1

(

8TEi

)2

where 8TE were the target potentials and 8CE the computed
ones. For the in-silico data, the8TE were the simulated epicardial
potentials and the 8CE the reconstructed ones at the same
NL∗ = NLE locations. In the case of the experimental data, the
8TE were the potentials measured on the heart, and 8CE the
reconstructed at the NL∗ = NLS closest epicardial locations.

Lastly, we showed the respective boxplots to allow their
comparison. For the in-silico data, we also computed the dV/dT
patterns and the correspondent correlation coefficients and the
relative root-mean squared errors. We showed them in a table
in the format [Median, (min, max)]. The highest correlation
coefficients (CC) represents the best morphology and the lowest
relative root mean-square error (rRMSE) represents the best
amplitude of the reconstructed potentials.

RESULTS

In-silico Data
Some of the effects related to the regularization parameter
choice methods for a single site pacing in the midwall left
ventricle in-silico dataset are depicted in Figures 3, 4 below.
The reconstructed potentials by the different regularization
parameter-choice methods are plotted against the in-silico
heart potentials in Figures 3A–E. Next to each subplot an
arrow marks, on the heart geometry, the location where the
potentials are shown. In addition, Figures 3F shows the DPC
plot depicting the resulting regularization parameter values on
horizontal lines.

The activation time (AT) maps for the single site pacing in the
midwall left ventricle in-silico dataset are shown in Figure 4.

Similarly, Figures 5, 6 depict the same results for a single spiral
wave with increased transverse conductivity. In addition, in the
Supplementary Material, we included the dV/dTmaps of the six
additional in-silico datasets.

We can see on both DPC plots (Figures 3F, 5F) that the
ADPC regularization parameter was chosen just before the SVs
(σ i ) start to decay faster than the respective

∣

∣uTi btk
∣

∣. That

moment corresponds to the moment just before
∣

∣uTi btk
∣

∣ /σi starts
to increase fast. If we look at the values of the solution vectors,
∣

∣uTi btk
∣

∣ /σi , and we try to find a minimum, followed by a
significant growth in the moving average; the point where the
average grows above the minimum by a certain factor, locate the
points were the high frequencies starts dominating. It is well-
known than when high frequencies dominate, any error, artifact,
or noise will start to dominate the solution. Our regularization
parameter must therefore be chosen just before this starts
to happen.

The statistics for the eight simulations datasets are shown
on Figure 7 and Table 1. They compile the effect of the choice
of the regularization parameter, on the reconstructed potentials
(boxplots Figure 7) and on the dV/dT maps (Table 1). The
relative root-mean squared errors give an estimate of the
amplitude difference and the correlation coefficients give an
estimate of the similarity of potential patterns or electrogram
morphologies between measured and reconstructed data. We
are interested in the highest correlation coefficients (best
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FIGURE 3 | (A–E) On the right: reconstructed potentials provided by the different regularization parameters against the in-silico heart potentials. On the left: arrows on

the 3D in-silico/reference AT map correspond to the spatial heart locations where each respective potential is shown. The arrow on the 3D map of figure (C) shows

the single site pacing in the left ventricle lateral midwall. (F) DPC plot for tk = 100ms with the different computed regularization parameter values drawn as horizontal

lines. The legend included in (F) serves the respective DPC plot, as well as the (A–E) potential plots discussed in this figure.

morphology) and the lowest relative root-mean squared errors
(best amplitude). With the boxplots, we included statistics
referring to all the 501-time steps where the heart potentials
were simulated (Figures 7A,C) and the ones referring only to
the 200-time steps where the dV/dT maps were reconstructed
(Figures 7B,D). Finally, in the Supplementary Material, we
included the boxplots of the reconstructed potentials for each
individual dataset.

The L-curve provided a clearly over-regularized solution for
the singular single pacing in the right ventricle and for three of
the single spiral waves inhibiting the computation of some of the
dV/dT maps.

EXPERIMENTAL DATA

Like Figures 3, 5, the Figure 8 shows the reconstructed potentials
for the paced pig experiment referred to in section Experimental
data against the measured potentials, and the DPC with the
different regularization values chosen.

For the geometries of Figure 9A from the paced dog
described in section Experimental data, the Figures 9B–E

show: (B) the reconstructed heart potentials against
the measured ones in a marked heart point, (C) the
statistics boxplots of the correlation coefficients (CC),
(D) the statistics boxplots relative root-mean square errors
(rRMSE) and (E) the DPC plot holding the different chosen
regularization values.

The statistics boxplots for the different reconstructions
of each paced heart and sinus rhythm datasets
described in section Experimental data can be found
all separately depicted in the Supplementary Material.
Figure 10 also includes the separated statistic boxplots
for the control and the three myocardial ischemia
from a canine experiment described also in section
Experimental data.

Finally, Figure 11 compiles the statistic boxplots for the
different reconstructions of all the paced and sinus rhythm
datasets together (A,B) and the control and myocardial ischemia
together (C,D).
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FIGURE 4 | For the same dataset employed in Figure 3—three different views of the AT maps reconstructed from the heart potentials from: (A) In-silico reference

data, (B) CRESO solution, (C) L-curve solution, (D) U-curve solution, and (E) ADPC solution. RV and LV are denoted in the in-silico AT map for reference.

DISCUSSION

Two newmethods were introduced to calculate the regularization

parameter of the two-norm Tikhonov regularization method
(referred in the manuscript as Tikhonov regularization method)

when using the MFS for ECGI: The U-curve (a method never
used before in cardiac applications) and the ADPC (a new
automatic developed method based on DPC).

The reason for this study came about from the limitations
found when using the most common parameter-choice methods
(the L-Curve and the CRESO) for the ECGI MFS setting.

We focused on the introduction and validation of new
automatic regularization parameter-choice methods, combining
information not only about the residual norm but also about
the solution norm. This choice is based on the idea of later
introducing the physiologically-based prior information on the

regularization term in order to improve the ECGI inverse
problem, as shown in recent manuscripts (Figuera et al., 2016;
Cluitmans et al., 2017; Duchateau et al., 2018; Schuler et al.,
2018). To introduce the physiologically-based prior information,
regularization techniques need to adjust its solution norm
constraint on this information. We did not compare methods
that only considered the information of the residual norm
(ignoring the solution norm information), such as the cited
generalized cross validation, which also did not compute a
suitable regularization parameter when dealing with highly
correlated errors (Hansen, 1992).

The ADPC algorithm presented here provides a suitable
regularization parameter due to the behavior of the SVs of the
ECGI MFS problem (decaying slower for the higher SVs and
faster for the lower ones such as in Figures 3, 5, 8, 9). The fact
that the ADPC parameter choice is based on the necessary DPC
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FIGURE 5 | (A–E) On the right: reconstructed potentials provided by the different regularization parameters against the in-silico heart potentials. On the left: arrows on

the 3D in-silico/reference AT map correspond to the spatial heart locations where each respective potential is shown. (F) DPC plot for tk = 100ms with the different

computed regularization parameters values drawn as horizontal lines. The legend included in (F) serves the respective DPC plot, as well as the (A–E) potential plots

discussed in this figure.

fulfillment for any regularization parameter for the Tikhonov
regularization method (Hansen and O’Leary, 1993; Hansen,
2010) ensures an optimal solution for highly ill-posed problems.
In addition, the DPC plot gives us a valuable indication of the
over-regularization level of a solution. This is perfectly shown
by the location of the regularization parameters in the DPC
chart and the relationship of this location with their respective
reconstructed potentials and the dV/dT patterns (Figures 3–6).
In the first DPC plot (Figure 3F) the CRESO, the L-curve and U-
curve parameters are located fairly above the moment the SVs
start to decay faster, and this results in a wider QRS (losing
also the S-wave in most of cases) on the respective potentials
along the time plot (Figures 3A–E). The U-curve method and
notably the ADPC method seem to better localize the pacing
on the LV lateral midwall (Figure 4). In the in-silico examples
included in this manuscript and the Supplementary Material,
the L-curve method provided the most over-regularized solution.
In the cases of the single spiral wave (Figure 5), the L-curve
parameter is located even higher on the DPC plot, and it
results in an extremely over-regularized reconstruction of the
potentials along time (losing both, the morphology, and the
amplitude of the reconstructed potentials). This therefore causes
the inhibition of the computation of the corresponding dV/dT

map (data not shown in Figure 6 or highlighted in Table 1 as
NA∗). Finally, regarding the dV/dT maps in Figure 6 we can
clearly see the improvement of the ADPC solution against the
CRESO solution. The dV/dT maps of each singular simulation
dataset, reconstructed by the different methods, are included in
the Supplementary Material of this manuscript.

Regarding the single site pacing simulations statistics
(Figures 7A,B): (i) The correlation coefficients (CC) best center
tendency is achieved by the ADPC method followed by the U-
curve method. In addition, the correlation coefficients of these
two methods and specially of the ADPC, have a larger upper
spread out. While the ADPC has the smallest variability, it has
some lower outlayers in the same range where the resulting
interquartile values of othermethods vary (being the interquartile
the height of the boxes, 1st−3rd quartile). The outlayers indicate
values greater than the 1.5 interquartile ranges away from the
25th percentiles. The L-curve solution has the worst correlation
coefficients center tendency and the CRESO solution has a center
tendency similar to the U-curve, but with higher variability.
(ii) The relative root-mean squared errors (rRMSE) best center
tendency is also achieved by the ADPC method followed by
the U-curve and the CRESO method, but again the CRESO
method shows a higher variability error. The L-curve solution
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FIGURE 6 | For the same dataset employed in Figure 5—three different views of the dV/dT maps reconstructed from the heart potentials from: (A) in-silico reference

data, (B) CRESO solution, (C) U-curve solution and (D) ADPC solution. The L-curve inhibited the dV/dT map computation. RV and LV are denoted in the in-silico AT

map for reference.

also shows the worst performance in terms of relative root-mean
squared error (lowest center tendency and highest variability).
Finally, the upper outlayers from the ADPC resulting relative
root-mean squared errors are located out of the other methods
interquartile values. However, all these outlayers come from the
in-silico LV lateral endocardial data as can be observed in the
single simulations’ boxplots of the Supplementary Material.

In the case of the single spiral simulations’ statistics
(Figures 7C,D): (i) The correlation coefficients (CC) best
center tendency is achieved through the ADPC method. In
addition, its distribution is also more focused in the upper
values. However, the U-curve and the CRESO methods provide
close results for correlation coefficients for the spirals than
for the single site pacing simulations. Again, the ADPC
has some outlayers inside the other methods’ value ranges.
The L-curve solution has the worst correlation coefficient
center tendency and the highest variability, meaning that its
performance (compared with the other methods solutions) is
even worse than for the single site pacing simulations. (ii)
The relative root-mean squared errors’ (rRMSE) better center
tendency is also achieved by the ADPC method followed
by the U-curve and the CRESO methods. Here, the L-curve

method has less upper outlayers but its center tendency
(around 1) continues being the worst, and its correlation
coefficients are higher distributed and are worse than the
other methods.

In terms of the in-silico data dV/dT patterns statistics
(Table 1): (i) In the single site pacing in-silico datasets, the highest
correlation coefficients (CC) and lowest relative root-mean
squared errors (rRMSE) are achieved by the ADPC, followed by
the U-curve. The L-curve over-regularized some of the solutions
that inhibit the computation of the respective activation time
maps. (ii) In the case of the spirals in-silico datasets, the ADPC
also provided the highest correlation coefficients and the lowest
relative root-mean squared errors, followed by the U-curve.
However, differences between the ADPC, the U-curve and the
CRESOmethods here are more significant in terms of correlation
coefficients (morphology) than in terms of relative root-mean
squared errors (amplitude), where the results are closer. Finally,
the L-curve also inhibited some dV/dTmap computations for the
spirals in-silico data.

In the case of the EDGAR datasets, we found fewer differences
between the different regularization parameter choice methods
for the paced and sinus rhythm datasets (Figures 8, 9, 11A,B and
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FIGURE 7 | Boxplots of the correlation coefficients (CC) and the relative root-mean squared errors (rRMSE) between the reconstructed potentials and the respective

in-silico heart potentials: (A,B) for the single site pacing simulations, (C,D) for the spiral simulations. (A,C) for all the 501-time steps where the heart data was

simulated. (B,D) for the 200-time steps where we calculate the dV/dT maps. The red crosses denote the outlayers.

respective separated boxplots in the Supplementary Material).
However, in the case of the pig experiment described in section
Experimental data (Figure 9) we could not impose compliance
with the zero-flux or homogeneous Neumann conditions on
the MFS solutions [such as in Wang and Rudy (2006) and

the rest of the datasets of this manuscript]. This was due
to some problems encountered when computing the normal
directions for the geometries provided. In Figure 8D, we can
see that singular values start to decay faster to zero quite late
(meaning that the problem is less ill-posed than for other
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TABLE 1 | Median [min, max]% differences of (A–C) the correlation coefficients and (B–D) the relative root-mean squared errors between each reconstructed dV/dT

patterns and the dV/dT pattern resulting from the in-silico heart potentials.

(A) (B)

CORRELATION COEFFICIENTS (CC) RELATIVE ROOT-MEAN-SQUARED ERROR (rRMSE)

CRESO L-Curve U-curve ADPC CRESO L-Curve U-curve ADPC

0.7735 NA* 0.8343 0.7948 0.5006 1 0.4272 0.3780

0.7691 NA* 0.8307 0.9039 0.5801 1 0.5274 0.4395

0.7817 0.8215 0.8498 0.8961 0.6063 0.5803 0.2419 0.2009

0.8224 0.8387 0.8702 0.9091 0.3248 0.3107 0.2915 0.2665

(C) (D)

CORRELATION COEFFICIENTS (CC) RELATIVE ROOT-MEAN-SQUARED ERROR (rRMSE)

CRESO L-Curve U-curve ADPC CRESO L-Curve U-curve ADPC

0.8505 0.8317 0.8733 0.9053 0.3062 0.3187 0.2904 0.2683

0.8535 NA* 0.8704 0.8902 0.2019 1 0.1977 0.2134

0.8320 NA* 0.8531 0.8971 0.2717 1 0.1985 0.1683

0.8371 NA* 0.8386 0.8266 0.44 1 0.4654 0.321

(A,B) For the single site pacing. (C,D) From the in-silico heart potentials for the spirals. NA*, Not applicable because the computation of the dV/dT patterns is inhibited due to the
over-regularized solution provided by L-curve. The best results are highlighted in bold.

examples). This agrees with our previous work (Chamorro-
Servent et al., 2016b) where we showed that not applying the zero
flux or Neumann conditions resulted in a less ill-posed problem,
less dependent on the regularization choice. Therefore, minor
differences between applying different regularization parameter-
choices methods were found as expected in terms of the solutions
for the pig datasets. The results for these datasets are not
fully comparable with the rest of the manuscript due to this
change on the numerical MFS problem solved. Instead, the
results of Figure 9, fully comparable in terms of correlation
coefficients (CC), continues to show an improvement on the
U-curve and the ADPC solutions against the CRESO and the
L-curve. Nevertheless, the authors of these datasets specified
in their readme file that they had a un-solved issue with the
amplitude of the recorded potentials. We therefore prefer not
to draw conclusions on the resulting amplitudes (relative root-
mean squared error or rRMSE) for the canine paced and sinus
rhythm datasets. But in terms of the morphology of potentials,
the ADPC continues to be the most stable method. For the four
datasets, the ADPC keeps the potentials morphology (correlation
coefficients) comparable or better than the CRESO method (the
gold standard) does.

Finally, referring to the control and the three myocardial
ischemia datasets from the canine EDGAR experiments, the data
recorded was quite noisy, as shown in the recorded potentials
snapshot of the Supplementary Figure 10. This resulted in
poor (very high) relative root mean square errors (rRMSE).
However, this is not due to an amplitude problem of the
reconstructed potentials (see the Supplementary Material) but
due to the existent noise. Nevertheless, we can see an upper
and better central tendency from the U-curve and the ADPC
correlation coefficients (CC) compared to the other methods,

when reconstructing the ischemia datasets (Figures 10B–D from
manuscript). This is less appreciated in the summary of the
statistics, when the control case in Figure 11C is included.

In conclusion, this study shows the feasibility of the U-curve
and the ADPC techniques in the ECGI inverse problem setting,
when using the MFS as a numerical method. The new techniques
result in an improvement of the morphology of the reconstructed
epicardial potentials and in the in-silico cases of their amplitude.
The ADPC seems to be the most stable method to keep the
morphology of potentials.

LIMITATIONS

This study provides results for the ECGI MFS problem, such
as described in Wang and Rudy (2006). The empirical lower
threshold of the ADPC and the median choice works well due
to the behavior of the decay of the singular values of the MFS
matrix (see Figures 3F, 5F, 8D, 9E). However, it is well-known
that parameter-choice methods are problem dependent (Hansen,
2010). Note for example that the authors in Milanič et al. (2014),
Cluitmans et al. (2015), Figuera et al. (2016) found suitable results
through the L-curve method when using the BEM as a numerical
model, which is not always the case when using the MFS instead.

As explained in the discussion, we focused on automatic
methods that can be extended to include physiologically-
based prior information. Nevertheless, for the cases where
physiologically-based prior information of the solution could not
be provided, it can be interesting to compare our methods with
the generalized cross validation method.

A finer discretization of the AT for visualization, would be
more sensible and provide more continuous data. In addition

Frontiers in Physiology | www.frontiersin.org 12 March 2019 | Volume 10 | Article 273

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Chamorro-Servent et al. Improving ECGI: New Regularization Techniques

FIGURE 8 | Results for the paced beat of the pig experiment (Bear et al., 2015). (A–C) From the left to the right: location of the epicardium where the potentials were

compared (marked with an arrow above the recorded activation pattern). Reconstructed potentials against the measured ones for all the time steps and all the

parameter-choice methods such as indicated in the legend below. Respective zoom (of the reconstructed potentials against the measured ones) at the tk interval

comprised between 343 and 1,161ms. (D) DPC plot at tk = 472ms with the different regularization parameters values holding on horizontal lines following the legend.

to improving the AT maps accuracy, methods such the one
described in Duchateau et al. (2017) can be used.

While we anticipate in section U-curve that the U-curve
method is computationally cheaper than the L-curve (due

to its prior interval) (Krawzyck-Stando and Rudnicki, 2007;
Chamorro-Servent et al., 2011; Chen et al., 2016), we need further
studies, in terms of the computational burden of the whole
parameter choice method.
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FIGURE 9 | (A) Geometries of the canine paced heart EDGAR datasets (Cluitmans et al., 2017). (B) Reconstructed potentials for the different regularization

parameter-choice methods against the measured ones for a point of the epicardium marked with an arrow on its geometry. (C) Correlation coefficients (CC) between

the reconstructed potentials and the respective measured heart potentials. (D) Relative root-mean squared errors (rRMSE) between the reconstructed potentials and

the respective measured heart potentials. (E) DPC plot at tk = 35ms with the different regularization parameters values holding on horizontal lines following the legend.

If anyone wanted to use the new ADPC or the U-curve
method, with other numerical problems such as the BEM,
the FEM or even the MFS with different placement of the
virtual source points such as (Chamorro-Servent et al., 2016a),
or different boundary conditions such as (Chamorro-Servent
et al., 2016b), we recommend repeating this study before
drawing further conclusions. A clear example of this is shown
with the results from the pig experiments (Figures 8, 11A,B),
where we did not impose to the solution compliance with
the zero-flux or homogeneous boundary conditions, and we
found fewer differences between the methods, in agreement
with (Chamorro-Servent et al., 2016b).

Finally, the ADPC method and the L-curve based on the
mathematical solution of a problem with l2-norm constraints

(Hansen, 2010) such as the one presented here, and may not
perform as well when using constraints based on another norm
(for example the l1-regularization norm) (Hansen, 2010). If l1-
norm prior-information needs to be added, then the ADPC
method will not work because it is based on the DPC. PCHansen,
the author of DPC (Hansen, 1990, 2010) has explained this issue
well in his work. The poor performance of ADPC or L-curve in
l1-regularization approaches is not due to a lack of robustness of
the DPC or the method, but due to a misusage. The mathematical
basis of both, the condition and the method, is the l2-norm
Tikhonov solution definition. The DPC is a condition that must
fulfill any regularization parameter for the l2-norm Tikhonov
approach. In the latter, i.e., cases involving other regularization
norm terms, the U-curve method may provide better results.
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FIGURE 10 | The statistics boxplot show the correlation coefficients (CC) and relative root mean-square errors (rRMSE) for the reconstructions with the different

regularization parameter-choice algorithm against the respective in-silico heart potentials. EDGAR canine experiments: (A) control, (B–D) myocardial ischemia’s

(datasets number 16, 39, and 54 from the referred EDGAR experiments). The red crosses denote the outlayers.

OUTLOOK

This study assumed that no a priori physiologically information
about the epicardial potentials were available, while studying
regularization parameter-choice methods that can be adjusted

to problems introducing different l2-norm constraints. Due to
the increasing number of work that proposes the incorporation
electrophysiological knowledge (Figuera et al., 2016; Cluitmans
et al., 2017; Duchateau et al., 2018; Schuler et al., 2018), it
would be interesting to see how the U-curve and ADPC adapted
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FIGURE 11 | The statistics boxplots show: (A,C) the correlation coefficients (CC) and (B,D) the relative root mean-square errors (rRMSE) for the reconstructions with

the different regularization parameter-choice algorithm against the respective in-silico heart potentials. EDGAR experiments: (A,B) paced and sinus rhythm dog and

pig experiments together, (C,D) Control and myocardial ischemia datasets canine experiments from Utah together (ischemia datasets number 16, 39, and 54 from the

referred EDGAR experiments) The red crosses denote the outlayers.

methods perform when including electrophysiological prior
knowledge into a l2-norm constraint.

The reader may observe that the ADPC and the U-curve
continued to preserve the morphology for experimental data
and specifically for high noisy data, such as the control
and the three myocardial ischemia datasets from the canine
EDGAR experiments (Figure 10 and Supplementary Figure 10).
However, it will be interesting to develop a noise robustness
study for the in-silico data, both including noise on the measured
datasets and on the geometric locations of the electrodes.
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