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Sprouting angiogenesis is a necessary process in regeneration and development as well

as in tumorigenesis. VEGF-A is the main pro-angiogenic chemoattractant and it can

bind to the decoy receptor VEGFR1 or to VEGFR2 to induce sprouting. Active sprout

cells express Dll4, which binds to Notch1 on neighboring cells, in turn inhibiting VEGFR2

expression. It is known that the balance between VEGFR2 and VEGFR1 determines

tip selection and network architecture, however the quantitative interrelationship of the

receptors and their interrelated balances, also with relation to Dll4-Notch1 signaling,

remains yet largely unknown. Here, we present an agent-based computer model of

sprouting angiogenesis, integrating VEGFR1 and VEGFR2 in a detailed model of cellular

signaling. Our model reproduces experimental data on VEGFR1 knockout. We show that

soluble VEGFR1 improves the efficiency of angiogenesis by directing sprouts away from

existing cells over a wide range of parameters. Our analysis unravels the relevance of the

stability of the active notch intracellular domain as a dominating hub in this regulatory

network. Our analysis quantitatively dissects the regulatory interactions in sprouting

angiogenesis. Because we use a detailed model of intracellular signaling, the results of

our analysis are directly linked to biological entities. We provide our computational model

and simulation engine for integration in complementary modeling approaches.

Keywords: angiogenesis, VEGFR2, VEGFR1, lateral inhibition, agent based, computational model

INTRODUCTION

Angiogenesis is a pivotal process in various aspects of vertebrate life. In development (Breier,
2000) as well as in regenerative processes like wound healing (Flegg et al., 2015) and bone fracture
healing (Checa and Prendergast, 2009; Carlier et al., 2015a), angiogenesis is necessary to support
newly forming tissue with oxygen and nutrients. Tumors abuse sprouting angiogenesis to direct
vascularization toward them (MacGabhann and Popel, 2006). A quantitative understanding of the
molecularmechanisms that shape vascular network structure can hence lead to improved treatment
options in regenerative medicine and beyond, such as in oncology.

In sprouting angiogenesis, quiescent endothelial cells (ECs) in an existing vessel adopt a
motile tip cell phenotype, release matrix metalloproteases (MMPs) to degrade the extracellular
matrix (ECM) around the vessel, and lead a sprout followed by proliferative stalk cells (Logsdon
et al., 2014). Eventually, the sprouts extend to neighboring vessels and undergo anastomosis and
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lumenization, followed by pruning and further maturation of
the vessel network (Chappell et al., 2011; Tung et al., 2012).
Direct cell-cell signaling and signaling via biochemical gradients
establish different cell types in angiogenesis. Endothelial cells
in emerging vessels can be roughly divided into three different
phenotypes: motile tip cells that lead a vessel sprout, stalk cells
that are proliferative but are not motile, and phalanx cells that
are neither motile nor proliferative but form strong cell-cell
junctions in maturating vessels (Carmeliet and Jain, 2011). The
distinction between tip cells, stalk cells, and phalanx cells is
usually achieved via imaging of different marker genes (Ubezio
et al., 2016). Recent data show that the expression of these marker
genes is highly dynamic and results in dynamic cell state changes
(Venkatraman et al., 2016). Different microenvironments along
a sprout can lead to the emergence of tip-like cells behind the
sprout tip that eventually overtake the actual tip cell (Jakobsson
et al., 2010). The dynamic expression patterns, on the single cell
level, can also lead to oscillatory expression patterns of tip cell
associated genes on the tissue level that modify the topology
of the emerging network in developmental retinal angiogenesis
(Ubezio et al., 2016).

VEGF-A induced Delta-Notch signaling drives tip cell
selection (Liu et al., 2003; Suchting et al., 2007; Bentley et al.,
2009). VEGF-A activates VEGF-receptor 2 (VEGFR2, also called
Flk-1), which leads to the expression of tip cell markers and
sprouting. VEGFR2 activity also leads to increased expression of
dll4, activating Notch1 in neighboring cells through cleavage of
the notch intracellular domain (NICD) which in turn represses
VEGFR2 expression (and subsequently tip cell markers and dll4
expression) through regulation of transcription factors HES2
and HEY2 (Suchting et al., 2007). This lateral inhibition of tip
cell activation induces patterns where tip cells are surrounded
by non-tip cells (Hellström et al., 2007; Lobov et al., 2007;
Venkatraman et al., 2016). VEGF/Delta-Notch signaling is not
isolated, but a wide range of factors can modify tip cell selection
(Harrington et al., 2008; Geudens and Gerhardt, 2011; Benn
et al., 2017). Different splice variants of VEGF-A and different
compositions of the ECM can lead to different diffusion and
binding properties and thus influence sprouting (Keyt and
Berleau, 1996; Ruhrberg et al., 2002; Ferrara et al., 2003).
Additionally, different members of the VEGF family can interact
with different receptors (Cao, 2009).

The decoy receptor VEGF-receptor 1 (VEGFR1, also called
Flt-1) binds VEGF-A with a higher affinity than VEGFR2,
however leads to negligible activation of downstream targets
(Waltenberger et al., 1994). In spite of this, VEGFR1 plays
an important role in angiogenesis, as disruption of VEGFR1
leads to embryonic lethality through vascular overgrowth (Fong
et al., 1995). The presumed role of VEGFR1 in angiogenesis
is to reduce VEGFR2 activity by reducing local VEGF-A
availability (Hiratsuka et al., 1998; Roberts et al., 2004). A
soluble splicing isoform, sVEGFR1, is secreted and can diffuse
through extracellular space to reduce VEGF-A availability in
a radius around a secreting cell (Kendall and Thomas, 1993;
Roberts et al., 2004). Transcriptional regulation of VEGFR1 is
contrary to the regulation of VEGFR2, namely activated by
Dll4-Notch1 signaling (Harrington et al., 2008; Funahashi et al.,

2010) so that VEGFR1 is mainly expressed in stalk cells and
inhibited in tip cells while VEGFR2 is a tip cell marker and
suppressed in stalk cells. Accordingly, the general mechanisms
by which VEGFR1 regulates angiogenesis have been identified,
but their interdependencies with activatory VEGFR2 signaling
and lateral inhibition via Delta-Notch are difficult to collectively
assess experimentally.

VEGF-A has been implied as a target in several clinically
relevant conditions, e.g., ischemia, arthritis, or obesity
(Carmeliet, 2003), peripheral artery disease (Clegg et al.,
2017), or cancer (MacGabhann and Popel, 2006; Zhang et al.,
2010). Anti-VEGF drugs have been very successful in the
treatment of age-related macula degeneration and diabetic
macula oedema (Virgili et al., 2012; Solomon et al., 2014). To
maximize the effectiveness of anti-VEGF drugs in cancer therapy,
however, they need to be combined with drugs targeting different
pathways (Jain et al., 2006; Carmeliet et al., 2009; Incio et al.,
2018; Wagner et al., 2018). Optimization of such combinatorial
therapies requires detailed knowledge of the dynamics within
and between pathways. Computational studies can generate this
knowledge efficiently and can also be used to predict optimal
treatment regimens (Barros de Andrade e Sousa et al., 2016).
Hence an improved understanding of the dynamic interplay
of VEGF pathway components can contribute to improved
treatments against a wide variety of conditions.

A considerable number of computational models of sprouting
angiogenesis exist (Merks et al., 2004; Bentley et al., 2008, 2009;
Jakobsson et al., 2010; Carlier et al., 2012, 2014, 2015b; van
Oers et al., 2014; Boas and Merks, 2015; Heck et al., 2015;
Walpole et al., 2015; Ubezio et al., 2016; Venkatraman et al.,
2016; Bentley and Chakravartula, 2017). Most of these models are
based on the “memAgent-Spring” (Bentley et al., 2008), Cellular
Potts (Merks et al., 2004), or agent based (Carlier et al., 2014)
modeling approaches.

The “memAgent-Spring Model” describes the alignment of
membrane patches assigned to specific cells on a pre-defined
shape, each patch can have its own dynamics concerning
signaling (Bentley et al., 2008). Models using this approach have
been used to explain, for example, tip cell overtaking (Jakobsson
et al., 2010) and oscillations in lateral inhibition (Ubezio et al.,
2016). Although this kind of model can be used to describe tip
selection and intercellular signaling in a sprout in high detail, the
restriction to a static shape on which the cells are aligned makes
it impossible to simulate vascular network formation.

In Cellular Potts models, cells are described by a collection of
nodes on a lattice. Cell shapes and movement arise dynamically
from re-assigning nodes to minimize an energy function (Merks
et al., 2004). This energy function can contain various terms,
e.g., to constrain cell area or perimeter or bias movement to
a certain direction. Cellular Potts models can describe network
formation from individual cells (Köhn-Luque et al., 2013) and
have also been used to explain tip cell overtaking (Boas and
Merks, 2015). A drawback of Cellular Potts models is that
terms of the energy function can be added arbitrarily and are
often difficult to link to biological mechanisms. In addition, the
computational cost renders simulations of vessel networks in 3D
currently unpractical.
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Agent based models in which single cells are represented by
single nodes on a lattice have been used to describe blood vessel
formation in bone healing scenarios (Checa and Prendergast,
2010; Carlier et al., 2015b). Although they omit dynamics of
cellular shape, they can be used to simulate collective cellular
organization (Checa et al., 2015) and computational complexity
is low enough to permit simulation of network formation in 3D.
Existing agent based models of angiogenesis ignore or strongly
simplify biochemical signaling (Checa and Prendergast, 2010;
Carlier et al., 2014, 2015b). In thesemodels, the tip cell phenotype
is either enforced (Checa and Prendergast, 2010) or emerges
as a result of simple rules related to contact inhibition (Carlier
et al., 2014, 2015b). In the latter, model predictions overestimate
vessel growth.

Computational models have also been used to explore the
role of VEGFR1 in angiogenesis. Most of these models focus
on the establishment of VEGF-A and VEGF receptor gradients
and binding kinetics (MacGabhann and Popel, 2004; Wu et al.,
2010; Hashambhoy et al., 2011; Chappell et al., 2016). Walpole
et al. (2015) described cellular movement, but not sprouting as
a whole, in a Cellular Potts-like framework. To date, there is
no computer model that integratively investigates the signaling
interactions of VEGFR2, VEGFR1, and Delta-Notch during
sprouting, their interdependencies and their effects on the
forming vascular network.

Here, we present a computational agent based model
to quantitatively dissect the interrelation of the regulatory
mechanisms in tip selection and sprouting. We focus on Delta-
Notch and VEGF signaling including VEGFR1 and VEGFR2.
Our model allows us to assess the experimentally inaccessible
interdependencies of intracellular signaling and extracellular
conditions. Our analysis shows that VEGFR1 is efficient
in guiding sprouts away from existing vessels and it also
highlights the importance of Delta-Notch signaling, specifically
the degradation of NICD, for angiogenesis. We provide our
model in an open and reproducible way, thus facilitating
integration into different contexts.

MATERIALS AND METHODS

Agent Based Model Simulator
We use a custom simulator, AngioABM, for our agent based
modeling, implemented in C++11 using the boost libraries (The
Boost Community, 2017). The source code is available under
the Apache License 2.0 at https://gitlab.com/ModularABM/
AngioABM/tree/VEGFR1. Scripts for visualization and analysis
are available at https://gitlab.com/ModularABM/ABMTools/
tree/VEGFR1.

In AngioABM, an agent based model consists of global
variables, local variables and agents placed on a discrete 2D
grid. Global variables are single numerical values defined for
all positions of the grid. Local variables are 2D matrices of the
same dimensions as the grid. Agents contain an id, coordinates,
internal variables, and update rules. For clarity, we will refer to
local variables using monospace font and to agents internal
variables in italics. AngioABM reads model descriptions in XML.

AngioABM uses discrete time steps for time course
simulations. At each time step, update and output functions of
all local variables and all agents are called iteratively as shown
in Figure 1.

Local variables represent molecules (in particle numbers
per lattice site). Basic functions for diffusion, degradation, and
addingmolecules are implemented in a base class Localvar. These
functions can be used to implement derived classes of local
variables that exhibit custom dynamics. AngioABM uses forward
integration to compute local variables’ temporal and spatial
evolution. The simulator assumes Dirichlet boundary conditions.

Agents represent cells. Basic functions for agent movement
and interaction with the environment are implemented in a
base class Agent. Derived classes representing specific cells can
use these functions, lists of internal variables and parameters
and can additionally use custom rules or formulas to define cell
dynamics. Agents are updated asynchronously in random order.
Hence, changes in one agents’ state can influence another agents’
dynamics immediately. This reduces numerical errors arising
from the discrete time intervals between agents’ information
exchange and induces stochasticity into the simulation. To
reduce errors in integration, especially in the computation of
local variables, numerical stability is checked and internal steps
are fine grained accordingly. Agents’ parameters can be specified
to refer to a fixed value for all agents or to be sampled from a
random distribution for each agent. Drawing agents’ parameters
from random distributions induces cellular heterogeneity.

Agent Based Model of Sprouting
Angiogenesis
Themodel described here consists of the local variables VEGF-A,
sVEGFR1, and sVEGFR1b (sVEGFR1 bound to VEGF-A)
and agents representing endothelial cells (ECs). VEGF-A,
sVEGFR1, and sVEGFR1b diffuse, are degraded and can
associate and dissociate.

We assume the 2D grid considered in simulations to be
a subarea of the bottom of a well plate containing culture
medium as described in Kappas et al. (2008). We simulate
vascular endothelial cells on this grid, originating from two initial
cell aggregates representing embryoid bodies. We introduce a
VEGF-A influx to each grid cell that depends on the difference
between a global reference value (representing the average value
in the whole volume of culture medium) and the local value. The
reference value is maintained constant as the culture medium in
experiments was renewed every 48 h (Kearney and Bautch, 2003).

We model the EC agents according to the intracellular
signaling model described in the next section. The EC agents
extend or retract filopodia based on their active VEGFR2
(VEGFR2a, see Equations S10, S36, and S37). The filopodia
determine the radius in which an EC agent senses and
binds to VEGF-A. VEGF-A binds to mVEGFR1 and VEGFR2
according to the respective association and dissociation reactions
(Equations S28, S32), sVEGFR1 is secreted (Equation S25). An
EC cell becomes a tip cell when it satisfies tip cell criteria
analogous to criteria described in Blanco et al. (2013):

• VEGFR2_mRNA > VEGFR1_mRNA,
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FIGURE 1 | Flowchart of the agent based model simulations. Colors indicate

processes/decisions associated with simulation time (blue), local variables

(yellow), agents’ intracellular dynamics (turquoise), and agent movement and

proliferation (green).

• filopodia > A∗,
• dll4mRNA > D∗

with threshold parameters A∗ and D∗. A tip cell determines the
direction of the VEGF-A gradient and attempts to move into
that direction with a chance of deviating clockwise or counter-
clockwise. If no gradient exists, tip cells move into a random
direction. The integrity of the sprout is maintained by choosing
a random non-tip neighbor when moving. As stalk cells are

proliferative, a copy of this neighbor is placed on the tip cells’
old position.

Intracellular Signaling Dynamics
The model describes interactions relevant for tip cell selection
and lateral inhibition. It consists of 21 variables and 43
parameters that describe rate laws for binding, transcription,
translation, and degradation of molecules, see Figure 2 for an
overview. In the agent based model, we use a forward Euler
algorithm to solve the corresponding differential equations. The
complete model of intracellular interactions and a list of model
equations are available as Supplementary Material. The model
is provided in the Systems Biology Markup Language (SBML)
(Hucka et al., 2003), an XML based format for the exchange of
computational models of biological processes. The SBML model
has been submitted to the BioModels Database (Chelliah et al.,
2015) and assigned the identifier MODEL1804030001.

Binding of Notch1 to Dll4 from neighboring cells (Dll4nb)
releases the active Notch1 intracellular domain NICD. NICD
induces transcription via different downstream factors
(Hey2/Hes2). We omit intermediate steps, so NICD directly
activates transcription of notch1_mRNA and VEGFR1_mRNA
while repressing expression of VEGFR2_mRNA. We model
transcription rates vtranscription by using Hill-Equations (reviewed,
e.g., in Tummler et al., 2014) with additional terms for the
activation by an activatormod:

vtranscription = Vmax · (
1

a
+ (1−

1

a
)

modh

modh +Mh
0

) (1)

where a indicates the fold increase in transcription upon
activation by mod, Vmax is the maximal transcription rate upon
full activation, M0 determines the modifier value at which
vtranscription is half its maximal value and h determines the slope
of the function. Generally we assume h = 2.

All other reactions (translation and degradation, protein
binding, and dissociation) follow standard Mass-Action kinetics.
VEGFR1 is regarded in two isoforms, membrane-bound
VEGFR1 (mVEGFR1) and soluble VEGFR1 (sVEGFR1).
mVEGFR1 and sVEGFR1 both bind to extracellular VEGF-A,
mVEGFR1 directly, sVEGFR1 only after export. Binding to
VEGF-A leads to inactive complexes that can diffuse, degrade,
or dissociate. VEGFR2 binding to VEGF-A is converted to
VEGFR2bound in the model. After dissociation of VEGF-A,
VEGFR2 is converted to VEGFR2a, also representing the activity
of the downstream signaling cascade. Both VEGFR2bound
and VEGFR2a enhance transcription of dll4_mRNA (omitting
intermediate steps in transcriptional regulation). We describe
transcription and translation as individual processes for each
protein, which also generates time delays.

The model also includes cis-inhibition of Dll4-Notch1
signaling since it has been extensively discussed in literature
to be necessary for lateral inhibition (Sprinzak et al., 2010;
Shaya and Sprinzak, 2011). Additionally, transcriptional auto-
activation of notch1 (Boareto et al., 2015) has been implied in
supporting switch-like behavior by establishing a positive feed-
forward loop on the single cell level (Tyson et al., 2003) and
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FIGURE 2 | Model topology indicating signaling systems in different colors (green: Dll4-Notch1, turquoise: VEGFR1, purple: VEGFR2). dll42 indicates Dll4 from

neighboring cells. Symbols adhere to the Systems Biology Graphical Notation format (Novère et al., 2009): filled arrows represent reactions, empty arrowheads

represent activation, barred arrows represent inhibition, shaded symbols (dll4, VEGF) indicate the same entity in different processes. Circles crossed by a bar

represent sources and sinks of molecule production.

we have implemented according reactions in our model (see
Equations S2, S16, S17).

Model Parameterization
We obtained ranges for parameter values from literature
(MacGabhann and Popel, 2006;MacGabhann et al., 2006; Bentley
et al., 2008; Hashambhoy et al., 2011; Carlier et al., 2012;
Imoukhuede et al., 2013; Boareto et al., 2015; Venkatraman et al.,
2016). wherever possible (fold increase in transcription of Dll4
upon VEGFR2 stimulation, the binding affinity of VEGFR1 to
VEGF-A relative to the binding affinity of VEGFR2 to VEGF-A,
abundance of specific proteins in ECs). Where no specific data
was available, we used ranges reported in Schwanhäusser et al.
(2011) (ranges for transcription, translation, and degradation
rates). In total, 17 initial values have been set, 41 parameters
pertaining to intracellular processes have been estimated and
9 parameters pertaining to extracellular processes have been
estimated based on 4 data points (relative vessel area and
branch points per vessel length for wild type and VEGFR1 -/-)
from published experimental results (Kappas et al., 2008).

Although parameter boundaries were set based on additional
literature, we cannot eliminate the possibility that alternative
biologically feasible parameterizations could also reproduce the
experimental data.

We parameterized the model to reproduce experimental data
from Kappas et al. (2008), namely the relative vessel area (AEC

rel
)

from mouse embryoid bodies grown in culture wells after 8
days for WT and VEGFR1 -/- mutants. For an overview of
published parameter values, values used in this study, and
parameter boundaries used, see Table S3 and the notes in the
Supplementary SBML model.

To generate the parameterization for the whole model, we first
estimated parameters for the intracellular ODEmodel to generate
tip and stalk phenotypes using Copasi (Hoops et al., 2006), then
extended the ODE model to describe three cells next to each
other and estimated parameters based on the previous iteration
to generate lateral inhibition. We used the resulting parameter
values as initial guesses for estimating parameters for the whole
agent based model. Automatic parameter estimation using a
genetic algorithm (Spiesser et al., 2015) was not successful, so we
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optimized parameter values manually to reproduce experimental
data. For this, we iteratively modified individual parameter values
and then computed a set of 5 simulations forWT andVEGFR1 -/-
followed by computing AEC

rel
and comparison to experimental

data. Model fitting was performed forcing all parameters to
remain within the range of values reported in literature, which
are indicated in Table S3.

For initial values and parameters related to the general
condition of a cell (Vmax of transcription and translation) and
the NICD degradation rate (k_nicd_degradation) we modified
not only mean values, but also the deviations of the log-normal
distributions from which they are sampled. Parameters related
to entity specific characteristics (e.g., binding affinities or fold
induction in gene regulation) are not sampled since we assume
that the general state of cells is more variable than the entity
specific characteristics.

Sensitivity Analysis
We analyzed the sensitivity of the simulation results with regard
to changes in parameters. We used the percentage of the area
occupied by ECs (AEC

rel
) as the model output to analyze. For

parameter sensitivity analysis, we consider variations in single
parameters only. To analyze the sensitivity of the model output
to changes in single parameters, we performed 20 simulations
per parameter value over a range of parameter values centered
around the value originally used. This has been done for 46
parameter values between 75% and 125% of the original value of
each parameter (except for the exponents in the Hill equations).
Results are available as Figures S2–S47. For specific parameters,
we repeated the analysis using 51 different parameter values from
1 to 199% of the original value (depicted in Figures 4, 5). This
analysis depends on the parameterization chosen and the effects
of changes in two (ormore) parameters can not be predicted from
combining the effects of two individual parameter changes.

Branching Analysis
To measure branch points, we saved simulation results as image
files and analyzed these with ImageJ-MATLAB (Hiner et al.,
2017). Images were smoothened to ensure connectivity of agents,
then binarized and skeletonized. The skeletonized path was
analyzed for branch points using AnalzyeSkeleton (Arganda-
Carreras et al., 2010). Branch points per millimeter vessel length
were computed using the total length of all branches from the
ImageJ analysis.

RESULTS

In-silico Model Reproduces Experimental
Data on Wild Type and VEGFR1 -/- Strain
The constructed model with the described parameterization
reproduces experimental data on mouse embryoid bodies of
wild type and VEGFR1 -/- strains as described in Kappas et al.
(2008). Over 20 simulation runs for wild type conditions, we
observed distinct vessels in a network topology and ECs covered
17.2%± 5.8 (mean ± standard deviation) of the simulated
area, compared to 16.7% reported for experiments. In 20
simulations for VEGFR1 -/- conditions, nearly no distinct

structures were apparent and ECs covered 55.1% ± 10.5 area
(55.34% in experiments). Branch points/mm are also comparable
to experimental data (9.9 ± 2.2 branchpoints/mm predicted,
12.6 ± 3 branchpoints/mm). Figure 3 shows representative
simulation results for the wild type and the VEGFR1 -/- strain,
comparable to the experimental results shown in Kappas et al.
Kappas et al. (2008). Movies of the simulations are given in
Supplementary Material.

Initial endothelial cells in the model are seeded at two
locations on the grid, corresponding to the seeding of multiple
embryoid bodies (Kappas et al., 2008). Simulations with one
initial cell group in the center of the grid yielded similar means
for the relative area covered by ECs (AEC

rel
) in the WT and

VEGFR1 -/- strain but substantially wider standard deviations
(see Supplementary Material for details and model files).

The transition between tip and stalk cells is smooth. Although
the mean values of intracellular variables strongly differ for tip
and stalk cells, they overlap: non-tip cells exist for which some
intracellular variables have similar values as generally observed
in tip cells. Exemplary distributions are given in Figure S1.

Contributions of VEGF-A Receptors
To analyze the contribution of the different VEGF-A receptors
to sprouting, we evaluated the sensitivity of AEC

rel
to changes

in transcription and translation rates of the receptors. The
parameters analyzed are the rate parameter of translation and the
Vmax parameter of Equation (1) for transcription.

Concerning Vmax of transcription for VEGFR2, we observe
that too little VEGFR2 transcription renders cells insensitive to
VEGF-A while too much VEGFR2 leads to a hyperactivation
of Dll4 and thus too high NICD levels that suppress sprouting.
This is true for both VEGFR2 transcription (Figure 4A) as well
as for VEGFR2 translation (Figure 4B). As shown in Figure 4A,
the sensitivity of AEC

rel
to VEGFR1 transcription displays a

strong inverse relationship. Increased VEGFR1 transcription
causes a reduction in tip cell phenotypes (a tip cell needs to
satisfy VEGFR2_mRNA > VEGFR1_mRNA) and a reduction
in available VEGF-A through binding of VEGF-A to VEGFR1
isoforms. For a complete knockout of VEGFR1, the AEC

rel
decreases from 69 to 51%. This is due to the directional cues that
VEGFR1 provides. Under complete VEGFR1 knockout, vessels
grow in random directions and cannot fill space as effectively as
if they would grow more orthogonally.

Figure 4B shows the effect of changes in the rate of translation
of VEGF receptors. The effect for VEGFR2 is comparable to
that of changing transcription rate (compare Figure 4A), only
that the range of parameter values that allows for sprouting is
narrower. An effect of changing the translation of mVEGFR1, the
membrane bound form of VEGFR1, is not detectable. There is
a weak positive correlation between the translation of sVEGFR1
and the relative vessel area. The sensitivity of branch points/mm
exhibits similar trends as the sensitivity of the relative vessel area
(Figures S49–S52).

Lateral Inhibition via Dll4-Notch1 Signaling
We have also analyzed the translation parameters of Dll4 and
Notch1 (Figure 5A). The translation of Dll4 is anti-correlated
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FIGURE 3 | Representative simulation results: extracellular VEGF-A, and VEGFR2 mRNA for VEGFR1 -/- strain (top) and wild type (bottom) at 60, 90, 120, and 199

h (from left to right).

FIGURE 4 | Parameter sensitivity: changes in relative vessel area (AEC
rel

) after 192 h for variation in parameter Vmax for VEGFR2 and VEGFR1 transcription (A), and the

translation rate of mVEGFR1, sVEGFR1, VEGFR2 (B).

to AEC
rel

since an increase in Dll4 leads to an increase in
trans activation of Notch1 which in term suppresses VEGFR2
transcription and thus prevents sprouting. The sensitivity to
changes in the transcription rate of dll4 (Figure 5A) does not
resemble the sensitivity for the translation rate. This is due
to the tip cell criterion dll4mRNA > D∗, dll4 mRNA has
to exceed a threshold for sprouting. Accordingly, there is a
positive correlation between AEC

rel
and dll4 transcriptional rate

until the trans activation of Notch1 outweighs the tip cell
activating influence of dll4, at around half the original parameter
value. For higher values of dll4 transcription, the sensitivity
resembles that of Dll4 translation. The same trends hold for
branch points/mm (Figures S51),

The translation of Notch1 shows a different pattern: For
Vmax of Notch1 translation below half the original value, no

trans activation occurs and hence no inhibition of VEGFR2
occurs and vessels fill the complete area. Between half the
original parameter value to almost the original value, lateral
inhibition is sufficient to lead to VEGFR1 expression, but not
sufficient to induce patterning and sprouting. The increase in
relative area beyond the original value indicates functional lateral
inhibition and patterning that reach a maximum of about 30%
AEC
rel
. Further increase of Notch1 production makes it more

unlikely to overcome tip cell inhibition, so that the relative
EC area decreases. The sensitivity to transcriptional regulation
of notch1 is similar to that of translational regulation (see
Figures S40, S45), because notch1 mRNA is not involved in tip
cell phenotype conditions, as are VEGFR1, VEGFR2, and dll4
mRNA. Again, the branch points/mm over the parameter ranges
follow the trends in relative vessel area (Figure S51).
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FIGURE 5 | Parameter sensitivity: changes in relative vessel area (AEC
rel

) after 192 h for variation in the translation rates of Notch1 and Dll4, and the transcription rate of

Dll4 (A), and the degradation rate of notch1 intracellular domain and the parameters for Dll4-Notch1 association in cis (kc) and trans (kt) (B).

Concerning the interactions in Notch1-Dll4 signaling, we
have analyzed the sensitivity to parameters kc, kt, and the
degradation rate of NICD, depicted in Figure 5B. Parameter kc
resembles the binding rate of Dll4 to Notch1 on the same cell,
leading to cis inhibition of Notch1. Parameter kt describes the
binding rate of Dll4 to Notch1 on a neighboring cell, leading
to trans activation of Notch1. The trans activation determined
through kt is necessary for lateral inhibition and its absence
leads to hypersprouting. Conversely, a value of kc above 0.154
is necessary to reduce lateral inhibition and induce sprouting.

The amount of NICD, determined by Notch1 activation and
NICD degradation, is crucial for balancing VEGFR1/VEGFR2
levels and thus determine the degree of lateral inhibition (as
indicated in Figure 2). As shown in Figure 5, NICD degradation
needs to surpass a threshold (0.385 of the estimated value) to
allow sufficient production of VEGFR2 and thus allow sprouting
at all. If NICD degradation exceeds another threshold (1.192
of the estimated value), VEGFR2 transcription is not reduced
sufficiently, lateral inhibition ceases and no tip cells are formed.
For values of NICD degradation above 1.692 times the estimated
value, the transcriptional activation of VEGFR1 is sufficiently
reduced to induce sprouting again, but in the absence of
lateral inhibition.

For the Notch1-Dll4 signaling interactions, parameter
variations lead similar trends for branch points/mm as for the
relative vessel area (compare Figure S52).

For most parameters in the Dll4-Notch1 signaling system, the
maximal value of AEC

rel
is about 30%, because changes in Dll4-

Notch1 signaling affect the timing of the onset of sprouting in
our simulations, not the overall number of sprouts, which is more
strongly driven by the availability of active VEGFR2 (compare
also Figures 6B,C).

Influence of Cell-to-Cell Variability
To assess the influence that the sampling of parameters
has on simulation results, we have analyzed simulation runs
using distributions with similar means but different standard

deviations, as depicted in Figure 6. Generally, low variability
leads to low AEC

rel
and late emergence of tip cell phenotypes,

often without any tip cells during the simulated time course.
Here, the high homogeneity of the cells and the symmetric initial
conditions impose highly similar conditions on each agent so that
emergence of tip cells depends solely on the stochasticity induced
through the asynchronous agent updates. Increasing the width
of the random distributions for transcriptional and translational
parameters leads to an increase in sprouting up to a ratio SD

Mean =

0.64, beyond which both Dll4-Notch1 and VEGF-A signaling do
not function properly anymore and tip cell phenotypes emerge
randomly. This leads to an almost instantaneous emergence of
the first tip cell for SD

Mean > 1 (Figure 6C) and AEC
rel

at or below the
maximal value reached (Figure 6A).

For the degradation of NICD, an increased variability leads
to a quite stable AEC

rel
as well as a stable maximal number of

tips. This might seem surprising because the previous analysis
showed that sprouting only occurs in a very tight range of
values for the NICD degradation rate, as shown in Figure 5B.
The results of the sensitivity analysis however impose the same
parameter value on all cells in the model while the variability
analyzed here is between cells. The degradation rate of NICD
critically determines a cells chance of becoming a tip cell,
especially if values of neighboring cells differ and thereby
reinforce lateral inhibition.

The variability of the model output does not increase
additively when sampling transcriptional rate parameters,
translational rate parameters and the NICD degradation rate
(“all” in Figure 6). Instead, the model output becomes more
stable against increasing parameter variability compared to the
“tc” and “tl” groups for intermediate ratios of SD

Mean , because
pattern formation is reinforced by the stronger lateral inhibition
caused by the variability in theNICDdegradation rate. For higher
rates of SD

Mean , the signaling fidelity breaks down and tip cells arise
almost randomly as in the “tc” and “tl” groups, slightly stabilized
by the influence of the variability in NICD degradation that has a
stable influence over all ratios of SD

Mean .
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FIGURE 6 | Parameter distributions strongly influence model dynamics. The standard deviation of the parameter distributions were varied from 0.01 to 2.56 · µ.

Sampled parameters are: Vmax of transcription (tc), translation rates (tl), and the degradation rate of NICD (nicd_deg) or all of the above. Initial values for new agents

were sampled accordingly under all scenarios. Model output for 20 simulations of each setting have been recorded as AEC
rel

(A), the maximal number of active tip cells

(B), and the time of the first tip cell (C). If no tip cells occur during a simulation run (199 h), we set the time to the first tip cell to 1,000 h. Plotted values are given in

Table S2.

Again, the number of branch points by vessel length follows
the trends observed in the AEC

rel
.

DISCUSSION

Angiogenesis is a multi-scale process where multiple signals
must be integrated to enable cellular decision making leading to
the sprouting of new vessels. Here, we present an agent based
computational model of sprouting angiogenesis that focuses on
intracellular signaling. We show that the release of the decoy
receptor sVEGFR1 has two distinct effects. By reducing VEGF-A
concentrations in the vicinity of stalk cells, VEGFR1 (1) reduces
sprouting and (2) directs sprouts to grow orthogonal to existing
structures. The second effect leads to a faster vascularization
of an avascular area under homogeneous VEGF-A conditions.
We observe this impact of VEGFR1 under a wide range of
parameters. Our results are consistent with previous findings on
the interaction of VEGF and sVEGFR1 in a static environment
(Hashambhoy et al., 2011; Chappell et al., 2016), but our study
extends on this by considering a dynamic environment in which
production rates as well as cell positions are not fixed but emerge
from model dynamics.

Our analysis also reveals that the system dynamics, especially
the timing of sprouting, strongly depend on the parameterization
of the Dll4-Notch1 signaling system that determines lateral
inhibition. Our model predicts that the stability of the notch
intracellular domain strongly influences the timing of sprouting
without a strong impact on vessel network architecture.

We furthermore show that cellular heterogeneity is an
important driver of pattern formation. The case of NICD in our
model highlights that varying cell-to-cell variation of a parameter
has different effects than varying the magnitude of the same
parameter. This also has implications for experimental research,

because it is accordingly not sufficient to know the mean value
of some parameter in an ensemble of multiple cells but we also
need to know its variability specified by the distribution and
its moments.

Limitations of the Approach
The model presented here is a 2D lattice based model with
fixed cell shapes. This means that its predictions are limited to
2D environments and cannot be directly transferred to clinical
conditions, e.g., in tumor growth.

Finding the appropriate balance of model detail or resolution
is a fundamental challenge in modeling. Any increase in model
complexity increases the amount of experimental data necessary
to find a reliable parameterization. Here, we have not included all
molecules involved in VEGF signaling in sprouting angiogenesis
(see e.g., Ferrara et al., 2003; Cao, 2009 for reviews of involved
mechanisms), but have attempted to limit our model to the most
important mechanisms with respect to the interplay between
VEGF, VEGFR1 and VEGFR2. Nevertheless, the model contains
58 parameters, some of which are not fixed values but sampled
from random distributions. For none of the parameters, we could
find a reliable value in literature that is certainly applicable to
the experimental conditions the model describes. Rather, we use
the available experimental data (relative vessel area and branch
points per vessel length for WT and VEGFR1 -/-) to generate
a parameterization that is within sensible boundaries based on
literature data.

This parameterization is not guaranteed to be equal to
the physiological parameterization. Because we have restricted
parameter boundaries based on experimental data and our data
reproduces findings reported in literature (Hashambhoy et al.,
2011; Chappell et al., 2016), we expect the model analysis to yield
at least qualitatively correct predictions.
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VEGFR1 in Sprouting Angiogenesis
Kearney et al. (2002) have shown an increase of relative EC area
and a loss of vascular network properties in VEGFR1 -/- mutants
in in-vitro cultures of mouse embryonic bodies. These defects can
be restored by additional expression of sVEGFR1 (Roberts et al.,
2004), but not mVEGFR1 Kappas et al. (2008), and are VEGF-
dependent (Chappell et al., 2009). The proposed mechanism of
action is that sVEGFR1 generates a tight corridor of VEGF-A to
guide the tip cell away from stalk cells.

The analysis of our model indicates that VEGFR1 suppresses
sprouting by reducing the global VEGF-A concentration with
increasing cell density (compare the upper and lower row of
simulation results in Figure 3) and that VEGFR1 provides spatial
cues by reducing the local VEGF-A concentration around stalk
cells, which improves vessel network topology. These spatial
cues lead to nearly orthogonal sprout growth instead of random
sprout growth that we observe when VEGFR1 transcription is
removed completely. This also explains the decrease in relative
vessel area when removing VEGFR1 transcription completely
in Figure 4A. These spatial cues are also the reason for the
weak positive correlation between sVEGFR1 translation and
relative vessel area in Figure 4B, indicating that sVEGFR1 has
a stronger effect than mVEGFR1. Although our model implies
that these effects contribute under a wide range of parameters,
the importance of either of these mechanisms depends on
the external conditions. Under wound healing conditions with
cellular sources of soluble VEGF-A, the importance of VEGFR1
will be higher than in the developing mouse retina, where new
vessels follow the tracks of astrocytes supplemented with ECM-
bound VEGF-A (Gerhardt et al., 2003).

Diffusion properties and morphogen gradients are
notoriously difficult to quantify in tissues experimentally
(Bothma et al., 2010; Köhn-Luque et al., 2011). Our
computational analysis of the role of sVEGFR1 provides
important insights into the regulatory capabilities of this
mechanism and opens up new questions: In contrast to the
static environment considered in our simulations, how does the
dynamic environment provided by the ECM influence the effects
of VEGFR1? This question is of specific importance to clinical
settings, e.g., regeneration or tumor growth, where multiple
dynamic sources of VEGF-A might be present and the ECM is
undergoing active rearrangement.

Also, our analysis indicates that only the complete removal
of VEGFR1 transcription abolishes the spatial cues provided
by sVEGFR1 (Figure 4A). This is an artifact of our model,
because our in-silico cells sense any difference in external VEGF
concentrations, unlike in-vitro or in-vivo situations, where cells
sense the VEGF-A gradient by differential binding of VEGF-A to
receptors on their filopodia.

Lateral Inhibition and Cellular
Heterogeneity
In contrast to the gradual changes in simulation output caused
by changes in VEGFR1 or VEGFR2 production rates, changes
in parameters involved in Delta-Notch1 signaling cause stronger
and more abrupt changes over certain parameter value ranges

(Figures 4, 5). This indicates that the fine tuning of parameters
in lateral inhibition is more important in angiogenesis than the
actual VEGF-A receptor kinetics, according to our analysis.

In the model we present, the base state of a cell is a
quiescent stalk-cell like state, and the basic activity of lateral
inhibition is relatively high. For sprouting, cells have to overcome
this basal lateral inhibition. Cellular heterogeneity through
sampled parameters is an important driver of the differentiation
of individual cells in our model. Although the sampling is
random, a specific cell can be primed for sprouting by the
sampled parameter values. Neighboring cells might be assigned
parameter values that make them less likely to sprout and the
difference between these cells is then further amplified through
lateral inhibition. The most important parameter to generate
heterogeneity for sprouting is the degradation rate of NICD.
Even small stochasticity in NICD degradation increases cellular
heterogeneity in the lateral inhibition pathway and significantly
improves sprouting efficiency. Because the stability of NICD
does not directly affect sprouting but the heterogeneity between
neighboring cells, larger stochasticity in NICD degradation does
not lead to a breakdown of the system, as observed when
sampling transcription or translation parameters from wide
distributions (Figure 6). The importance of the regulation of
NICD stability for signaling has been discussed before (see
e.g., Kopan and Ilagan, 2009; Andersson et al., 2011; Herbert
and Stainier, 2011; Bray, 2016), mechanisms include different
cleavage products and active targeting of NICD for proteosomal
degradation, acetylation by SIRT1 or interaction with other
signaling pathways via YAP or SMAD3.

Beyond this specific finding, our analysis on the role of
parameter distributions in computational models of multicellular
ensembles also has a general relevance. Assuming a fixed value
for NICD degradation for all cells and varying this value
showed only a narrow band of parameter values that lead to
efficient sprouting (Figure 5B). Sampling the value of NICD
degradation for each cell from a random distribution improves
sprouting efficiency (Figures 6A,B). Our simulations show that
pattern formation is facilitated by cell-cell heterogeneity. It is not
surprising that this effect is most pronounced for a parameter
at the core of lateral inhibition, the main driver of pattern
formation under the conditions used here. Generally, pattern
formation can be reinforced or damped by cellular heterogeneity
and this heterogeneity needs to be considered, in computational
and experimental studies alike. Beyond transcriptional noise
and asymmetric cell division (Costa et al., 2016), we need to
consider that cell-cell and cell-matrix interactions also modify
and influence cellular signaling (Qazi et al., 2017) and even the
overall cellular state (Battich et al., 2015).

Computational Modeling of Sprouting
Angiogenesis
The agent based model we present here omits cell shape
dynamics and ensures vessel connectivity by dividing stalk
cells upon tip movement. This neglects cell shape changes and
their effect on network formation (Boas and Merks, 2015).
Nevertheless, the model presented here considers biochemical
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signaling with a higher level of detail than most models of
sprouting angiogenesis (Merks et al., 2004; Bentley et al., 2008,
2009; Checa and Prendergast, 2010; Jakobsson et al., 2010; Carlier
et al., 2012, 2014; Köhn-Luque et al., 2013; van Oers et al.,
2014; Boas and Merks, 2015; Walpole et al., 2015; Ubezio et al.,
2016; Venkatraman et al., 2016; Bentley and Chakravartula,
2017). The introduction of separate transcription/translation
steps in our model—although it still omits intermediate steps in
transcriptional regulation—introduces a dynamic delay between
transcriptional activation and protein production that is omitted
in most models. Because of the more faithful biochemical model,
experimental perturbations can be more directly linked to model
entities. The coarse spatial resolution of our model can be
interpreted as a different level of magnification from which the
biological dynamics are observed.

The complete model code can be downloaded and reused and
we hope that further development of the model by us and other
groups will help to further understand the dynamics of sprouting
angiogenesis. Future development of the model could focus on
the interactions between chemical and mechanical signals or in
the cross-talk between different signaling pathways.

In order to generate reliable and clinically relevant predictions
of angiogenesis to improve regeneration, enable fine-tuned tissue
engineering or ablate tumor-dependent angiogenesis, we need
to integrate various mechanisms in a dynamic environment.
Moreover, these models need to be parameterized based on
dedicated experimental data. By providing our model in an open
and reproducible manner, we enable its integration into models
that consider cell shape dynamics, interactions with the ECM, or
network formation in 3D.

Conclusion and Outlook
We present an agent based computer model of sprouting
angiogenesis focusing on intracellular signaling and its effects on
pattern formation. Specifically, we focus on the role of VEGFR1
and its interrelation with VEGFR2 and Delta-Notch signaling.
Our findings do not replace published modeling efforts but are
complementary because our focus differs from existing literature.
Our simulations go beyond comparable models concerning level
of detail of intracellular signaling, cell numbers considered, and
simulation time.

Our results support the hypothesis that soluble VEGFR1
provides spatial cues to guide sprouts away from their
origin and it predicts that this effect is robust over a wide
range of parameters. Our model analysis shows that lateral
inhibition, and especially the regulation of NICD stability
and its variability across cells, is critical for the regulation of
sprouting angiogenesis.

This leads us to argue that complementary modeling
approaches need to combined and supplemented with dedicated
experimental data to generate reliable predictions, to generate
models that do not only reproduce training data but are
also capable of predicting validation data correctly and
function over a wide range of conditions. The advantage of
incorporating dedicated signaling models into cell-based models
of angiogenesis is that these models provide direct links between
experimental perturbations and model dynamics.
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