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Fascial tissues form a ubiquitous network throughout the whole body, which is usually
regarded as a passive contributor to biomechanical behavior. We aimed to answer the
question, whether fascia may possess the capacity for cellular contraction which, in
turn, could play an active role in musculoskeletal mechanics. Human and rat fascial
specimens from different body sites were investigated for the presence of myofibroblasts
using immunohistochemical staining for α-smooth muscle actin (n = 31 donors, n = 20
animals). In addition, mechanographic force registrations were performed on isolated
rat fascial tissues (n = 8 to n = 18), which had been exposed to pharmacological
stimulants. The density of myofibroblasts was increased in the human lumbar fascia
in comparison to fasciae from the two other regions examined in this study: fascia
lata and plantar fascia [H(2) = 14.0, p < 0.01]. Mechanographic force measurements
revealed contractions in response to stimulation by fetal bovine serum, the thromboxane
A2 analog U46619, TGF-β1, and mepyramine, while challenge by botulinum toxin type
C3–used as a Rho kinase inhibitor– provoked relaxation (p < 0.05). In contrast, fascial
tissues were insensitive to angiotensin II and caffeine (p < 0.05). A positive correlation
between myofibroblast density and contractile response was found (rs = 0.83,
p < 0.001). The hypothetical application of the registered forces to human lumbar
tissues predicts a potential impact below the threshold for mechanical spinal stability
but strong enough to possibly alter motoneuronal coordination in the lumbar region. It is
concluded that tension of myofascial tissue is actively regulated by myofibroblasts with
the potential to impact active musculoskeletal dynamics.
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INTRODUCTION

Compared with more discrete elements of the locomotor
system— e.g., muscles, bones, disks, ligaments — the bag-like
or planar collagenous connective tissue structures, commonly
referred to as fascia, have received minor attention within
musculoskeletal research (Grimm, 2007; Guimberteau et al.,
2010; Kwong and Findley, 2014). Recent studies have elaborated
the role of muscular fascia as essential force transmitter in
muscular dynamics (Stecco et al., 2006, 2009; Huijing, 2009;
Maas and Huijing, 2012; Pavan et al., 2015; Krause et al.,
2016). However, fascia is usually considered as a relatively
inert tissue that is assumed to serve a passive role only in
musculoskeletal biomechanics.

In contrast to this common assumption there have been
sporadic indications of a more active role of fascia due to an
inherent ability to actively contract. These indications include
the reported phenomenon of “ligament contraction” of human
lumbar fascia in response to repeated isometric strain application
in vitro (Yahia et al., 1993), the documented presence of
interspersed cells with smooth muscle-like appearance in the
human fascia cruris (Staubesand and Li, 1996; Staubesand
et al., 1997; Bhattacharya et al., 2010), and the clinical
experience of seemingly animated fascial tonus changes in
response to fascia manipulation treatments frequently reported
by manual therapists (Minasny, 2009) and acupuncturists
(Langevin et al., 2001).

Sufficient evidence exists for the ability of fascial tissues to
shorten over time frames of several days or more in certain
pathologies, such as Palmar fibromatosis, Morbus Ledderhose,
hypertrophic scars, and similar fascial fibrotic conditions
(Desmoulière et al., 2005). It is generally assumed that the
tissue shortening and stiffening observed in these pathological
circumstances is driven by myofibroblasts (MFBs), and that the
resulting tissue contracture is accomplished by an incremental
combination of cellular contraction, collagen cross-linking and
matrix remodeling in a slip and ratchet-like manner (Tomasek
et al., 2002). It is, therefore, not surprising, that active tissue
contractions—observed within time frames of several minutes
post stimulation—have been successfully recorded in vitro with
several of these pathologic tissues in response to pharmacological
stimulation (Hurst et al., 1986; Naylor et al., 1994; Irwin et al.,
1997; Raykha et al., 2013; Türker et al., 2013).

While these cells were mainly considered as an indicator
for pathological conditions in the first years after the discovery
of MFBs, subsequent studies have revealed their presence
also in normal (i.e., non-pathological) ligaments (Murray
and Spector, 1999), tendons (Ralphs et al., 2002), bronchial
connective tissue (Kapanci et al., 1992), organ capsules (Chander
et al., 1989), and several other collagenous connective tissues
(Tomasek et al., 2002). Nevertheless, there have only been
few explorations of contractile properties in normal fasciae.
Preliminary investigations with a small sample of rat fascia pieces
by Hinz et al. (2001) suggested an absence of MFBs and an
inability to induce in vitro contractions in this tissue; while
other studies described the presence of MFBs in the human
deep fascia (Bhattacharya et al., 2010; Dawidowicz et al., 2015)

and measurable tissue contractions of rat fascia in response to
pharmacological MFB stimulation in vitro (Irwin et al., 1997;
Pipelzadeh and Naylor, 1998; Schleip et al., 2016).

Based on this background, this study had three goals.
First, a further investigation of the presence of MFBs
in different fascial tissues. Second, an evaluation of
their potential active responsiveness to pharmacological
stimulation. Third, an estimation of resulting forces’ impact on
musculoskeletal dynamics.

MATERIALS AND METHODS

Study Design and Ethical Standard
The present study included three parts: an immunohistochemical
analysis for the density of MFBs in human fasciae, a
mechanographic investigation for potential contractile responses
of fresh fascial tissues from rats in response to pharmacological
stimulation, and a hypothetical calculation of the potential
effect of fascial contraction forces on human musculoskeletal
dynamics. All surgical and experimental procedures were in strict
agreement with the guidelines and regulations of the Declaration
of Helsinki and were approved by the ethical committee of the
University of Ulm.

Immunohistochemistry
Samples of human fasciae were taken as surplus tissue from
autopsy studies of 28 individuals (n = 31, 25 males, 6
females, mean age 43 ± 37 years; range 17–91 years) at the
institute for legal medicine of the Ludwig-Maximilian University
Munich, Germany, or as surplus tissue from diagnostic muscle
biopsies performed with informed consent at the department
of applied physiology at Ulm University, Germany was used
with informed consent and approval of the local ethics (n = 3).
The procedure was anonymized and approved by the ethics
committee of Ulm University, Germany (reference no. 37/97).
Section sizes were approximately 8 mm × 8 mm × 0.5 mm
from autopsy donors and 4 mm × 4 mm × 0.5 mm from
biopsy donors. All autopsy and biopsy donors were Caucasian
from the same geographical region in southern Germany.
Donors with a known pathology affecting connective tissue
morphology were neither included in the autopsy nor in the
biopsy tissue collections. Sections were taken from the following
sites: middle of plantar fascia, lumbar fascia (posterior lamina
of posterior layer, 3–4 cm laterally of the spinous process
of L3) and the fascia lata at the lateral thigh at midpoint
between the greater trochanter and the fibular head. Sections
from biopsy donors were taken from the described fascia lata
location only. All sections were taken from the right-hand side
of the body. For immunohistochemical comparison between
rodent and human fasciae, 20 pieces of rat lumbar fasciae were
randomly chosen from the rat tissue collection described under
mechanographic methods.

Subsequent immunohistochemistry and quantification of
α-smooth muscle actin (ASMA) density was conducted as
described elsewhere (Schleip et al., 2018).
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Immunofluorescence
Paraffined sections for immunofluorescence were cut at 10 µm
(to allow easier three-dimensional differentiation of MFBs from
blood vessels). They were mounted on glass microscope slides
(SuperfrostTM/Plus, Thermo Fisher Scientific Inc., Pittsburgh,
PA, United States). The slides were then deparaffinized with xylol
and immersed in ethanol at decreasing concentrations (100, 100,
96, 80, 70, and 50%; each for 1 min) followed by immersion in
distilled water for 3 min and washing 3× 10 min with phosphate
buffered saline (PBS). The sections were then incubated with
mouse monoclonal primary antibody to ASMA-1 (mouse IgG2a
mAB, clone 1A4, University of Geneva, Switzerland) (Skalli
et al., 1986) at an IgG concentration of 5 µg/ml for 1 h,
washed 3 × 10 min with PBS and subsequently probed with
Alexa Flour 488 goat anti-mouse IgG (H+L) (Cat. No. A-
11029, Molecular Probes, Inc., Eugene, OR, United States)
PBS buffer with 0.2% BSA at room temperature in darkness
(50 µl/coverslip). A DAPI stain was used to label nuclear
DNA (Cat. No. 32670, Sigma-Aldrich, Taufkirchen, Germany).
Sections were then washed 3 × 30 min with PBS, plus for
1 min with distilled water, both at room temperature in
darkness and overlaid with one drop of polyvinyl alcohol as a
mounting liquid.

Slides from immunofluorescence staining were imaged
with a Bio-Rad Radiance 2000 confocal microscope (Bio-Rad
Laboratories, Hemel Hempstead, United Kingdom) adapted
to a Nikon ECLIPSE TE300 inverted Microscope (Nikon
Corporation, Tokyo, Japan) with a 60x oil immersion lens
(numerical aperture 1.4). Fluorescence was excited at 488 nm
(Ar laser) and filtered by a 500 low pass emission filter. Vascular
smooth muscle cells on the same slides were used as positive
controls for immunostaining. Analysis of IF slides was used as
additional reference only for a qualitative investigation about
the distribution of positively stained areas in the examined
tissue samples. Respective fascial tissue samples (n = 8)

were randomly selected from the previously described human
tissue collection.

Mechanographic Investigation
Angiotensin II, caffeine, mepyramine, U46619, SQ-29548,
Y-27632, and cytochalasin-D were obtained from Sigma-
Aldrich, Steinheim, Germany. Recombinant TGF-β1 was
obtained from Merck KGaA (Darmstadt, Germany). Fetal
bovine serum (FBS) was obtained from Invitrogen (Karlsruhe,
Germany), botulinum toxin type C3 from Pharm-Allergan
GmbH (Ettlingen, Germany), and Krebs-Ringer (KR) solution
from PAA Laboratories GmbH (Pasching, Austria).

Tissue samples of thoracolumbar fascia were taken from
40 Wistar rats (22 male, 18 females, ages between 50 and
620 days, mean age 94 days, mean weight 345 g). Animals
were sacrificed according to the local animal welfare guidelines
of the University of Ulm. Between excision from the animal
and final measurements the tissues were kept immersed in
KR solution composed of (mM): 118 NaCl, 3.4 KCl, 0.8
MgSO4, 1.2 KH2PO4, 11.1 glucose, 25.0 NaHCO3, 2.5 CaCl2,
pH 7.4; or were frequently sprayed-upon by KR solution
(both at room temperature). A surgical knife was used to
remove all visible muscle fibers from the fascia. This was
controlled by inspection through a light microscope with 20x
magnification. The thoracolumbar fascia was exposed, and
a longitudinal piece was excised on the right side of the
thoracolumbar spine, as well as a second piece on the left
side (Figures 1A,B).

Before using a tissue for mechanographic measurements, each
longitudinal piece was folded once, such that it became half as
long but twice as thick. The new endings of this folded piece were
then each fixed with a string end of mercerized cotton (diameter
160 µm, stiffness 12500 MPa). The effective sample size of such
a folded piece had a length of 20–38 mm, a diameter of 1.5–
3.5 mm; and a weight of 80–450 mg. The time between the death

FIGURE 1 | Handling of rat thoracolumbar fascia. After removal of skin and subcutaneous connective tissue, the underlying dense layer of thoracolumbar fascia was
made accessible (A). One long strip from the left side of the thoracolumbar spine (shown here in B) and also one from the other side were carefully dissected and
cleaned of any attached muscle fibers. Some samples were then used for histochemical analysis while others were used for mechanographic registrations in an
organ bath, as shown in (C). Here the bath solution was aerated with carbogen. Through a double-walled container, the bath was kept at a constant temperature.
The upper end of the tissue was connected with a force transducer (FT).

Frontiers in Physiology | www.frontiersin.org 3 April 2019 | Volume 10 | Article 336

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00336 April 2, 2019 Time: 11:57 # 4

Schleip et al. Fascia Is Able to Actively Contract

of the animal and recording of the last test with a given tissue
was kept to below 8 h. The tissues were then suspended in an
immersion organ bath filled with KR solution (Figure 1C). The
solution in the bath was kept at a constant temperature of 35◦C
and bubbled with carbogen consisting of 95% O2 and 5% CO2
stabilizing neutral pH. The upper end of the tissue was connected
with the free arm of an isometric force-voltage transducer (Model
FT03, Grass Instruments, West Warwick, RI, United States),
which was connected to a computer through a bridge amplifier
and an analog-digital board (Digidata 1200B, Axon Instruments,
Inc., Union City, CA, United States).

Four chambers were used simultaneously. A given test
protocol was executed simultaneously in all four chambers, of
which one chamber–the choice of which rotated between tests–
was devoted to testing a non-viable control tissue. Pretreatment
of this control tissue consisted of five cycles of deep freezing in
liquid nitrogen followed by rapid thawing (Fuller, 1987; Schleip
et al., 2016). The tissues were first suspended in their baths
in a slack (non-extended) position. By slowly extending the
tissue, the first point of a reversible force increase was defined
as zero strain with zero force, provided this force increase
was at least 10 nN and clearly repeatable by going back and
forth across this zero point. From here, tissues were stretched
up to 5% strain–a strain level shown before to lie below the
magnitude required for imposing internal collagen fiber ruptures
in the tissue (Yahia et al., 1993)–and then left at that strain
for at least 45 min for equilibration before exposing them to
pharmacological stimulation. All strain changes were conducted
at a speed of 0.33%/s. All agents were adjusted to neutral pH
before addition. In the few cases in which a tissue was exposed to
multiple pharmacological tests, care was taken, that the remnants
of the previous agent were washed off with at least two times the
bath volume and that the original baseline of tissue tension had
been (re)stabilized and kept constant for at least 15 min.

Fascia samples were examined for a potential force response
to the following agents: FBS 30%, mepyramine at 10−2M,
thromboxane analog U46619 at 10−4M, TGF-β1 at 15 ng/ml,
botulinum toxin type C3 at 30 µg/ml, angiotensin II at
10−2M, and caffeine at 32 mM. In general, force registrations
were concluded 1 h after substance addition. In case of an
obvious stable baseline with no indication for any response
to the pharmacological stimulation, some measurements were
concluded beforehand, and their final force registrations were
taken. Due to their observed slower response dynamics (Parizi
et al., 2000; Kakudo et al., 2012), force registrations of
the substances TGF-β1 and botulinum toxin type C3 were
concluded after 3 h.

For the purpose of further exploration of the cellular
dynamics involved in fascial contractility, some samples were
preincubated for 30 min with the cytoskeletal inhibitor of actin
polymerization cytochalasin D at 10−6M, with the thromboxane
receptor antagonist SQ-29548 at 10−6M, or with the RHO/ROCK
pathway inhibitor Y-27632 at 10−5M before U46619-induced
contraction was measured.

Some of the animal tissues were not only used for
mechanographic investigation but also for a subsequent
immunohistochemical analysis (for immunohistochemical

examination of possible ASMA density differences between the
responder tissue samples and the samples that had proven as
unresponsive in their mechanographic examinations).

Force Calculation for Application to
Human Biomechanics
Based on the mechanographic and immunohistochemical
examinations, a hypothetical calculation of the potential
contraction force of the intramuscular and extramuscular fasciae
of the paraspinal musculature across the level of L3 in humans
was conducted. This was done in three steps.

First, the potential force densities related to cross-sectional
area (CSA) were calculated based on the maximum contractile
force density observed in the mechanographic experiments with
rats of our study. Alternatively, the cellular density of MFBs
per mm2 from the person with the highest observed areal
ASMA lumbar fascia density from our immunohistochemical
investigations with humans was combined with the force of
4.1 µN/cell, reported as mean contraction of MFBs in the
literature (Wrobel et al., 2002). Alternatively, this calculation also
was conducted based on the cellular MFB density corresponding
to the median areal lumbar fascia ASMA density.

The corresponding immunohistochemical estimation of the
density of MFB cells was conducted in the following manner:
As a rule, all visible nuclei were counted in a given field,
which showed the stained fiber bundles arranged in extension
of the long axis of the nucleus. Based on the three-dimensional
spreading and polymorphic appearance of MFBs this procedure
did not have the same degree of objectivity and precision
as the digitally performed quantification of the aerial density.
Therefore, counting was performed only on four histological
samples representing the areal density of lumbar fascia from
the person with the overall highest MFB density. Alternatively,
a counting was conducted with four samples representing the
median areal density found in human lumbar fascia.

Second, the related forces were applied to the CSA of relevant
fascia in a horizontal cross-section at the level of L3. This was
done by including the intramuscular and extramuscular fasciae
of the paraspinal musculature. Values for the mean thickness
and width of the respective extramuscular fasciae were adopted
from Barker et al. (2007), consisting of posterior layer of lumbar
fascia, middle layer and anterior layer. Values for the CSA
of the paraspinal muscles (erector spinae, multifidus, psoas,
quadratus lumborum) were taken from the magnetic resonance
imaging measurements of Ranson et al. (2006). Using data from
Kovanen et al. (1984) and Mackey et al. (2004) the proportion
of intramuscular connective tissue within these tonic paraspinal
muscles was estimated conservatively as 10%.

Third, potential contraction forces were then compared with
the relevant threshold values reported in the literature for low
back stability. As a threshold for mechanosensory stimulation the
value of 35 mN–for afferent activation by pressure on ligaments
(Johansson et al., 1991) was used as orientation. For mechanical
joint stability, the value 18.2 N given by Cholewicki and McGill
(1995) – minimal force required to prevent spinal buckling in
neutral standing – was taken as the most suitable orientation.
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Statistical Analysis
Due to violations of the normality assumption, all data are
reported as medians with 95% confidence intervals. Non-
parametric testing was used to test for systematic differences.
Unless indicated otherwise, the significance level for all analyses
was set to p = 0.05, the employed software was IBM SPSS Statistics
22.0 for Windows (IBM, United States).

Cell Density
The mean numbers of cells counted in the lumbar fascia, fascia
lata and plantar fascia were compared using the Kruskal–Wallis-
test for independent samples. In case of significance, post hoc
Mann–Whitney U tests, adjusted for multiple comparisons
(Bonferoni–Holm correction), were conducted. To examine the
relationship between cell density and force developed upon
stimulation (see below), Spearman’s Rho correlation coefficient
(rs) was calculated.

Mechanographic Investigations
The Wilcoxon signed-rank test was used to detect possible
changes of the contraction state (force registration following
stimulation with angiotensin II, caffeine, mepyramine, FBS, and
U46619) in dependent samples. Mann–Whitney-U tests were
performed to reveal the systematic differences in independent
samples (stimulation with TGF-β1 and botulinum toxin type C3
versus control). In the latter, relative changes instead of absolute
values were used if a baseline difference (p< 0.01) was found.

RESULTS

Presence of Myofibroblasts in Human
Fascial Tissues
ASMA stress fiber bundles, indicative of the presence of MFBs,
were found in all examined human tissues (Figure 2). Cell density
differed significantly between body sites [H(2) = 14.0, p < 0.01].
In the human lumbar fascia [median 1.52% (IQR 0.17–4.89%),

n = 12], it was found to be considerably higher than in the human
plantar fascia and the fascia lata [0% (0–0%, n = 11, p = 0.003)
versus 0% (0–0.03%, n = 12, p = 0.003)]. When compared to
the rat specimens, the density in human lumbar fascia showed
a statistical trend toward being higher (p = 0.059, median human
lumbar fascia 1.52%, IQR: 0.16–5.58%, rat lumbar fascia: 0.95%,
IQR: 0.01–0.40%).

Within the human lumbar fascia samples there was a trend
toward higher MFB density in older donors, as expressed in
a higher density in donors above 60 years (median 4.40%
(IQR 0.36–6.38%), n = 5) compared with those under 30 years
[median 2.26% (IQR 1.12–6.65%), n = 3], although this
trend was not significant. Congruently, the overall correlation
between MFB density in human lumbar fascia and donor age
was not significant. No age-related trends were recognizable
within the other two human tissue regions or within all
human tissues. Within the rat lumbar fascia samples there
was a moderate positive correlation between MFB density
and age (rs = 0.60, p < 0.007), which was also expressed
in a trend toward a higher MFB density in animals aged
over 150 days [median 1.67% (IQR 0.46%–2.92%), n = 6]
compared with those under 100 days [median 0.03% (IQR 0.00–
0.09%), n = 11], although this difference was not significant.
On an observational level, a surprising trend toward frequent
high MFB density areas in the perimysium was noticed
(see Figure 3).

In general, the mechanographic stimulation revealed a strong
positive correlation between cell density and contractile response
(rs = 0.83, p< 0.001, see Figure 4).

Mechanographic Force Registrations
With Rodent Fasciae
Neither stimulation with caffeine nor with angiotensin II yielded
any clear force response (n = 8, n = 9, p > 0.05). The force
responses following the application of the other substances are
shown in Table 1 and Figures 5A,B. In brief, TGF-β1 yielded a

FIGURE 2 | Histological sections from samples of fascia. ASMA positive stress fiber bundles—used as a marker for MFBs—were stained in dark brown, while cell
nuclei were stained in dark blue. (A) Section from rat lumbar fascia. (B) Section from human fascia lata with a very low MFB density. (C) Section from human lumbar
fascia. Microscopic inspection shows obvious differences in ASMA density.
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clear contractile response when compared to untreated control
samples (Hodges–Lehman estimate for the difference between
relative prepost changes: 72.8%, 95% confidence interval: 42.6–
157.9, p < 0.001). Mepyramine (median of relative prepost
change: +6.9%, 95% CI: 4.0–14.7, p = 0.002), FBS (+6.9%,
95% CI: −2.4–11.5, p = 0.010), and the thromboxane analog
U46619 (+6.3%, 95% CI: 0–14.5, p = 0.012) also led to
significant force increases. In contrast to the other substances,
botulinum toxin type C3 yielded a relaxation response when
compared to untreated tissue samples (p < 0.001, Hodges–
Lehman estimate for the difference between absolute prepost
changes: 2.5 µN/mm2, 95% CI: 1.1–4.2).

The force responses with FBS, U46619, and mepyramine
usually happened within 30 min (time until apex between 20
and 40 min). With TGF-β1 and botulinum toxin type C3, the
respective force changes were more delayed and long lasting,
frequently continuing with small incremental changes at the end
of the measurements (after 3 h).

Pretreatments with the RHO/ROCK pathway inhibitor
Y-27632 (p = 0.028), with the thromboxane A2 receptor
antagonist SQ-29548 (p = 0.043) or cytochalasin, an inhibitor
of actin polymerization (p = 0.018), lead to reduced force
responses. Compared with the median force response to
U46619, these pretreatments lead to force magnitudes
that were reduced to the following proportions: Y-27632
median reduction to 44.7% (IQR 25.9–60.9%, n = 6), SQ-
29548 reduction to 20.9% (IQR 11.2–26.3%, n = 5), and
cytochalasin reduction to 10.1% (IQR 4.4–13.1%, n = 7).
The corresponding results are shown in Figure 5C. The
application of U46619 to the control samples that were
pretreated by freeze-thaw cycles showed no force responses
(n = 10). Figure 6 illustrates that the U46619 application is
reversible. U46619 was applied twice with a washout step
in-between and in which the addition of RHO/ROCK pathway
inhibitor Y-27632 before the second application yielded a
reduced force response.

Potential Impact on Human
Musculoskeletal Dynamics
The CSA of related extramuscular fasciae—as described in the
method section—was found to be 199 mm2. Complemented by
the CSA of paraspinal intramuscular fasciae (from erector spinae,
psoas, and quadratus lumborum; with a combined muscular
CSA of 12140 mm2), a total CSA of all intramuscular and
extramuscular fasciae of 1413 mm2 was derived. Combined with
the maximal contraction forces observed in our mechanographic
force registrations (median force response to TGF-β1), a
hypothetical contraction force of 0.95 N was gained.

In our second mode of calculation, we used the cellular
density of MFBs as a basis of the potential contraction force.
Here, we found an estimated MFB density of 167 cells/mm2

corresponding to the median ASMA density in the human
lumbar fascia reported above. Alternatively, a cellular MFB
density of 454 cells/mm2 was estimated for the person with
the highest observed ASMA density in the lumbar fascia. Based
on these densities, a predicted contraction force of 0.97 N was

FIGURE 3 | Immunofluorescence imaging of two representative sections of
intramuscular fascia from the human lumbar region. Bright green: elements
that are positively stained for the presence of ASMA. Note the apparently
increased presence of MFBs in the perimysial zones (white arrows) as
opposed to endomysial zones (black arrows) in both sections (A,B).

derived for median MFB density in the lumbar fascia and 2.63 N
for the maximal MFB density found in our investigations.

None of these predicted forces lie above the threshold for
exerting an impact on mechanical joint stability (Cholewicki and
McGill, 1995). However, all of these predicted force values are
above the much lower threshold for mechanosensory stimulation
(Krauspe et al., 1992).

Data Availability
The resulting immunohistological as well as mechanographic
data are available upon request from the first author.

DISCUSSION

To our knowledge, this is the first study examining the question
whether active cellular contractility of fascial tissues may be able
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FIGURE 4 | The MFB density of several samples of rat lumbar fascia was assessed (via immunostaining for ASMA) subsequent to their mechanographic examination
in an organ bath environment. Statistical analysis revealed a strong positive correlation between the two factors, where higher MFB density was associated with
more forceful contractile response (n = 14).

to impact musculoskeletal dynamics. Our immunohistochemical
plus mechanographic findings and related force calculations
suggest this might be the case. Our findings suggest that, due to
the contractile behavior of inherent MFBs, human lumbar fascia
may be able to change its stiffness in a time frame of minutes to
hours and thereby possibly affect motoneuronal coordination.

Presence of MFBs in Fascial Tissues
The immunohistochemical findings of our study provide
evidence for the existence of contractile cells, i.e., MFBs, in
different fascial tissues. Yet, the related density appears to vary
considerably between the examined tissues. The increased density
of MFBs in human lumbar fascia—in comparison with all other
human or murine tissue sources used in our examinations—
suggests a possible association with the prevalence of myofascial
pain in the human lumbar region (Furlan et al., 2012;
Edwards et al., 2017). In fact, the presence of micro-injuries
in human lumbar connective tissues and a resulting corrupted
neuromuscular coordination in addition to other downstream
effects have been suggested as novel explanations for some cases
of low back pain (Panjabi, 2006; Langevin and Sherman, 2007;
Willard et al., 2012; Karayannis et al., 2016). The finding of
clearly nociceptive nerve endings in human lumbar fascia adds
further support for that possibility (Tesarz et al., 2011; Mense
and Hoheisel, 2016). In addition, a reduction in thoracolumbar
shearing motion has been described in chronic low back pain
patients compared with healthy controls (Langevin et al., 2011).
The observed density of MFBs in human lumbar fascia in our
study could possibly be associated with an augmented occurrence
of (micro-) injuries and related cellular repair processes in
human lumbar fasciae. It should be noted that our histological
examination included fascial tissue sections from lumbar fascia,
plantar fascia and fascia lata only. The choice of these limited
tissue regions was influenced by the access options of our research

group. Therefore, it will be interesting to include the investigation
of potential regional MFB density differences between different
fasciae from a larger regional variation in future studies.

The apparently increased density of MFBs in the perimysium
(Figure 3), which was unexpectedly observed in this study,
could be of clinical significance. In food science, meat toughness
correlates with perimysial thickness (Bendall, 1967; Rowe, 1974)
and aging recently has been found to be paralleled by an
increased complexity in the organization of the perimysium
(Mikkelsen et al., 2017). Since an augmented perimysial collagen
density has been observed in tonic muscles as opposed to
a lower density in more phasic muscles (An et al., 2014;
Roy et al., 2018), this suggests that a related perimysial
stiffening may indeed contribute to myofascial tonicity in
human erector spinae muscles, and particularly to the deep
multifidus layer (Mannion et al., 1997; MacDonald et al.,
2006). In addition, several myofascial pathologies associated
with increased myofascial stiffness are associated with changes
in the perimysium (Williams and Goldspink, 1984; De Deyne
et al., 2000; de Bruin et al., 2014). In contrast, these described
changes have not been found in the endomysium. Similarly,
aging tends to be associated with a decreased proportion
of fast twitch muscle fibers as well as with an increased
perimysial thickness (Nishimura, 2010; Csapo et al., 2014). It
will be interesting to explore via future histological studies
with larger sample sizes whether the trend toward a higher
fascial MFB density in older patients, observed in part in our
investigation, can be generally confirmed; and if so whether
this increase may be associated with the larger total quantity
of (micro)injuries in fascial tissues during previous life years,
which may then induce an increased MFB density in the affected
tissues. In short, our current findings suggest that the cellular
density and activity of MFBs might play a contributory role in
these tissue changes.
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TABLE 1 | Overview of the main substances used in this investigation.

Substance Dosage Force maximum
within interval of

Investigation type n = Response Force change Significance

Mepyramine 10−2 M 30 min Unpaired 17 Contraction +290 µN/mm2 p = 0.002

FBS 30% 30 min Unpaired 11 Contraction +230 µN/mm2 p = 0.010

U46619 10−4 M 30 min Unpaired 14 Contraction +220 µN/mm2 p = 0.012

Caffeine 32 × 10−3 M 30 min Unpaired 8 None N.A. N.A.

Angiotensin II 10−2M 30 min Unpaired 9 None N.A. N.A.

TGF-β1 15 ng/ml 3 h Paired 18 Contraction∗ +445 µN/mm2 ∗ p < 0.001

Botulinum toxin type C3 30 µg/ml 3 h Paired 17 Relaxation∗ −2.5 µN/mm2 ∗ p < 0.001

Note that some of these mechanographic registrations involved the use of paired control samples from the same animal, which were exposed to exactly the same
measuring procedure. Instead of the respective pharmacological agent, however, Krebs–Ringer solution was added into the organ baths of these control samples. In
contrast, in the “unpaired” investigations all examined tissues were exposed to the pharmacological trigger. Previous investigation had shown that assessment times
of 30 min were sufficient for measuring force responses with mepyramine, fetal bovine serum (FBS), and U46619. However, for TGF-β1 and botulinum toxin type C3,
assessment times of 3 h had been chosen due to their more delayed and sustained response dynamics. Median values are shown for the force changes. ∗Relative force
change compared with control samples.

In a similar manner, our finding regarding the perimysium
could add an interesting perspective to the hypothesis of Stecco
et al. (2013)—that muscle spindle sensitivity is influenced
by the stiffness of the perimysial connective tissue in which
the spindle capsules are mostly embedded (Maier, 1999;
Boyd-Clark et al., 2002). Based on the influence of spindle
derived mechanosensation on alpha motorneuron activation this
interaction may contribute to active muscle tonicity (Giuriati
et al., 2018). According to this concept, several myofascial pain
syndromes could be influenced by changes in perimysial stiffness
(Stecco et al., 2016). Our finding suggests that the presence
and activity of MFBs could be an important contributor in
this interaction.

Contrary to our expectations, our data do not indicate a
profound impact of age and sex on MFB density. If true,
then the fascial stiffening observed in the temporal region of
elderly subjects (Trindade et al., 2012) might rather be ascribed
to changes of connective tissue architecture, the formation of
collagenous cross-links, or changes of the hydration status.
However, the large age range included in our histological
examination (17–91 years, n = 31) should be regarded as a factor
limiting respective interpretations. Regarding the role of sex,
it should be underlined that our samples came predominantly
from male body donors. Additional research is thus warranted
to conclusively identify the potential influence of age and sex as
well as the influence of other factors as modifiers of MFB density.
The degree of physical activity and muscle volume represent two
important candidates, which might both be positively correlated
with the number of contractile cells (Szczodry et al., 2009).

Contractile Behavior of Fascial Tissues
Our mechanographic measurements with rats showed a
contractile response to several substances. Interestingly, the force
registrations in our examinations revealed a large variation of the
fascial tissues, even when stimulated with the same substance.
This seems to fit to the finding of a similar large variation in MFB
density found in our histological examination.

We suggest that these two features are related to each other,
i.e., that the local density of MFBs seems to be a driving factor

behind our observed tissue contractions. This would mean that
if a tested tissue sample contained no or very few MFB cells
only, then it expressed no or very tiny contractile forces in
responses, whereas clear contractile responses were observed in
samples with a higher MFB density. While our examinations
allowed only a comparison between a small group of responder
versus “non-responder” tissue samples (n = 7), the reported
preliminary result from this comparison suggests that, in future,
similar examinations could be useful and worthwhile to store and
evaluate all used tissue samples from in vitro contraction tests for
subsequent immunohistochemical analysis.

Our observed tissue contractions in response to TGF-β1
are not surprising, given that this substance has served as a
successful contractile agent in cell culture examinations with
MFBs and in scar tissues (Hinz et al., 2012). To our knowledge,
this is the first experimental result indicating its capacity to
induce contractile responses of normal fascial tissues. An almost
linear increase in contraction force in response to TGF-β1 in
cell culture has been demonstrated over a period of the first
20 h after substance addition (Brown et al., 2002). While this
might possibly suggest up to six times higher contraction forces
(compared with the 3 h period used in our measurements),
further examinations are necessary for clarification to what extent
a similar force increase over time exists in macroscopic tissues
in vitro and in vivo. Given the reported signaling influence of the
sympathetic nervous system on TGF-β1 expression (Bhowmick
et al., 2009; Liao et al., 2014), our finding could possibly support
the hypothesis of Staubesand and Li (1996,1997), which proposed
a close connection between fascial stiffness and sympathetic
activation. In light of the large contribution of psychosocial
factors in low back pain (Yang et al., 2016; Burgel and Elshatarat,
2017), this appears to represent an interesting direction of
future research.

Potential Impact on
Musculoskeletal Dynamics
Our calculations of potential contractile forces in vivo predict a
force range that seems insufficient for exerting a direct short-term
effect (i.e., occurring within minutes to hours) on mechanical
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FIGURE 5 | Force responses of rat lumbar fascia samples to exposure to different pharmacological agents. Error bars indicate interquartile range and ∗ the total
range. (A) Percentage of responders shown and their mean force responses during 30 min of substance exposure. Mep, mepyramin; Caff, caffeine; Ang, angiotensin
II. (B) Responses to TGF-β1 and botulinum toxin type C3 occurred during much longer time periods. (C) Incubation with specific inhibitor substances prior to
stimulation with U46619 led to the reduced force responses—compared with stimulation by U46619 alone—shown here. Repeated preparatory cycles of freezing
and rapid thawing completely abolished force response.

joint stability of the human spine, when using the threshold
value of 18.2 N given by Cholewicki and McGill (1995) for the
prevention of spinal buckling in neutral standing posture as
orientation. It seems clear that potential short-term contractile
forces of fascial tissues are at least two orders of magnitude below
that of muscle tissue (of comparable CSA) and, therefore, can
impose only minimal direct mechanical effects on the body. It
is therefore indeed conceivable that active MFB contractions may

have no significant effect on spinal stability or other important
aspects of human biomechanics.

Nevertheless, our predicted fascial contraction forces in the
human lumbar region are above the much lower threshold for
influencing mechanosensation. According to Sjölander et al.
(2002), any alteration of mechanosensation is potentially able to
modify muscle coordination and reflex regulation of functional
joint stability. Thus, we suggest that short-term stiffness changes
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FIGURE 6 | Examples of force responses with repeated stimulation.
(A) Fascia sample was treated with U46619 and then washed out thoroughly
for 1 h before repeated stimulation with the same agent. (B) Preincubation
with the Rho-kinase inhibitor Y-27632 led to a reduced force increase in
response to the 2nd application of U46619.

in fasciae might possibly be sufficient to impact neuromuscular
coordination. A temporarily increased fascial stiffness—e.g., due
to an altered sympathetic nervous system activation and/or
altered cytokine expression—might be able to modify or disrupt
the accuracy of proprioception and coordination, which could
possibly contribute to the likelihood of injuries and of subfailure
injuries (Panjabi, 2006; Tong et al., 2017).

We suggest that a local and/or temporal increase in
fascial contractility might also contribute to long-term tissue
contracture, which includes matrix remodeling. This is based
on the progress in the understanding of MFB biology since
the original description of this cell type (Gabbiani et al.,
1971). In particular, it has been shown that, differently from
classical smooth muscle, the MFB exerts a relatively long-lasting
Rho/ROCK/myosin light chain phosphatase pathway dependent
contractile activity that eventually results in permanent tissue
contracture (Bochaton-Piallat et al., 2016). Based on the
lockstep ratchet model of MFB contraction (Tomasek et al.,
2002; Follonier Castella et al., 2010; Hinz, 2013), tissue
stiffening results from the contraction of single MFB cells
and subsequent stabilization of tissues by secreted extracellular
matrix molecules. This occurs as an incremental process in
which long-lasting and strong RHO- and ROCK-dependent
MFB contractions generate slack in collagen fibrils, whereas
weak and short-ranged successive microcontractions (Ca2+)
of the same cells remodel such relaxed fibrils. The new
fibril configuration is then further stabilized, possibly by
digestion of local collagen, deposition of new collagen fibrils,
and cross-linking.

The combined action of this mechanism can generate severe
tissue contractures (e.g., in frozen shoulder or Dupuytren’s
contractures) of ∼1 cm per month (Follonier Castella et al.,

2010). This suggests that density differences in MFBs—e.g., as
have been explored in our study—and chronic alterations in
sympathetic activation or other biochemical factors might not
only lead to short-term changes which affect motoneuronal
coordination but also may contribute long-term effects in
the form of healthy well-regulated stiffness adaptations and
pathologic contractures.

Considerations for Low Back Stability
Our findings about an increased MFB density in human
lumbar fascia together with these hypothetical force calculations
suggest that the observed minor changes in lumbar fascia
stiffness may possibly constitute a contributing factor to back
stability and low back pain. The different layers of the
human thoracolumbar fasciae have been shown to contribute
significantly to trunk stability (Vleeming et al., 1995, 2014;
Willard et al., 2012). Ultrasound examinations of the posterior
layer of the thoracolumbar fascia indicated an increased
thickness and reduced shearing motion of this fascial tissue
in chronic low back pain patients (Langevin et al., 2009,
2011). A previous investigation already demonstrated two
examples of lumbar fascia sections from low back pain patients
with an augmented MFB density comparable to that found
in frozen shoulder (Willard et al., 2012). Further research
is warranted to delineate the potential relationships between
fascial properties and low back stability and low back pain.
Analyses of human lumbar fascia biopsies for the presence
of MFBs and additional biochemical factors (Klingler et al.,
2014) could serve as valuable examination pathway in this
direction (Figure 2C).

MFB driven stiffness changes in lumbar fasciae may possibly
also influence the complex dynamics of anticipatory adjustments
which play an important role in human postural regulation
(Park et al., 2014; Wang et al., 2018). In addition, minor
fascial stiffness changes, as observed in our study, could
be involved in – at least some cases of – the phenomenon
of vertebral somatic dysfunction described as a minor
intervertebral disorder in the osteopathic literature (Fryer
et al., 2004; Ho, 2015; Tozzi, 2015). Further research,
possibly using myometry, elastography or other stiffness
oriented in vivo assessment methods, are warranted to
investigate these potential influences (Giyoung et al., 2014;
White et al., 2018).

Methodological Considerations
Our force measurements involved small sample sizes only
(see Table 1). We are not aware of any publication using
mechanography in an organ bath environment with much
larger sample sizes (see e.g., Irwin et al., 1997; Pipelzadeh and
Naylor, 1998; Hinz et al., 2001; Moon et al., 2006; Hennenberg
et al., 2018; Mader et al., 2018), which is reflective of the
high demands in conducting these investigations. Nevertheless,
it is important to point out that based on the small sample
size all subsequent interpretations need to be treated with
appropriate caution.

The choice of a non-viable control tissue that had been
pretreated by freeze and thaw cycles had been previously
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introduced by Schleip et al. (2016). Such treatment had been
shown to effectively kill all cells (Frank et al., 1988) while
keeping passive viscoelastic tissue properties virtually unchanged
(Smith et al., 1996; Moon et al., 2006). We suggest that
the regular inclusion and comparison with these control tests
in our examinations strengthens the assumption that our
observed force changes in fascial tissues are indeed due to
cellular responses.

The use of mepyramine as a stimulatory agent in our
investigation deserves some reflection. Mepyramine is a
histamine H1 receptor inverse antagonist. If used in supra-
physiological concentrations (like in this study and in those of
others), it can stimulate histaminic receptors (Naylor et al., 1994;
Fitzsimons et al., 2004). While a therapeutic application of such
high dosages on human patients is out of the question, the above
reported contractile responses of fascial tissues to this substance
suggest that H1 receptors on MFBs might be possible targets
for future investigations exploring a therapeutic modulation of
fascial contractility.

Botulinum toxin type C3—also known as C3-transferase—
is one of the toxins produced by the bacterium Clostridium
botulinum. In contrast to the more widely used botulinum
toxin type A in modern medicine and cosmetics, it is not
a neurotoxin but selectively ribosylates Rho GTPase in their
effector-binding domain (Sekine et al., 1989). Previous cell
culture examinations have shown that this substance can exert
an inhibitory effect on the contractile activity of human MFBs
(Parizi et al., 2000). To our knowledge, this study for the
first time demonstrates that botulinum toxin type C3 is also
capable of inhibiting contractile activity in fascial tissues. Since
cell-permeability of this substance is a limiting factor, long
incubation periods have been recommended (Fahrer et al., 2010).
Based on this consideration and previous to our examinations
it had therefore not been clear, whether this substance could
be used in whole fascial tissues as an inhibitor of MFB
contractility and/or as a relaxation inducer. The results of
our in vitro experiments, in which stimulation of rat lumbar
fascia produced a force decrease over a period of 3 h, tend
to give support for the suggestion that therapeutic applications
of botulinum toxin type C3 could be explored as a novel
avenue in the treatment of fibrotic pathologies which are
characterized by an increased contractile activity of MFBs
(Namazi and Abdinejad, 2007).

No matter how carefully the fascial tissue bundles are
dissected and prepared, some interspersed skeletal muscle
fibers may still be included. It is, therefore, justified to
consider the possibility that the fascial force changes
observed in our tests may be due to tonus changes in such
interspersed skeletal muscle fibers, rather than to tonus
changes of MFBs. However, the fact that preincubation by
Y-27632 inhibited potential contractile effects of stimulation
by U46619 suggests a crucial role of Rho-kinase in tissue
contractions, showing that the MFB contraction under our
conditions was mainly calcium independent and fibroblast
like. This assumption is corroborated by the results of control
applications of U46619 or Y-27632 to comparable bundles
of rat lumbar multifidus muscle tissue, which showed no

detectable force changes of the bundles. In contrast, the
subsequent application of 32 mM caffeine always elicited very
clear contractions (n = 8, data not shown). In addition,
the absence of any force response of fascial tissues in
response to 32 mM caffeine in our findings contradicts a
significant contribution of skeletal muscle fibers in the observed
tissue contractions.

A similar argumentation can be considered in relation to
the possibility that the observed tissue contractions could
be due to the contraction of vascular smooth muscles
cells within the tissue bundles. Here, the absence of a
force response with angiotensin II suggests that vascular
contractility did not play a significant role in our observed
tissue contractions. In addition, the finding of a significantly
higher MFB density in responder tissues compared with
non-responder samples provides further corroboration for a
strong dependency of our observed fascial contractions on the
presence of MFBs.

While the histological examinations of this study were
mostly performed with human tissues, the mechanographic
investigations were exclusively conducted with fascial tissues
from rats. It is therefore necessary to apply particular caution
when combining and interpreting the different findings,
In particular, the possibility cannot be excluded that the
observed results may not represent the responsiveness of
human fasciae. The following indications suggest that the
responsiveness of human fascial tissues in vitro should
be roughly comparable to the basic features observed in
our murine tissues.

First, a previous investigation of Hoppe et al. (2014)
included the demonstration of a sample of human vastus
lateralis fascia expressing a clear contractile reaction in
response to pharmacological stimulation, when examined in
the same conditions. Second, our histological data indicate
that the density of MFBs in human fascia is not less
than that observed in comparable rat fascia. While this
may be a demanding task for tissue acquisition and related
ethics approval, we recommend that future studies should
include in vitro contraction tests with surgical tissue samples
from human donors.

Perspectives and Significance
Our findings question the common clear distinction between
active tissues and passive tissues in musculoskeletal dynamics
(Panjabi, 1992). While the contraction forces observed in
our study do not support a significant contribution of
active fascial contractility in time frames of seconds (as are
frequently considered, e.g., for locomotor dynamics), they
suggest that active changes of fascial stiffness might play
contributory roles to the motoneuronal coordination aspect
of low back stability and other musculoskeletal parameters
when viewed in a time-window of several minutes and longer.
As some chronic disorders develop asymptomatically over a
large time frame (Rio et al., 2014) and are characterized
by increased tissue stiffness (Bolívar et al., 2013; Kuo et al.,
2013), the potential contribution of fascial MFB activity merits
further investigation.
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