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The connectedness of signaling components in network structures is a universal feature
of biologic information processing. Such organization enables the transduction of
complex input stimuli into coherent outputs and is essential in modulating activities as
diverse as the cooperation of bacteria within populations and the dynamic organization
of mitochondria within cells. Here, we highlight some common principles that underpin
collectivization in bacteria and mitochondrial populations and the advantages conferred
by such behavior. We discuss the concept that bacteria and mitochondria act as signal
transducers of their localized metabolic environments to bring about energy-dependent
clustering to modulate higher-order function across multiple scales.
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INTRODUCTION

The conventional view of mitochondria as enslaved “powerhouses” of the cell has shifted to
a more nuanced understanding of mitochondria as excitable, communicative entities that are
enmeshed in complex signaling pathways to modulate an array of cellular processes (Whelan
and Zuckerbraun, 2013; Chandel, 2015). Dynamic mitochondrial clustering and fragmentation
(fusion and fission, respectively) influences events across multiple scales, for example, in cells
(Ding et al., 2010), tissues (Familtseva et al., 2014) and organs (Eisner et al., 2017; Coronado
et al., 2018) through to influencing the viability of the physiologic state (Biala et al., 2015)
and even speciation (Barreto et al., 2018). These advances have helped evolve the evocative
concept of mitochondria as pseudo-autonomous entities adopting “hive-like” order and behavior
(Braschi and McBride, 2010).

There are striking similarities between the self-organization of mitochondrial networks and
the collectivization of their ancestors, bacteria, into multicellular populations (e.g., biofilms). Both
involve the transduction of localized environmental cues into altered function via the establishment
and maintenance of extensively coupled networks (mitochondria) or matrix-embedded bacterial
communities (biofilms). In the case of bacteria, selective pressures leading to the formation
of biofilms result in emergent properties including resistance to environmental stressors and
enhanced nutrient acquisition. These advantageous properties, which ultimately might directly
influence higher-order behavior [e.g., between bacteria and their hosts (Hughes and Sperandio,
2008; Carding et al., 2015)], outweigh the high energetic costs of biofilm formation (Lyons and
Kolter, 2015) (see section “The Benefits of the Impermanent Interactions”). Collectivization in
bacterial biofilms thus represents exemplary self-organization and circular causality, i.e., bacteria
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generate their own local microenvironments (e.g., nutrient and
oxygen gradients) that elicits responses on different temporal
scales (e.g., by differential gene expression) which subsequently
modulates localized conditions thereby tuning their ensuing
behavior within the population etc., (Klauck et al., 2018;
Piras et al., 2018).

Here, we consider evidence that mitochondria retain these
hallmark features of topology, self-organization and feedback
loops characteristic of bacterial collectivization. We highlight
evidence that mitochondria, like bacteria, sense localized
metabolic environments to bring about dynamic energy-
dependent clustering events that entrain long-range correlations
that subsequently modulate higher-order function across
multiple scales.

SELF-ORGANIZATION AND CRITICALITY

Biological networks are canonically “scale-free” and are defined
by the presence of long-range, power-law correlations arising
from multi-fractal connectedness operating over multiple
spatial and temporal scales (Strogatz, 2000; Goldberger et al.,
2002; Barabasi and Oltvai, 2004; Aon et al, 2008). Such
network structures possess, at their core, autonomic self-
organizing, self-repairing, and self-maintaining behavior. Thus
the normal physiologic “steady state” is not one of constancy
(as might be inferred by the term “homeostasis”), but rather
is the manifestation of a dynamically configured system
characterized by

(1) Multiple levels of control via delocalized “diffuse” coupled
feedback loops,

(2) Spatio-temporal compartmentalization,

(3) Plasticity, reconfiguration/ adaptation,

(4) Intrinsic “memory” of previous configurations, and

(5) Energetic and entropic positioning far from equilibrium.

These properties are comprehensively reviewed elsewhere
(Glass and Mackey, 1979; Ivanov et al, 1999; Goldberger
et al, 2002; Weiss et al., 2006; Aon and Cortassa, 2012;
Gintant and George, 2018).

The description of living cellular systems have been further
refined to “dynamical entities that evolve and adapt with time
and prior states having an influence on present states” (Bernabo
et al., 2014). Here, we consider experimental evidence — which
invokes the concept of “fractal dynamics” (Goldberger et al.,
2002; Aon et al., 2008; Kurakin, 2011) - that such a description
of higher-order network configuration would apply equally to
bacteria and mitochondria.

The finely balanced physiologic network state enables
rapid changes in functionality (e.g., increase in heart rate
via the fight-or-flight mechanism) and longer-term adaptive
responses (e.g., physiologic cardiac hypertrophy). Given the
fractal nature of biological control, these same features of
network topology also define lower-order behavior in bacteria
and mitochondria (e.g., collectivization and altered behavior
in response to changing nutrient availability and energy
demands) (Figure 1).

In bacteria, nutrient availability promotes growth and
biofilm establishment that is sustained by cooperativity
and self-organization through propagation of electrical and
metabolic signals (Liu et al., 2015; Lyons and Kolter, 2015;
Prindle et al., 2015; Humphries et al., 2017). Feedback loops
linking K™ channel opening and glutamate diffusion lead to
periodic oscillatory growth that initiates suddenly when biofilms
reach a critical size (i.e., existence close to points of bifurcation)
(Liu et al., 2015; Prindle et al., 2015; Larkin et al., 2018). Similarly,
criticality and percolation are also hallmark characteristics of
mitochondria which have been shown to operate at the edge of
dynamic instability (i.e., close to chaotic behavior) and undergo
sharp phase transitions (Aon et al., 2004; Kurz et al., 2015;
Zamponi et al., 2018).

THE BENEFITS OF THE IMPERMANENT
INTERACTIONS

Given the advantages conferred by physical interconnectivity as
described above, it is pertinent to question why individualism
has been retained in mitochondria and bacteria. While pseudo-
reticular inter-mitochondrial connections do exist in skeletal
muscle in order to facilitate energy distribution (Glancy et al,,
2015), we consider some reasons why mitochondrial and
bacterial interactions are dynamic and why this confers advantage
over permanent fusion.

(i) Unlike permanent reticular structures in eukaryotes
[e.g., endoplasmic reticulum (ER)], the spatiotemporal
patterning of inter-mitochondrial interactions give rise to
emergent properties in response to localized environments
(e.g., redox and energetic status). Thus long-range ordering
may be shaped by periodic oscillatory events that occur
over numerous fission/fusion cycles and which influence
behavior across multiple scales (see section “Introduction”).
Similarly, it has been reported that oscillatory behavior
associated with bacterial incorporation into biofilms
encodes an adaptive “memory” that persists across multiple
generations (Lee et al., 2018).

(ii) Collectivization is an energy-dependent process.
Separateness enables the discrimination of individual units
based on their functional competency (energetic “fitness”).
Those mitochondria that are energetically damaged (i.e.,
“unfit” mitochondria with aberrant membrane potential),
and thus do not have the requisite competency for fusion,
are targeted for degradation via mitophagy (Twig et al,
2008; Vasquez-Trincado et al., 2016). Surveillance may thus
serve as an early self-preservation mechanism to negate
aberrant oscillatory behavior arising from the incorporation
of damaged mitochondria into a mitochondrial network
(Yang et al., 2015; Dey et al., 2018). This phenomenon has
been suggested to modulate the longer-term viability of
the host cell (Gomes et al., 2011). Likewise, surveillance
of energetic fitness also exists to monitor the competency
of individual bacteria to aggregate into multicellular
structures (Burmann et al., 2011). Such quality control
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FIGURE 1 | Collectivization and coherence in mitochondrial networks and bacterial biofilms. Under periods of low energy demand and nutrient sufficiency,
mitochondria and bacteria tend to exist as individual units producing weak, incoherent signals. However, during periods of higher energy demand and lower nutrient
availability, formation of coupled networks produces strong and coherent signaling. Al, autoinducers include modified peptides, hydroxylated pentanediones (“Al2”),
derivatised lactones, heterocyclic compounds (e.g., quinolones, indoles) and esterified palmitic acid. Other Als have been phenomenologically described as diffusible
signal factor (DSF) and cholerae autoinducer-1 (CAI-1). The upper panel (mitochondria) is adapted from Picard and Burelle (2012) with permission.
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mechanisms ensure the fidelity of population behavior
and enables the identification and elimination of “rogues”
(Diggle et al., 2007; Allocati et al., 2015).

Although the modulation of mitochondrial networks is
typically considered the product of fusion and fission
events, mitochondrial nanotunnels have been discovered in
heart cells where the densely packed cellular ultrastructure
does not allow dynamic mitochondrial movement (Huang
et al., 2013; Vincent et al, 2017). These nanotunnels
support highly interconnected, non-fused networks of
spatially segregated mitochondria. The evidence that inter-
organellar tubular connections are conserved through
evolution (Vincent et al., 2017), and also that heterogeneous
mitochondrial distribution and function is a feature
of non-excitable cells (Collins et al., 2002), suggests
that nanotunnels may represent a common means to
enhance mitochondrial network ordering in addition
to fusion/fission events. In an intriguing corollary to
the concept described in (ii) that the formation of
mitochondrial networks represents the “selection of the
fittest,” nanotunnels may form between those mitochondria
exhibiting reduced competency for fusion or those
showing early signs of damage (Vincent et al, 2017).
Indeed, the observation of tubular protrusions may
point to abortive fusion events by those energetically

(iii)

compromised mitochondria that are “reaching out for
help” (Vincent et al., 2017). In a similar way, bacterial
nanotubes enable sharing of nutrients and useful genes
between distant neighbors, promoting cell survival
(Dubey and Ben-Yehuda, 2011).

ON QUORUM SENSING

The multi-step, energy-demanding process of biofilm formation
is controlled by quorum sensing (QS). In this process, under
conditions of nutrient availability, microbes sense their neighbors
via autoinducers (AI) which results in the synchronization of
gene expression across a microbial community (Nealson
et al, 1970; Li and Tian, 2012; Figure 1). QS ensures
bacterial collectivization when the propensity for emergent
behavior is maximal, e.g., induction of bioluminescence
(Nealson et al., 1970), enhanced virulence (Hentzer et al.,
2003) and antibiotic production (Folcher et al., 2001).
Opining on whether mitochondria exhibit QS, as has been
posited by others (Picard and Burelle, 2012), is not the
primary purpose of this Perspective. However, given the
evidence above on the commonality of collectivization
in bacteria and mitochondria, it is difficult to refute the
existence of QS-like behavior in mitochondria. Notably,
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QS-like behavior is also observed in higher-order systems
[e.g., the enhanced sensitivity to morphogenetic gradients

in coupled populations of mammalian epithelial cells
(Ellison et al, 2016)] and, remarkably, in artificial
systems  designed to produce autonomous devices

(Hennig et al., 2015).

CONCLUSION

It is an over-simplification to describe mitochondrial function
as merely a response to environmental conditions and
that mitochondrial “fission versus fusion” events are the
final downstream acts of cellular commitment (“flourish”
versus “die”). Rather, compelling evidence exists that
the intrinsic behavior of mitochondria, via long-range
correlation and chaotic behavior, contributes to setting
the initial conditions to which they subsequently respond.
By drawing parallels with the collectivized behavior of
mitochondrial ancestors - bacteria - we conclude that dynamic
remodeling of inter-mitochondrial interaction is a fundamental
determinant of cellular fate and tissue function and that it
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