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Background: Non-invasive cardiac mapping—also known as Electrocardiographic

imaging (ECGi)—is a novel, painless and relatively economic method to map the electrical

activation and repolarization patterns of the heart, providing a valuable tool for early

identification and diagnosis of conduction abnormalities and arrhythmias. Moreover,

the ability to obtain information on cardiac electrical activity non-invasively using ECGi

provides the potential for a priori information to guide invasive surgical procedures,

improving success rates, and reducing procedure time.

Previous studies have shown the influence of clinical variables, such as heart rate,

heart size, endocardial wall, and body composition on surface electrocardiogram (ECG)

measurements. The influence of clinical variables on the ECG variability has provided

information on cardiovascular control and its abnormalities in various pathologies.

However, the effects of such clinical variables on the Body Surface Potential (BSP) and

ECGi maps have yet to be systematically investigated.

Methods: In this study we investigated the effects of heart size, intracardiac

thickness, and heart rate on BSP and ECGi maps using a previously-developed 3D

electrophysiologically-detailed ventricles-torso model. The inverse solution was solved

using the three different Tikhonov regularization methods.

Results: Through comparison of multiple measures of error/accuracy on the ECGi

reconstructions, our results showed that using different heart geometries to solve the

forward and inverse problems produced a larger estimated focal excitation location.

An increase of ∼2mm in the Euclidean distance error was observed for an increase

in the heart size. However, the estimation of the location of focal activity was still able to

be obtained. Similarly, a Euclidean distance increase was observed when the order of

regularization was reduced.

For the case of activation maps reconstructed at the same ectopic focus location but

different heart rates, an increase in the errors and Euclidean distance was observed when

the heart rate was increased.
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Conclusions: Non-invasive cardiac mapping can still provide useful information about

cardiac activation patterns for the cases when a different geometry is used for the inverse

problem compared to the one used for the forward solution; rapid pacing rates can

induce order-dependent errors in the accuracy of reconstruction.

Keywords: ECGi, non-invasive mapping, body surface potential, heart rate, cardiac hyperthrophy

INTRODUCTION

Cardiovascular disease is a major contributor to reduced quality
of life and mortality worldwide (Benjamin et al., 2017). Cardiac
conditions such as heart failure, myocardial infarction, and
hypertrophic/dilated cardiac myopathy are related to electrical
dysfunction (i.e., arrhythmia) and typically result in reduced
cardiac output. Diagnosis and treatment of these conditions
presents a significant healthcare challenge, in part due to
their dual electrophysiological-structural components. Short-
and long-term adaptation of cardiac structure and ion channel
expression, which includes reversible and irreversible remodeling
associated with disease, further compounds the challenge. For
example, cardiac hypertrophy, which is an important risk factor
of heart failure and sudden cardiac death (Vriesendorp et al.,
2015), is characterized by abnormal thickening of the heart
muscle, usually resulting from increases in cardiac cell size,
in order to compensate for inhibited contractile performance
(Shimizu and Minamino, 2016). The particular manifestation of
electrical dysfunction may therefore vary over the time-course
of the condition; the ability to accurately map the electrical
activity of the heart non-invasively over this whole period can
offer significant advantages for the long-term management of
such conditions.

Electrocardiographic imaging (ECGi) is a novel, painless and
(relatively) economic method to map the electrical activation and
repolarization patterns of the heart (Ghosh et al., 2011; Alday
et al., 2016; Bear et al., 2016; Perez Alday et al., 2016; Zhang
et al., 2016), and presents the possibility to better understand
cardiac excitation patterns and provide a priori information
to guide invasive surgical procedures, improving success rates
and reducing procedure time (Silva et al., 2009; Dubois et al.,
2015; Zhang et al., 2016). Based on solving the inverse problem
of electrocardiography, with the heart acting as an electrical
source inside the volume conductor of the body, ECGi aims to
reconstruct the electrical activity on the surface of the heart using
body surface potential (BSP) maps obtained from torso surface
multi-array electrocardiogram (ECG) systems (Macfarlane et al.,
2010; Rudy, 2013; Perez-Alday et al., 2017b). It depends on 3D
heart and torso structures and therefore requires reconstructions
of patients’ cardiac and torso anatomy, which are typically
acquired using the clinical imaging technologies of Magnetic
Resonance Imaging (MRI) or Computed Tomography (CT). Due
to the expense of these modalities, it may not be desirable to
attain structural information from a patient repeatedly over the
course of structural adaptions. However, the potential impact of
using out-of-date structural information when performing ECGi
is unclear.

In addition, previous studies have shown the influence of
clinical variables, such as respiration (Langley et al., 2010;
Baumert et al., 2013), body composition, (Zemzemi et al.,
2015), and heart rate and body position (Appel et al., 1989;
Goldenberg et al., 2006) on the ECG measurement. Based on
these insights, adjusted ECG parameters (e.g., corrected QT
interval) have improved the detection of patients at increased
risk of cardiac arrhythmias (Kabir et al., 2016). It follows that
such variables may also influence interpretation of BSP and
ECGi data, but the nature of these relationships have yet to be
systematically investigated.

The aim of this study was therefore to assess the effect
of varying cardiac structure and electrical pacing rate on
the accuracy of ECGi reconstructions. An in silico approach
was used to provide clean and controllable data to compare
reconstructions attained at multiple pacing rates and with
underlying hypertrophic and dilated cardiac anatomy under
sinus rhythm and ectopic focal excitation.

METHODS

The in silico approach utilized idealized, electrophysiologically
heterogeneous human bi-ventricle models to simulate electrical
excitation in control, dilated and hypertrophied conditions
(sections “Virtual Bi-ventricle Models” to “Ventricular
Simulation Protocols”). Ventricular activation was then
combined with a heterogeneous torso model and the forward
problem was solved to produce simulated BSP maps (section
“Simulated Body Surface Potential”). The inverse solution,
using multiple regularization approaches, was applied to the
simulated BSP maps in order to produce ECGi epicardial
potential reconstructions and compute activation patterns
(section “Inverse Solution”). Multiple measures were used to
quantify and compare results obtained under the different
conditions (section “Analysis Methods”).

Virtual Bi-Ventricle Models
Idealized human bi-ventricle geometries were constructed as
structured finite difference grids, wherein the left and right
ventricles (LV and RV, respectively) were modeled as thick- and
thin-walled truncated ellipsoids, respectively. A control (normal)
geometry was constructed in order to have physiologically-
accurate ventricular wall thicknesses (12–15 and 3–5mm for
LV and RV, respectively; Ho and Nihoyannopoulos, 2006; Ho,
2009) and volumes (∼150–210mL for the LV in human males;
Alfakih et al., 2003; Clay et al., 2006), and the overall size and
ventricular curvature were qualitatively matched against multiple
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existing human ventricle datasets (Seemann et al., 2006; Benson
et al., 2011; Keller et al., 2011). From this, two more geometries
were created by increasing either the wall thickness or the short
axis diameter by 50%. In total three cases were considered:
(i) normal, (ii) thick-walled (hypertrophied), and (iii) dilated
ventricles (Figure 1A). A spatial resolution of 1x = 1y = 1z
= 0.5mm was used, which gave ∼2 × 106 nodes in tissue, to
facilitate high-throughput generation ofmultiple datasets for BSP
and ECGi analysis. Measurements of the LV volume, LV wall
thickness, and RV wall thickness from the developed geometries
are given in Table 1.

In each case, a simple ruled-based model was implemented
to assign myocardial fiber orientations (Figure 1Ci) using a
standard approach based on rules proposed by Streeter et al.
(1969). A value of the helix angle, α, was assigned to each node
of the grid, given by

α = R(1− 2d)n, (1)

where R is the transmural rotation (varying from +R at the
endocardium to –R at the epicardium), d is the normalized

transmural depth (varying from 0 at the endocardium to 1 at the
epicardium), and n determines the transmural variation in helix
angle (e.g., n = 1 is linear, n = 3 is cubic). For all simulations
in this study, R was set to 60◦, giving a transmural rotation in
helix angle of 120◦, similar to that observed in existing human
ventricular datasets (Seemann et al., 2006; Benson et al., 2010),
and n was set to 1 (Benson et al., 2008). The transverse angle
was assumed to be 0◦ as it has been shown to be constantly
around 0◦ throughout the ventricles (Seemann et al., 2006), and
no sheetlet structure was incorporated, as this has been suggested
to show great variability between hearts (Benson et al., 2008). A
small degree of smoothing was applied where the right ventricle
joins the ventricular septum, to ensure a smooth transition in
helix angles.

Single Cell Model of Human Ventricles
To simulate the action potential (AP) of human ventricular
myocytes, the 2006 version of the Ten Tusscher et al. model
was used (Ten Tusscher and Panfilov, 2006), which accounts
for distinct electrophysiological differences in cells from the

FIGURE 1 | Computational models of the human ventricles and torso. (A) An open view of geometries representing (i) normal/control, (ii) thick-walled, and (iii) dilated

human ventricles with the epicardial (blue), mid-myocardial (green), and endocardial (red) segmented regions shown. (B) Single cell ventricular action potentials

representing (i) transmural (TM) heterogeneity in cells from the endocardium (ENDO), mid-myocardium (MCELL), and epicardium (EPI), (ii) apico-basal (AB)

heterogeneity (shown for EPI cells), and (iii) short single cell action potentials used in this study. All models are uncoupled single cells paced at a cycle length of

1,000ms. (C) (i) Fiber orientation (normalized z component of primary fiber; red and blue indicate parallel to the long axis of the heart from apex to base, green

indicates perpendicular to the long axis of the heart); (ii) Heart-torso model used to compute the (iii) body surface potential.

Frontiers in Physiology | www.frontiersin.org 3 April 2019 | Volume 10 | Article 308

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Perez Alday et al. Clinical Variables on Non-invasive Mapping

TABLE 1 | A summary of dimensions in developed idealized ventricular

geometries.

Control Thick-walled Dilated

LV wall volume (mL) 196.56 249.77 255.29

LV wall thickness (mm) 12.00 18.00 12.00

RV wall thickness (mm) 4.00 6.00 4.00

ventricular endocardium (ENDO), mid-myocardium (MCELL),
and epicardium (EPI; Figure 1Bi). The bi-ventricle models
were segmented into 40% ENDO, 30% MCELL, and 30% EPI
cells (Figure 1A), similar to previously used ratios (Adeniran
et al., 2011, 2017). The existing transmural heterogeneity was
increased by adjusting the ENDO:EPI:MCELL ratio of rapid
delayed rectifier potassium current, IKr, maximal conductance to
1.0:1.6:1.0 (Adeniran et al., 2011;Whittaker et al., 2017). This was
based on transmural measurements of hERG mRNA expression
(Szabó et al., 2005), and was necessary to reproduce the longer AP
of ENDO compared to EPI cells (Glukhov et al., 2010; Boukens
et al., 2015). Furthermore, a linear gradient in the conductance
of transient outward potassium current, Ito, and slow delayed
rectifier potassium current, IKs, was introduced along the apex-
base (AB) axis (Keller et al., 2011; Alday et al., 2016). Briefly,
maximal conductance of Ito and IKs were reduced by a maximum
of 50% in basal cells relative to apical cells in order to reproduce
apico-basal heterogeneity (Figure 1Bii), giving a roughly 50ms
longer AP duration in basal cells than in apical cells (Szentadrassy
et al., 2005). Themaximal conductance of current x from cell type
y, gx,y, was given by

gx,y = gBase,y +
(

gApex,y − gBase,y
)

· fAB, (2)

fAB =
z − zBase

zApex − zBase
, (3)

where gApex,y and gBase,y are maximal values of the conductance
of cell type y at the apex and base, respectively, f AB is a gradient
factor which depends linearly on the value of the z co-ordinate
which lies along the AB axis (varying from 1 at the apex to 0 at the
base), and zBase and zApex are the values of the z coordinate at the
apex and base, respectively. No electrophysiological differences
were incorporated between the LV and RV (Keller et al., 2011).

Modeling Action Potential Propagation
The monodomain equation was used to describe the propagation
of APs in the bi-ventricle geometries:

∂V

∂t
= ∇ (D∇V) −

Iion

Cm
, (4)

where V is the transmembrane voltage, D is the global
conductivity tensor, Iion is the total ionic current, and Cm is
the membrane capacitance. Equation (4) was solved numerically
using a finite-difference PDE solver based on the explicit
forward Euler method, using an operator splitting technique
and an adaptive time step with minimum and maximum time
steps of 1tmin=0.02ms and 1tmax=0.2ms, respectively (Benson

et al., 2010). As axially-symmetric anisotropy was assumed,
two principal values of the diffusion coefficient were required:
D||, the longitudinal value of the conductivity which describes
propagation in the fiber direction, and D⊥, the transverse value,
which describes propagation orthogonal to fibers. The diffusion
tensor can thus be written as

D = D⊥I+ (D|| − D⊥)AA
T, (5)

where I is the identity matrix, A is a unit vector giving the fiber
direction, and AT is the transpose of A.

The longitudinal value of the conductivity, D||, was set to 0.18
mm2ms−1 in this study, which gave a conduction velocity of 70
cms−1 in the fiber direction (Benson et al., 2007), in agreement
with experimental measurements of conduction velocity along
fibers in human ventricular tissue (Taggart et al., 2000). An
anisotropic conductivity ratio of D||:D⊥ = 4:1 was used (Benson
et al., 2007; Whittaker et al., 2017).

Ventricular Simulation Protocols
Sinus rhythm activation of the ventricles was elicited by
stimulating a series of 28 localized patches (with diameters of∼9–
12mm) in quick succession along the endocardial wall (stimulus
amplitude and duration−52 pA/pF and 1ms, respectively, where
the wavefront was initiated in the intra-ventricular septum before
spreading from apex to base throughout the left and right
ventricles. This gave a total activation time of ∼65ms in the
control geometry, in good agreement with the classic results of
Durrer et al. (1970). For studying the effects of ectopic activity
in the ventricles, four prescribed locations which could be easily
identified in each of the geometries were chosen as “ectopic
stimulus” sites: (i) the right ventricular lateral wall (RV-LAT), (ii)
the intra-ventricular septum (SEP), (iii) the left ventricular lateral
wall (LV-LAT), and (iv) the left ventricular apex (LV-Apex). In
each case, localized −52 pA/pF stimuli of 1ms duration were
applied over 5 mm.

Simulated Body Surface Potential
The ventricular model was placed into a previously developed
biophysically-detailed computational three-dimensional heart-
torso model which accounts for the distinct structures of the
lungs, liver, blood masses, stomach, spleen, kidneys, ribs and
spinal cord, and the respective electrical conductivities (Perez-
Alday et al., 2015) (Figure 1Cii). This model has been previously
used to develop an algorithm to diagnose atrial ectopic origin
from multi lead ECG systems and ventricular ischemia (Alday
et al., 2016; Perez-Alday et al., 2017a). Details of the torso model
development, validation and simulation protocols can be found
in Perez-Alday et al. (2015). Briefly, the heart-torso algorithm
previously developed was used to solve the forward problem
and obtain BSP maps (Figure 1Ciii) in each of the cases. The
potential on the surface of the body was obtained from the 3D
ventricular model using Salu’s approach (Salu, 1980), utilizing
the Boundary Element Method and Green’s identities to solve the
Poisson equation (Macfarlane et al., 2010).
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Inverse Solution
An inverse solution was developed, extending previously
published preliminary work (Alday et al., 2016). Briefly, and
based on prior work from Ramanathan and Rudy (2001),
surface to surface torso-heart matrix was calculated using Barr’s
approach, where an equivalent potential distribution on a closed
surface is used to build the homogenous heart-torso matrix (Barr
et al., 1977); note therefore that, whereas the forward problem
is solved on a heterogeneous torso, the inverse solution is
provided on a homogeneous torso model. From the BSP maps, a
previously developed inverse problem algorithm using Tikhonov
regularization using Generalized Single Value Decomposition
(GSVD) numerical approach was used to obtain the activation
on the surface of the heart (Hansen, 1998). The potentials on the
surface, x, were obtained by solving Equation (6):

x = min
x

{
∣

∣

∣

∣Zx− y
∣

∣

∣

∣

2
+ λ2 ||Rx||}, (6)

where Z is the transfer matrix, y represents the BSP vector, λ is the
regularization parameter obtained using the L-curve (Hansen,
1992), and R is the regularization operator. Zero (Identity matrix,
R = I), First (Gradient operator, R = ∇ ), and Second (Laplace
operator, R = 1) order Tikhonov were used to regularize the
solution. The GSVD technique was used to solve Equation (6)
in each case.

As an ill-posed problem, noisy signals can have an important
effect on the reconstructed maps. Whereas it is common in
modeling studies of ECGi to include additional white noise, this
was not performed in this study for the bulk of our analysis.
Please see “Discussion: Limitations” for further details on the
inclusion of noise and its impact.

Analysis Methods
Epicardial potentials were reconstructed from the BSP obtained
at each instant of time for each geometry and activation case.
Activation maps were calculated by computing maximal negative
slope at each node at each time step (Gage et al., 2017).
An example of original and reconstructed epicardial potential
snapshots and the corresponding activation maps is shown in
the Section S1 in Supplementary Material. To quantify the
differences between the BSP and reconstructed activation maps
for each of the geometry cases, three difference methods were
used (Bear et al., 2015, 2018b):

1) Voltage root mean squared (RMS):

RMS =

√

∑N
i=1∅

2
i

N
;

2) Relative RMS error (rRMSe):

rRMSe =

√

√

√

√

∑N
i=1 (∅i

′ −∅i)2
∑N

i=1 (∅i
′)2

;

3) Pearson correlation coefficient (PCC):

PCC =

∑N
i=1 (∅i

′ −∅i)(∅i
′ −∅i)

√

∑N
i=1 (∅i

′ −∅i)
2
(∅i

′ −∅i)
2
,

where N is the number of elements in the mesh (torso
or epicardial elements), ∅ is the potential reconstructed or
measured and∅

′ is the original simulated potential, while∅ and
∅

′ are the mean potential values across all elements of the mesh.
RMS gives an estimation of the variability of the signal. rRMSe
gives an estimation of the variability between two methods.
PCC is the measure of the correlation between two variables.
The analysis was performed at each temporal snapshot of the
ventricular activation.

To investigate the focus location accuracy of the inverse
solutions, the Euclidean distance (ED) was calculated at the
center of the earliest activation: | |ED| | =

√

(r′ − r)2, where r is
the center of activation of the reconstructed potential in the 3D
Euclidean space and r′ is the center of activation of the original
simulated data. The Euclidean distance was calculated for all the
ectopic cases and a median value is reported in this study.

Investigating the Effect of Using the
Incorrect Geometry for ECGi
The impact of using only an initial patient anatomical
reconstruction when performing ECGi, which doesn’t capture
any structural remodeling which may have occurred between
the time of the scan and any present measurements, was
investigated: Ectopic ventricular activation was simulated on
all three geometries (control, thick-walled, and dilated; section
“Virtual Bi-ventricle Models”) and used to solve the forward
problem and produce BSP maps; the ECGi reconstruction was
performed using only the control geometry, representing the
initial patient scan. Quantification of errors and correlations were
performed by comparing the reconstruction with the control
geometry activation for each matched ectopic location, such that
geometrical differences don’t have to be accounted for.

Investigating the Effect of Heart Rate on
ECGi
The effect of heart rate on the epicardial reconstructions
obtained using the three Tikhonov regularization methods was
assessed for focal excitations using the control geometry paced
at basic cycle lengths (BCL) of 1,000, 750, 500, 300, and 150ms
[corresponding to pacing rates of 60, 80, 120, 200, and 400
Beats per Minute (BPM), respectively]. Shortening of the AP
(Figure 1Biii) induced by a five-fold increase in the conductance
of IKr and IKs was employed to sustain the most rapid excitation
rate (BCL = 150ms). All other data were produced using the
control AP models.

RESULTS

First, the impact of the different geometries (control, thick-
walled, and dilated) on simulated BSP under control pacing
conditions were compared to illustrate recapitulation of
activation pattern and ECG differences observed under these
conditions in the in silico framework (section “Simulated Body
Surface Potential Under Different Conditions”). Then, the
potential errors induced by using out-of-date and inaccurate
cardiac anatomical reconstructions when performing ECGi was
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assessed (section “Effects of Wall Thickness and Heart Size on
Non-invasive Cardiac Maps”). Finally, we investigated the effect
of heart rate on the accuracy of reconstructed activation patterns
using the different regularization approaches (section “Effects of
Heart Rate on Non-invasive Cardiac Maps”).

Simulated Body Surface Potential Under
Different Conditions
The effects of the different geometries on the BSP were
quantified by comparing the thick-walled and dilated geometries
vs. the control during ventricular activation (Figure 2). Small
differences were observed in the BSP maps at different instants
of time (Figure 2A), quantitative measurements are plotted
for comparison. A similar RMS was obtained for the three
cases which produced relatively small rRMSe values (Figure 2B).
However, the largest values were observed early during the
activation sequence (first 75ms). A good agreement between the
signal was observed for both cases (average PCC> 0.8), however,
at mid activation time (between 125 and 175ms) the values
dropped significantly, with the dilated condition resulting in the
smallest correlation.

Effects of Wall Thickness and Heart Size
on Non-invasive Cardiac Maps
Data are illustrated for a single ectopic site only (RV-LAT—
Figure 3) and summarized for all sites (Table 2). During the
initial excitation phase (75ms), similar small RMS and rRMSe
values were observed for the three cases (Figure 3). During the
mid and later activation times, RMS and rRMSe values weremore
dependent on the order of the regularization than the geometry,
with First and Second order giving the smallest errors. Similarly,
PCC values were considerably larger using First and Second order
compared to the Zero order, and the Zero order displayed the
most unique and geometry-dependent temporal evolution. The
general increase in correlation over the time of the activation
sequence is attributed to the increase in area of active tissue. RMS,
rRMSe, and PCC were similar for all three heart geometries,
although in general the control geometry exhibited the smallest
errors and largest correlation and the dilated geometry exhibited
the largest errors and smallest correlation (Figure 3; Table 2).

The calculated ED, measuring the error in correlation between
real and identified focus location, varied for each geometry
using the three Tikhonov methods (Figure 4A). Smaller values
were observed for the Second order method (compared to Zero
and First) and the control geometry (compared with thick and
dilated, with dilated giving the largest values). However, the
differences observed between geometries was less significant than
that between methods.

Effects of Heart Rate on Non-invasive
Cardiac Maps
The EDwas calculated and compared for each different heart rate
and Tikhonov method (Figure 4B). The Second order method in
all the cases produced the smaller ED values. A marked increase
in the ED was observed when the heart rate was increased for

all methods, which also resulted in convergence of the solutions
obtained using the different methods at the most rapid rate.

The reconstructed activation patterns were compared across
the different pacing rates; illustrative data for the LV-LAT site
are shown in Figure 5 and data from all ectopic sites are
summarized in Table 3. At the slowest pacing rates (BCL= 1,000
and 750ms), corresponding to normal heart rates in healthy
patients (60 and 80 BPM, respectively), the Zero order method
resulted in the larger rRMSe values and lower PCC values and
contained the most noise. Both the First and Second order
methods resulted in lower rRMSe values and larger PCC values
over the temporal range of excitation (Figure 5—BCL = 1,000
and 750ms), with the Second order in general performing the
best, in congruence with the ED values (Figure 4B). The PCC for
all methods in general increased over the time of the activation.
At the most rapid rates (Figure 5—BCL = 300 and 150ms),
the temporal evolution of the PCC for First and Second order
reversed, decreasing over the activation time, whereas the Zero
order remained largely flat. The initial larger correlation for
First and Second order compared to the slow pacing rates did
not correspond to small ED and therefore was not a result of
accurate reconstruction of the initial phase of excitation. The
differences between the methods decreased at these rapid rates,
largely due to an increase in the errors associated with First and
Second order with no corresponding change to the Zero order
solution (Figure 5, BCL = 150 and 300ms). In all conditions,
the Zero order approximation presented the most noise, but the
reconstruction at the rapid excitation rates was more stable and
comparable with the Second and First order (Table 3).

DISCUSSION

Summary
In this study, we used an in silico approach to evaluate the
impact of different ventricular anatomical morphologies and
heart rate on the accuracy of epicardial reconstructions attained
through the application of the inverse solution to the BSP.
We have demonstrated that the different cardiac anatomical
states resulted in small but measurable differences in the
BSP (Figure 2). Furthermore, we demonstrated that differences
between actual underlying cardiac anatomy (i.e., the heart
model on which electrical activation was simulated) and the
reconstructed anatomy (i.e., the heart model on which the inverse
solution was applied) led to errors in the reconstruction of
both epicardial potential maps and activation patterns (Figure 3;
Table 2). However, the location of the ectopic focal excitation
was still largely correctly estimated, even with the incorrect
geometry used for reconstruction (Figure 4). Moreover, we
have demonstrated an important heart rate dependency of
the correlation coefficients and reconstruction errors (Figure 5;
Table 3). In general, the Second order regularization approach
produced the smallest errors and largest correlation.

Clinical Importance
ECGi is a powerful and rapidly developing approach to non-
invasively map patients’ cardiac electrical activity in the clinic.
The method aims to overcome some of the numerous challenges
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FIGURE 2 | Comparison of simulated BSP obtained from the three different geometries during ventricular activation. (A) BSP obtained for control case, the

thick-walled and dilated geometry during simulated ectopic activation initiated in the right ventricular lateral wall (RV-LAT) at different instants of time: (i) 25ms, (ii)

75ms, (iii) 125ms, and (iv) 175ms. (B) (i) RMS for each case and (ii) rRMSe and (iii) PCC calculated vs. the control case.

related to effective non-invasive characterization of human
anatomy and electrophysiology. Previous studies have shown the
usefulness of this non-invasive method to provide information
to guide ablation procedures (Dubois et al., 2015; Rodrigo
et al., 2017) and identify potential patients for whom cardiac
resynchronization therapy would be successful (Silva et al.,
2009; Rudy, 2013; Bear et al., 2018a). In addition, current
studies have merged this ECGi technology with computational
models to provide patient-specific models in order to predict
the efficacy of specific therapies (Boyle et al., 2018; Huntjens
et al., 2018). Due to the influence of inhomogeneities inside
the torso on the BSP, recent studies have also focused on
the understanding of the forward problem and its relation
with the inverse solution (Bear et al., 2015, 2018b; Zemzemi
et al., 2015). Furthermore, the ill-posed nature of the problem
requires different mathematical constraints and regularization
methods to be used to find the most accurate physical and
physiological solution (Oster and Rudy, 1992); recent studies

have investigated the accuracy of these inverse methods (Bear
et al., 2018b).

Despite these important works, there are still many questions
in the field of ECGi which must be addressed in order to further
develop the approach and improve its clinical and research
impact. In this study, we provide analysis of the impact of
electro-anatomical variability pertaining to differences in cardiac
anatomy and heart rate on the accuracy of ECGi reconstructions
obtained using different regularization methods. These analyses
provide important insights for the interpretation of clinically
obtained ECGi reconstructions over the time-course of an
electro-anatomically dynamic condition such as heart failure.

Wall Thickness and Heart Size

Previous studies have investigated the influence of tissue
inhomogeneities on the BSP and reconstructed solution, which
were shown to have a small impact on the reconstructed
signal (Ramanathan and Rudy, 2001; Zemzemi et al., 2015).
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FIGURE 3 | Effects of heart geometry on the reconstructed epicardial potentials. (A) Original simulated ectopic activation initiated in the right ventricular lateral wall

(RV-LAT) on all three geometries. (B) Reconstructed activation maps using Zero, First and Second order Tikhonov regularization using different geometries for the

forward problem but the control/normal geometry for the inverse problem. Activation patterns were computed as the time of maximum negative first derivative dV/dt

at each location. (C) RMS, rRMSe, and PCC calculated to quantify the differences between the reconstructed activation patterns using Zero (black), First (blue) and

Second (red) order Tikhonov regularization.

TABLE 2 | A summary of the effects of geometry on RMS, rRMSe, and PCC of reconstructed activation maps using the three different regularization methods.

Tikhonov order Metrics Control – mean

(SD)

Dilated – mean

(SD)

Thick – mean

(SD)

Zero order RMS 3.45 (0.60) 3.74 (0.43) 3.65 (0.62)

rRMSe 3.09 (0.57) 3.94 (0.45) 3.33 (0.63)

PCC 0.673 (0.108) 0.570 (0.152) 0.603 (0.120)

First order RMS 3.03 (0.59) 3.27 (0.46) 3.12 (0.45)

rRMSe 2.34 (0.87) 2.77 (0.78) 2.98 (0.64)

PCC 0.794 (0.210) 0.754 (0.213) 0.773 (0.120)

Second order RMS 2.48 (0.59) 2.68 (0.48) 2.63 (0.44)

rRMSe 1.97 (0.64) 2.65 (1.26) 2.39 (0.93)

PCC 0.869 (0.106) 0.769 (0.121) 0.778 (0.140)

FIGURE 4 | Euclidean distance vs. (A) geometry and (B) BCL. Euclidean distances were calculated for each geometry case and BCL for Zero (black), First (Blue), and

Second (red) order Tikhonov regularization. For (B), only control geometry was used. Data are the mean for all ectopic sites.

Effects such as an enlargement of the heart and thickening
of the cardiac wall (associated with various disease states, e.g.,
heart failure) are not necessarily included in the geometrical
transfer matrix, and have not been fully studied. In this
study, we first compared the BSP activation maps obtained

by modifying the size of the ventricles. This was used as
the baseline comparison between BSP prior to obtaining the
inverse solution. Using RMS, rRMSe, and PCC to quantify
the similarity or differences between the BSP observed under
these different conditions demonstrated that cardiac anatomy
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FIGURE 5 | Effects of the heart rate on the reconstructed activation maps. (A) 3D activation maps at different basic cycle lengths (BCLs): 150, 300, 500, 750, and

1,000ms; activation time is given as the maximum negative slope of each local membrane potential. (B) RMS, rMSe and PCC measure calculated using Zero (black),

First (blue), and Second (red) order Tikhonov regularization of an ectopic activation starting on the middle of the left ventricle (LV-LAT).

TABLE 3 | A summary of the effects of heart rate on reconstructed activation maps using the three different regularization methods.

Tikhonov order Metrics BCL 1,000 ms BCL 750 ms BCL 500 ms BCL 300 ms BCL 150 ms

Zero order RMS 3.85 (0.55) 3.96 (0.62) 3.53 (0.65) 3.67 (0.59) 3.78 (1.02)

rRMSe 7.64 (2.3) 7.81 (1.75) 8.31 (1.41) 8.77 (2.23) 8.70 (0.71)

PCC 0.646 (0.190) 0.628 (.154) 0.626 (0.119) 0.629 (0.103) 0.623 (0.107)

First order RMS 2.74 (0.39) 3.61 (0.61) 4.16 (0.66) 4.59 (0.63) 4.20 (0.61)

rRMSe 2.82 (0.96) 2.94 (1.01) 3.14 (0.93) 4.91 (1.46) 4.92 (1.06)

PCC 0.820 (0.169) 0.789 (0.106) 0.757 (0.280) 0.713 (0.122) 0.686 (0.130)

Second order RMS 1.89 (0.31) 2.11 (0.61) 2.20 (0.62) 2.68 (0.55) 2.82 (0.51)

rRMSe 2.43 (1.06) 2.44 (1.01) 2.92 (0.83) 3.98 (1.40) 4.17 (1.89)

PCC 0.862 (0.138) 0.839 (0.213) 0.813 (0.148) 0.789 (0.107) 0.705 (0.160)

had a measurable effect on the details of the BSP but did not
significantly alter the primary spatio-temporal features of normal
activation (Figure 2).

Then, we observed how modifying the anatomy of the
ventricles in the forward solution but not in the inverse approach
had an effect on the accuracy of reconstructed ectopic activation.
Larger RMS and rRMSe values were observed when comparing
BSP error values vs. reconstructed error values (Figure 3;
Table 2). Mostly, the first part of the activation (first 75ms)
produced the most significant differences. However, it was still
possible to identify the origin of ectopic activation, albeit with a
small error (Figure 4A).

These results therefore indicate that it may not be necessary
to repeat a cardiac CT/MRI when repeating ECGi in a patient
who has undergone anatomical remodeling since their first ECGi
procedure, which could significantly reduce the cost of long-term
treatment. Some considerationmay still be required to determine
appropriate electrode positions—especially if the torso, as well as
the heart, has undergone anatomical changes.

Heart Rate

Heart rate had a regularization approach-dependent effect on
the accuracy of reconstructed activation patterns: In the case of
the First and Second order the PCCs were larger at slow rates
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but significantly decreased when the heart rate was increased,
exhibiting a negative temporal evolution over the activation
period. In the case of Zero order, the values, even though not
larger than the First or Second order in any case, remained similar
when the heart rate increased and stable over the activation
time at rapid rates (Figure 5; Table 3). The ED also showed an
important dependency on the heart rate, increasing when the
heart rate increased (Figure 4B). Therefore, these data indicate
that the accuracy of inverse solutions in general decreases
at rapid pacing rates. The underlying cause of this order-
dependent difference in the rate-dependence of the solution
is discussed in the next section, “On the Rate-Dependence of
Time-Independent Solutions.”

Differences in the quality of reconstruction at fast rates may
have particular clinical importance: higher rates may present
the most clinically interesting results, for example exposing
concealed abnormalities (Leong et al., 2018), yet produce the
poorest reconstructions using ECGi. This may also indicate
that rapid arrhythmias such as tachycardia or fibrillation could
present the greatest challenges for reconstruction, additional to
the spatial complexity of the excitation pattern itself.

On the Rate-Dependence of
Time-Independent Solutions
We observed that the accuracy of the solution using both First
and Second order methods was rate-dependent, resulting in
larger errors and smaller correlations at rapid rates; a feature not
observed using the Zero order method (Figures 4, 5; Table 3).
This rate dependence raises an interesting question: given that
the solutions to the inverse problem of electrocardiography use
a quasi-static approximation, how does a temporal effect such as
pacing rate modify the quality of the solution?

This can be explained by examining the differences between
the regularization methods: A primary difference between the
Zero order and First and Second order approaches is that the
Zero order approach does not include any neighbor interaction
(as it uses the identity matrix as the regularization operator)
whereas the First and Second order do account for this
interaction and result in smoothed signals (due to the use of
the Gradient and Laplace operator for First and Second order,
respectively). Spatial heterogeneities in voltage will therefore be
smoothed using First and Second order but not Zero. Following
that this approach distinction correlates with whether or not the
reconstruction exhibits rate-dependence, we propose that spatial
gradients observed at rapid rates, not present at slower pacing
rates, may account for this observation.

In a previous preliminary study in the atria (Alday et al.,
2016) we presented the hypothesis that this was primarily
due to shortening of the AP morphology at rapid rates,
resulting in a short excitation wavelength and therefore the
simultaneous presence of both depolarization and repolarization
wavefronts from a single excitation, significantly enhancing
spatial gradients at temporal snapshots during the activation.
An alternative explanation is that it is the presence of regions
of tissue still active from the previous excitation at the
time of the stimulus which lead to these enhanced spatial

gradients. We tested which of these hypotheses was more
likely to underlie the observation by comparing the control
data at pacing cycle lengths of 300 and 1,000ms with new
simulations at those cycle lengths in which the AP duration
has been significantly shortened (Figure 1Biii): this captures
the shorter wavelength associated with rapid control pacing
while simultaneously imposing that the previous excitation is
no longer or only minimally present in the tissue at the time
of excitation.

The RMS and PCC of First and Second order reconstructions
associated with both the pacing rates using the short AP model
were comparable to the slow pacing rate using the control AP
model, and differed from the rapid pacing rates (Figure 6; Section
S2 in Supplementary Material). In particular, the shorter AP
models did not reproduce the negative temporal evolution and
general lower PCC observed at the rapid rates using the control
AP. These data indicate that, contrary to our original hypothesis,
these increased errors were not caused by the short excitation
wavelength (where it would be expected that all short AP models
reproduced these features) but were rather caused by the presence
of the previous excitation; the only condition which reproduced
the lower correlation and large errors was the one in which large
areas of still active tissue remained at the time of excitation
(Figure 6C). The temporal evolution of the PCC also indicates
that it is the presence of two large and distinct regions of active
tissue, rather that multiple depolarization and repolarization
wavefronts, which induces the reconstruction errors: the initial
large PCC observed at rapid rates for control, which contrasts
with the less accurate estimation of the focal location (i.e.,
increased ED), is a result of accurate reconstruction of the
large area of active tissue from the previous excitation; as the
area of active tissue from the present excitation grows, the
correlation decreases due to inaccurate reconstruction of two
large regions. There is no large impact on the PCC at the time
the previous excitation’s depolarization wavefront terminates at
full activation; rather, the lower correlation remains until the
tissue repolarizes.

Limitations
These types of studies are key to fully translate ECGi
technology into clinical settings. However, they are difficult
or impossible to perform in control and experimental
settings, and the accuracy of the forward and inverse
solution is still under study (Bear et al., 2015, 2018b).
Computational modeling offers an important tool to study,
understand and provide insights into the effects of cardiac
arrhythmias and clinical variables (Colman et al., 2013,
2017). Unfortunately, there are still several limitations that
need to be addressed. The forward model lacks several
inhomogeneities which may have an important effect on
the BSP measured and therefore in the reconstructed
signal, as we used a homogeneous torso approach for
the inverse reconstruction. However, previous studies
have shown that the effects of inhomogeneities in the
inverse solution are small (Ramanathan and Rudy, 2001);
(Zemzemi et al., 2015).
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FIGURE 6 | RMS, rRMSe, and PCC of the reconstructed activation maps using (A) short and (B) normal AP durations at fast (BCL = 300ms; upper panel) and slow

(BCL = 1,000ms; lower panel) pacing rates, for the Zero (black), First (blue), and Second (red) order Tikhonov regularization methods. (C) Corresponding snapshots

of propagation at time t = 30ms after stimulus of the LV-LAT ectopic site. The control geometry was used in all cases.

Another limitation is the idealized ventricular models used,
which lacked the complex anatomy andmicrostructure of the real
human ventricles (Stephenson et al., 2017). However, these were

implemented to facilitate investigation of the effects of changing
the size and wall thickness of the ventricles on non-invasive
mapping. We used standard approaches to model cellular and
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ventricular electrophysiology, the general limitations of which
have been addressed in detail elsewhere (Benson et al., 2011).

Due to both the BSP and inverse solution being computed
using simulations, it is important to ensure that “inverse crime,”
where the inverse method exactly inverts the forward method,
is avoided. We ensure that this is the case through the use
of Salu’s method for the forward problem and Barr’s for the
inverse solution; thus, whereas the forward problem is solved
by computing the electric field which arises as a result of
currents in the cardiac tissue, the inverse solution uses an
equivalent potential distribution on a closed surface. These
independent methods, utilizing two different matrices, ensure
that it is not possible for the inverse solution to exactly invert the
forward solution.

Only ventricular activation was considered for comparison
between different rates and geometries, disregarding potential
analysis of the repolarization patterns, which may themselves
provide substantial diagnostic information. Future investigation
of the effects of anatomical reconstruction inaccuracies and
heart rate on the reconstruction of repolarization patterns may
therefore provide valuable information. However, the present
study was focused on identifying the location of ectopic pacing
sites, relevant in particular for guiding ablation therapy, and
therefore requires only activation patterns to be reconstructed.

There are multiple further factors which will be relevant
for clinical studies but not accounted for in the idealized and
controlled in silico experiments of the present study. Whereas
the geometry of the heart was considered, this was not combined
with analysis of its location, its mechanical movement, or
electrode location errors, all of which have been previously
shown to be important factors influencing the accuracy of the
reconstruction (Swenson et al., 2011; Cluitmans and Volders,
2017; Cluitmans et al., 2017; Coll-Font and Brooks, 2018).
Furthermore, we did not investigate whether the effect of
heart rate was influenced by the geometry, treating these
analyses as separate; such investigation may provide further
important insight.

In addition, the inverse problem of electrocardiography is
an ill-posed problem and therefore noisy signals can have
an important effect of the reconstructed maps. Whereas, the
simulated data in this study and used for our analyses did
not include noise, we performed further simulations in which
white noise was included. These data demonstrated that noise
increased ED and decreased correlation, but the differences
between conditions were maintained, indicating that whereas
noise has an important impact on the activation maps and
ED, our observations about different geometries and pacing
rate are maintained (Section S3 in Supplementary Material;
Figures S4–S7, and Tables S1, S2). Also, the results obtained
in this study are of the same order of magnitude observed
in previous studies (Wang et al., 2010; Bear et al., 2018b);
(Tate et al., 2018).

CONCLUSION

The systematic analysis revealed that the effect of size, thickness,
and heart rate can manifest in the BSP and ECGi in
different ways, with varying sensitivities and success rates in
inferring the clinical variables from non-invasive information.
We observed a rate dependence in the ability of different
Tikhonov regularization methods to successfully reproduce
cardiac electrical activity. Our results show that the ECGi
approach gives the most accurate results when used with
geometries depicting the current state of the patient’s heart, but
if a single image of the patient’s heart is obtained, for example
at the start of treatment, the ECGi approach still gives useful
and reasonably accurate information relating to underlying
electrophysiological abnormalities. In addition, clinical variables
such as heart rate need to be accounted for when solving the
inverse solution, in particular due to the increase in errors
observed at rapid pacing rates.
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