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Although insulin resistance (IR) is a key pathophysiologic condition underlying various
metabolic disorders, impaired cellular glucose uptake is one of many manifestations
of metabolic derangements in the human body. To study the systems-wide molecular
changes associated with obesity-dependent IR, we integrated information on plasma
proteins and microRNAs in eight obese insulin-resistant (OIR, HOMA-IR > 2.5) and nine
lean insulin-sensitive (LIS, HOMA-IR < 1.0) normoglycemic males. Of 374 circulating
miRNAs we profiled, 65 species increased and 73 species decreased in the OIR
compared to the LIS subjects, suggesting that the overall balance of the miRNA
secretome is shifted in the OIR subjects. We also observed that 40 plasma proteins
increased and 4 plasma proteins decreased in the OIR subjects compared to the LIS
subjects, and most proteins are involved in metabolic and endocytic functions. We
used an integrative -omics analysis framework called iOmicsPASS to link differentially
regulated miRNAs with their target genes on the TargetScan map and the human protein
interactome. Combined with tissue of origin information, the integrative analysis allowed
us to nominate obesity-dependent and obesity-independent protein markers, along
with potential sites of post-transcriptional regulation by some of the miRNAs. We also
observed the changes in each -omics platform that are not linked by the TargetScan
map, suggesting that proteins and microRNAs provide orthogonal information for the
progression of OIR. In summary, our integrative analysis provides a network of elevated
plasma markers of OIR and a global shift of microRNA secretome composition in the
blood plasma.

Keywords: obesity, insulin resistance, proteomics, microRNAs, network analysis

Abbreviations: BMI, body mass index; HDL, high density lipoprotein; HOMA, homeostatic model assessment; IR, insulin
resistance; LIS, lean insulin sensitive; OIR, obese insulin-resistant; T2D, type 2 diabetes.
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INTRODUCTION

Insulin resistance (IR) is a state where a high concentration of
insulin is needed to exert its normal biological functions, in
particular in regulating glucose metabolism and maintaining the
balance with lipid and protein metabolism. It is also described
as an adaptive physiological response that accompanies many
metabolic disorders such as T2D, hypertension, cardiovascular
disease, dyslipidemia, and polycystic ovarian disease. IR is closely
linked to obesity, but obesity only explains 22% of its variability
(Abbasi et al., 2002). On the other hand, IR can be a manifestation
of a systematic defensive response to nutrient excess to reduce
cellular metabolic stress and formation of reactive oxygen species
by limiting glucose entry into the cells (Hoehn et al., 2009). It
is contemplated that the protective mechanism develops into a
maladaptive response, leading to hyperglycemia together with
many other dysregulated metabolic events.

A growing number of studies have already provided first
snapshots of the molecular landscape of IR at the genome,
transcriptome, proteome and metabolome level, dissecting the
difference between obesity-dependent and obesity-independent
pathways leading to IR. In a large-scale genome-wide association
study of 188,577 individuals, Lotta et al. (2017) identified 53
genetic loci that are associated with a human IR phenotype,
and hypothesized that these genetic loci might have influence
on the capacity of peripheral adipose tissue to store fat in
the pathogenesis of IR-related cardiometabolic disease. Frankie
and Abbas showed that the transcriptome and proteome
of the insulin signaling, gluconeogenic and inflammatory
pathways in skeletal muscle and T-lymphocytes are significantly
different between healthy subjects and patients with T2D
(Stentz and Kitabchi, 2007).

At the plasma proteome level, various biomarkers secreted
by immune cells, adipose tissues and liver have been associated
with IR (Yki-Jarvinen, 2005; Kwon and Pessin, 2013; Lee and
Lee, 2014). For example, low concentration of adiponectin
(from adipose tissue) and IGFBP1 (from liver) in circulating
blood has been consistently associated with IR and risk of
glucose intolerance (Sandhu et al., 2002; Khoo et al., 2011).
Higher inflammatory chemokines such as CRP, IL6, and
TNF-α might affect skeletal muscle insulin signaling through
endocrine and paracrine effects (Wei et al., 2008). Finally, several
investigators have demonstrated the relationship between IR and
the metabolome in the blood plasma, in particular circulating
branched-chain amino acids, acylcarnitines and sphingolipids
(Summers, 2010; Newgard, 2017).

The abundance of proteins associated with IR and obesity is
also known to be tightly regulated at the post-transcriptional
level by microRNAs (O’Hara et al., 2009). MicroRNAs (miRNAs)
are small non-coding RNAs that regulate their target mRNAs
in a sequence specific manner through mRNA degradation or
translational silencing (Cannell et al., 2008). The relationships
between miRNAs and the target genes constitute a complex
network, as one miRNA can target multiple mRNAs, and multiple
miRNAs can target the same mRNA, and their translational
control occurs in a combinatorial manner (Cursons et al.,
2018). The functional impact of miRNA-based gene expression

regulation encompasses diverse biological pathways. Thus, the
changes in global miRNA expression or the microRNAome
are expected to play major roles in IR development and
progression through adapted protein synthesis and mRNA
turnover across the genome.

Circulating miRNAs also play a critical role in intercellular
communication and signal transduction. They can be secreted
from cells via RNA-binding proteins or exosomes and remain
stable in the circulation, migrating into the recipient cells and
controlling protein expression therein (Bayraktar et al., 2017).
Relevant to metabolic disease, miRNAs have been shown to
modulate key metabolic functions such as cholesterol and lipid
metabolism (miR-33a, miR-122), insulin and glucose homeostasis
(miR-375, miR-103, miR-107) and hepatic lipid metabolism
(miR-34a) (Rottiers and Naar, 2012).

Despite the growing knowledge of the secretome changes
in obesity and IR, few have profiled circulating proteins and
miRNAs simultaneously from the same biospecimen and probed
the regulatory role of miRNAs with the associated proteome.
To address this gap, we profiled the circulatory proteins and
miRNAs in OIR subjects and compared those to LIS subjects. We
deliberately recruited obese IR subjects, as not all obese subjects
are insulin resistant. We aimed to describe the landscape of
differential proteins and miRNAs and provide an integrated map
of the regulatory relationships between miRNAs and their target
gene’s proteins with tissue of origin information for the latter.

MATERIALS AND METHODS

Study Participants
The study methodology has been previously described in
detail (Rizi et al., 2016). Briefly, we recruited nine obese
(BMI ≥ 27.5 kg/m2) insulin-resistant (OIR) and nine lean
(BMI ≥ 18.5 and ≤ 23 kg/m2) LIS Chinese males aged 21–
40 years. All patients had fasting plasma glucose < 5.6 mmol/L
and HbA1c < 6.0%. Subjects with HOMA-IR (HOMA-IR) ≥ 2.5
were considered as insulin resistant, and those with HOMA-
IR < 1.2 as insulin sensitive. We excluded subjects with known
first-degree family history of diabetes mellitus, prior history
of pre-diabetes or diabetes mellitus, current thyroid disorders,
history of malignancy, hospitalization or surgery within the
past 6 months before the study, use of lipid-lowering, daily
alcohol consumption exceeding 3 units, high level of physical
activity (>5 h per week) or change in body weight ≥ 5%
over the past 3 months. All subjects provided written consent
before participation in the study. This study was carried
out in accordance with the recommendations of ‘name of
guidelines, name of committee’ with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the National Healthcare Group Domain Specific
Review Board (Singapore).

Clinical Measurements
We collected demographic data, medical and drug history. Height
and weight were measured using a wall-mounted stadiometer

Frontiers in Physiology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 379

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00379 April 4, 2019 Time: 18:2 # 3

Choi et al. Integrated Multi-Omics Profiles of Insulin Resistance

and a digital scale, respectively. BMI was computed using the
subject’s weight (in kg) divided by the square of his height
(in m). HOMA-IR was calculated using the following formula:
fasting insulin (mU/l) × fasting glucose (mmol/l)/22.5. Plasma
glucose and insulin were measured using an enzymatic method
(AU5800, Beckman Coulter, Inc., Brea, CA, United States) and
a chemiluminescence immunoassay (ADVIA Centaur, Siemens
Healthcare Diagnostics, Hamburg, Germany), respectively. The
HbA1c was measured using the laboratory-based HPLC analyzer
with CVs less than 2%.

LC–MS Proteomics
Plasma proteomics experiments were performed by the Caprion
Biosciences, Inc. All plasma samples went through standard
sample preparation protocol including depletion of highly
abundant proteins and trypsin digestion, followed by strong
cation-exchange chromatography fractionation. Each fraction of
a sample was analyzed by Q ExactiveTM mass spectrometer
(Thermo Fisher) with separation through NanoAcquity UPLC-
based liquid chromatography. For protein identification, the
tandem mass spectra were searched against UniProt human
protein database UP000005649 using Mascot software (Matrix
Science, version 2.5.1) and peptides and associated protein
IDs were identified at 6.4% false discovery rate. After cross-
sample alignment by chromatographic retention time, peptides
with 25% or higher frequency of missing data were removed,
and the missing peptide intensities were imputed using
the K-nearest neighbors method. The processed peptide
intensity data was normalized so that the median intensity
is the same across all the samples. Finally, protein intensity
was derived by the sum of peptide-level intensities. See
Supplementary Table S3.

MicroRNA Profiling
374 miRNAs were profiled using the multiplexed RT-qPCR
platform called MiRXES (MIRXES, Pte. Ltd., Singapore). The
experimental protocol is as follows.

Total RNA was isolated from 200 uL plasma with Qiagen
miRNeasy serum/plasma kit according to manufacturer’s
protocol. Three spike-ins synthetic short RNAs with distinct
sequence from endogenous human miRNAs were added in
Qiazol as controls to normalize workflow variations. MS2 was
also added into Qiazol as a carrier to prevent RNA loss during
isolation step. Each 200 uL of plasma was mixed thoroughly
with 1 ml of Qiazol, and then added with 200 µl of chloroform.
Phase separation was performed at 4◦C at 18000 g for 15 min,
and the resulting 600 µl of aqueous phase was transferred to
Qiacube for automated binding and washing. The resulting
RNA was then eluted with 30 µl of nuclease free water.
Another distinct set of three synthetic short RNAs that are
not endogenous were added at this stage to further control for
RT-qPCR efficiency.

Isolated plasma RNA was reverse-transcribed using the Xtensa
miRNA reverse transcription (RT) kit (MiRXES) and modified
stem-loop RT primer pools (MiRXES). The RT reaction was
carried out at 42◦C for 30 min, followed by 90◦C for 5 min.
For each RT reaction, a standard consisted of a serial of six

10-fold dilutions of synthetic miRNA and two no-template
controls (NTCs) were reverse transcribed at the same time
for all the samples. The standard was diluted in similar
matrix as samples. cDNA was then pre-amplified before qPCR
reaction to increase the concentration of templates for higher
sensitivity and better dilution repeatability. All samples were
pre-amplified for 17 cycles together with reverse transcribed
standards. Subsequently, pre-amplified cDNA were diluted 100-
fold before qPCR.

The qPCR reaction for each sample was performed in
duplicates with the following protocol: 95◦C for 10 min, followed
by 40 cycles of 95◦C for 10 s and 60◦C for 30 s (optical
reading). Raw Ct values were calculated using the ViiA 7 RUO
software with automatic baseline setting and a threshold of 0.5
Ct values were averaged and compared against standard for the
interpolation of copy number. Any miRNA with Ct number
later than that of NTC was deemed undetectable. The data
were further normalized so that the median and the standard
deviation of log2 copy numbers of microRNAs were the same
across all samples.

Statistical Analysis
The statistical analyses of the anthropometric and biochemistry
outcomes were performed using SPSS version 22.0 for Windows
(SPSS, Inc., Chicago, IL, United States) using the Student’s
t-test, with and without adjustment for age. Each -omics
data set was first analyzed by principal component analysis
(PCA) using prcomp command in R1. Differential expression
analysis of both types of molecular data was performed
using two-sample t-test (t.test command from stats library)
and multiple testing correction by q-values (Bioconductor
package q-value) (Diz et al., 2011). Volcano plots and
heatmaps were produced using custom R scripts. Proteins
and miRNAs with q-values below 0.05 were considered to
be significantly different between insulin resistant and insulin
sensitive subjects. For protein data, tests of enrichment for
biological functions were performed using hypergeometric tests
against biological functions from Gene Ontology Consortium
(Ashburner et al., 2000), KEGG (Ashburner et al., 2000),
Reactome Pathway Database (Fabregat et al., 2016), and
ConsensusPathDB (Kamburov et al., 2009).

Network-Based Integrative Analysis
(iOmicsPASS)
The protein and miRNA data were merged over two biological
networks including the TargetScan map (2default predictions
in version 7.2) and protein–protein interaction (PPI) network,
using a novel data integration strategy called iOmicsPASS
(Koh et al., 2018). Briefly, the quantitative measurements of
proteins and miRNAs were converted to Z-scores and they
were integrated into scores of co-expression for molecular
interactions (a microRNA and its target gene’s protein, or
two interacting proteins) in iOmicsPASS. In the software,
each interaction can be designated as positive or negative

1http://cran.r-project.org
2www.targetscan.org
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interaction by the user. Since we consider each miRNA as a
translation inhibitor of its target genes in this analysis, we
specified negative interactions for the TargetScan interactions.
This specification instructs the software to compute the co-
expression score for the interaction between miRNA and protein
as the difference in Z-scores between protein and miRNA (Z-
score of protein – Z-score of miRNA). For PPIs, we specified
positive interactions between proteins. This leads to the co-
expression score calculation as the sum of Z-scores of the two
interacting proteins.

The resulting interaction-level quantitative data is used
to find subnetworks of TargetScan and PPI subnetworks
that are predictive of each group (OIR and LIS), using a
modified version of the nearest shrunken centroid classifier,
also known as Prediction Analysis of Microarray (Tibshirani
et al., 2002). Final predictive subnetwork was chosen at
a threshold (1.15) that resulted in the smallest average
misclassification error rates over 10 sets of fivefold cross-
validation (Supplementary Figure S1A).

After predictive subnetwork identification, the proteins
involved in the identified predictive subnetwork were used
to test enrichment of biological functions using an in-house
implementation of hypergeometric tests. The part of the
subnetwork associated with the identified pathways was finally
visualized using Cytoscape (Shannon et al., 2003).

Once iOmicsPASS identified the protein interactome
and miRNA–protein subnetwork predictive of the OIR, we
incorporated the tissue of origin information for the proteins
discussed above (Supplementary Figure S1B) from the
Human Protein Atlas (HSPA) database. For each pair of
protein and miRNA (negative co-expression) and each pair
of interacting proteins (positive co-expression), we examined
the tissue of origin for the proteins. A gene was considered
to originate from the tissue if the tissue has evidence of
mRNA and protein expression. This information enabled
us to discern whether the miRNA’s translational repressive
role takes place specifically in adipose tissue and liver and
thus differentiate obesity-dependent and obesity-independent
regulatory molecules.

RESULTS

Baseline Anthropometric Data
The baseline anthropometry and fasting plasma biochemistry of
study participants, consisting of eight OIR and nine LIS subjects,
are shown in Table 1. One obese subject has incomplete plasma
proteomic data and was excluded from the analysis. Briefly,
participants in the OIR group were older, and had higher BMI,
waist circumference, fasting blood glucose, insulin, triglyceride,
HOMA-IR, diastolic blood pressure and alanine transaminase. As
expected, OIR subjects had significantly lower HDL-cholesterol
concentration than LIS subjects. Further adjustment for age did
not alter the significant differences between the two groups.

Analysis of Proteome and miRNAs
We analyzed fasting blood plasma samples using a multiplexed
RT-qPCR assay platform and a liquid chromatography–
mass spectrometry (LC–MS/MS) system to measure the
abundance of circulating miRNAs and proteins, respectively
(see section “Materials and Methods”). After data quality
control and normalization, we applied PCA to each dataset
to investigate whether the profiles separate the subjects into
two groups in an unbiased manner. The plasma miRNAs
separated the two groups more clearly (48% of total variation
accounted for by PC1 in the miRNAs, Figure 1A) than the
plasma proteome (10% of total variation along PC4 in the
proteome, Figure 1B), suggesting that other biological factors
(PC2 and PC3) influenced the inter-individual variability in
the plasma protein concentrations other than obesity and
IR in this data.

To identify differentially abundant proteins and miRNAs, we
applied two-sample t-test to 368 miRNAs and 1,499 proteins.
We prioritized 138 miRNAs (p-value < 0.01, Figure 1C) and 44
proteins (q-value < 0.05, Figure 1D) (Supplementary Table S1).
The proportion of differentially abundant miRNAs was very high
in the miRNA data, thus the q-value method was not able to
decompose the p-value distribution into the null and alternative
components and estimate q-values reliably. Therefore, we used

TABLE 1 | Baseline anthropometry and biochemistry of study participants.

Lean insulin sensitive (n = 9) Obese insulin resistant (n = 8) p-Value

Age, years 23.2 ± 0.2 28.4 ± 1.6 0.0037

BMI, kg/m2 22.0 ± 0.2 29.6 ± 0.6 < 0.0001

Waist circumference (cm) 79.9 ± 0.5 100.1 ± 0.8 < 0.0001

Fasting glucose (mmol/l) 4.33 ± 0.06 4.71 ± 0.13 0.0149

Fasting insulin (mU/l) 4.31 ± 0.52 21.9 ± 2.4 < 0.0001

HOMA-IR 0.83 ± 0.10 4.53 ± 0.41 < 0.0001

Systolic blood pressure (mmHg) 110.78 ± 4.07 120.88 ± 2.69 0.0623

Diastolic blood pressure (mmHg) 60.56 ± 3.00 72.50 ± 3.41 0.0184

Fasting triglyceride (mmol/l) 0.62 ± 0.07 1.97 ± 0.27 < 0.0001

HDL-cholesterol (mmol/l) 1.71 ± 0.09 1.18 ± 0.07 0.0003

Aspartate transaminase (mmol/l) 24.00 ± 3.76 37.88 ± 6.05 0.0644

Alanine transaminase (mmol/l) 18.22 ± 2.20 58.50 ± 12.61 0.0045

Data are presented as means ± SEM; BMI body mass index; HDL high-density lipoprotein; HOMA-IR homeostasis model assessment for insulin resistance.
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FIGURE 1 | (A,B) PCA plots of miRNA and proteome data. OIR and LIS subjects are shown using different symbols. The vertical axis of the proteome data is the
fourth principal components, indicating other axes of variation in the second and third principal components. (C,D) The volcano plots from the differential expression
analysis. Molecules with elevated circulation levels in OIR subjects are in red, while those with reduced circulation levels in OIR subjects are in blue.

nominal p-value threshold at a reasonable level, i.e., close to
50% fold change. Consistent with the PCA plots, the between-
group differences in plasma miRNAs were more pronounced
than those of proteins.

Plasma miRNAs Show a Global Shift in Circulation
Levels in OIR
Figure 2A shows the heatmap of normalized abundance levels
of the 138 miRNAs, showing significant differences between
the OIR and LIS subjects. Among these, 65 species (47%)
were circulating in higher levels and 73 species (53%) were
circulating in lower levels in the OIR. These account for
nearly a third of the miRNA species profiled on the assay,
and the observation suggests that the overall balance in the
miRNA secretome is perturbed in the OIR subjects compared
to the LIS subjects. The notable change in miRNA secretome

also indicates that miRNA-dependent intercellular signaling has
changed significantly (Chen et al., 2012).

Of the 65 miRNAs in elevated circulation levels in OIR,
miR-192-5p, miR-194-5p, miR-486-5p, miR-150, miR-378a-3p,
miR-550a-3p, miR-16-5p, and miR-140-3p have previously been
reported to be associated with IR. miR192-5p has been shown
to inhibit myogenic differentiation and promote satellite cell
proliferation in an animal model, and has been shown to regulate
extracellular matrix components in the pathogenesis of diabetic
nephropathy and non-alcoholic steatohepatitis (Liu et al., 2018).
Ma et al. (2018) showed that the levels of circulating miR-150 and
miR-16-3p are correlated with insulin sensitivity index measured
by euglycemic clamp experiment. miR-378a is highly conserved
between species, and is embedded in the first intron of the
ppargc1b gene encoding PGC-1b. Both strands of miR-378a (-
3p and -5p) are co-expressed with PGC-1β, for example, in the
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FIGURE 2 | (A) Heatmap of plasma concentrations for the 138 miRNAs (log 2 transformed, mean-centered data). (B) Heatmap of plasma concentrations for the 44
proteins (same as above). (C) Biological processes enriched in the 44 proteins (hypergeometric p-value < 0.05 in the test of enrichment).

liver and during adipocyte differentiation, implicating a direct
participatory role of miR-378a in the energy and fat metabolism
(Krist et al., 2015). Several of these upregulated circulating
miRNAs such as miR-150-5p, 16-5p, 192-5p, 451a, 486-5p, and
770-5p have been reported to be expressed in patients with T2D
(He et al., 2017). Lastly, miR-193a-5p and 451a are upregulated in
the skeletal muscle of T2D patients (He et al., 2017).

On the other hand, the lower circulation levels of 73
miRNAs in the OIR subjects suggest the possibility that
either the biogenesis of those miRNAs is suppressed in
the originating organ systems or they are secreted less

as a result of IR development and reduced cell-to-cell
communication in metabolically active sites, giving room for
elevated protein synthesis of target genes and/or accelerated
secretion into the blood.

Majority of Plasma Protein Candidate Markers Shows
Increased Circulation Levels
Meanwhile, Figure 2B shows the normalized abundance of 40
proteins with higher circulation levels (red) and four proteins
in lower circulation levels (blue) in the OIR subjects (see also
Supplementary Table S1 for summary) compared to LIS subjects.
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The lower plasma concentrations of insulin-like growth factor
binding protein 1 (IGFBP1) and sex hormone-binding globulin
(SHBG) in the OIR subjects are consistent with the literature
(Rajwani et al., 2012; Wallace et al., 2013). IGFBP2 is secreted
by differentiating white preadipocytes, and in vitro data suggest
that IGFBP2 directly prevents adipogenesis and improves insulin
sensitivity (Wheatcroft et al., 2007).

The significance of lower concentration of plasma
desmoglein-2 (Dsg2) among the OIR subjects compared to
the LIS subjects has not been discussed extensively in the
literature. Dsg2 is highly expressed in epithelial cells, and
together with other members of the Dsg family, they are involved
in the regulation of cell cohesion in keratinocytes. Dsg2 is the
only desmoglein expressed in the heart, has been shown to
play an important role in cardiomyocyte cohesion and function
(Schlipp et al., 2014). It has been postulated that obesity leads to
lipotoxic cardiomyopathy, interstitial fibrosis, and inflammation
leading to dysfunctional desmosomal proteins such as Dsg2
(Samanta et al., 2016). More recently, Dsg2 has been shown to
regulate intestinal barrier function beside its adhesion function
and its dysfunction might underlie the inflammatory bowel
conditions (Ungewiss et al., 2017).

On the other hand, the plasma concentration of remaining
40 plasma proteins were higher in the OIR than LIS subjects.
The dominant proportion of the miRNA species with lower
circulation levels in OIR also indicates that the lower circulatory
miRNA signatures are more related to the protein secretome
changes in the OIR subjects. The proteins with higher
concentration in the OIR subjects are involved in a variety
of metabolic and endocytic functions (see Figure 2C and
Supplementary Table S2). These metabolic functions include
amino acid metabolism (BHMT, FAH, GLUD1, GPT, HPD,
PSAT1), glucose metabolism (ALDOB, FBP1, FBP2), lipid
transport and cholesterol metabolism (APOC2, APOE, LDLR),
lipid and lipoprotein metabolism (GPD1, FABP4), and other
cellular functions such as biological oxidation (ACY1, ADH1A,
ADH1C), cytokine receptor interaction (GHR, INHBC, INHBE),
and receptor-mediated endocytosis (PRG4, SSC5D, VTN)
(see Figure 3).

In addition, plasma concentrations of leptin (LEP) and
proline-rich acidic protein 1 (PRAP1) are known to be elevated in
obese subjects (Jequier, 2002). Plasma leptin, secreted by adipose
tissue, is in higher concentrations among the OIR subjects with a
high degree of adiposity in our data, indicating leptin resistance.
Circulating PRAP1, secreted by liver, gastrointestinal tract and
kidney, has negative correlation with insulin sensitivity and its
concentrations decreased with weight loss intervention among
obese individuals (Oller Moreno et al., 2018). Taken together, our
proteomic profiling captures a comprehensive set of key plasma
proteome associated with IR and obesity together.

Tissue of Origin Analysis Reveals Obesity-Dependent
and Independent Protein Signatures
We also examined the potential tissue(s) of origin for each
prioritized protein by querying the RNA-level and protein-level
expression of the 44 proteins in the HSPA database. If a tissue is
the major site of synthesis and secretion for a protein, evidenced

by the mRNA and protein expression in the tissue, then we
can make an educated guess for the tissue(s) of origin for the
regulatory action by miRNA on their target genes. Thus, the
tissue of origin information will be useful in determining which
of the 44 proteins are secreted primarily by adipose tissues,
i.e., in obesity-dependent manner. Likewise, the information
will also discern which proteins are secreted by other metabolic
organ systems such as liver and skeletal muscle, i.e., in obesity-
independent manner.

Supplementary Table S3 shows that some proteins are
secreted from adipose tissues: apolipoprotein E (APOE),
carboxypeptidase M (CPM), fatty acid binding protein 4
(FABP4), fumarylactoacetate hydrolase (FAH), growth hormone
receptor (GHR), glucosamine (N-acetyl)-6-sulfatase (GNS),
glycero-3-phosphate dehydrogenase (GPD1), glutamic-pyruvic
transaminase (GPT), low density lipoprotein receptor (LDLR),
leptin (LEP), and serpin family F member 1 (SERPINF1).
However, it is also possible that some of those proteins may
be secreted from other endocrine tissues, liver, gastrointestinal
tract, and kidney.

We next focused on the proteins synthesized in the liver, as
liver is a major contributor to the human secretome of metabolic
enzymes. If found to be exclusively secreted from liver, this will
indicate that the proteins represent the secretome shift that is
likely due to fat infiltration of the liver and subsequent IR in
liver. Among the four proteins with lower circulation levels in
OIR, sex hormone-binding globulin (SHBG) and insulin-like
growth factor binding proteins 1 (IGFBP1) are almost exclusively
synthesized in liver, and IGFBP2 protein are known to be
produced by a multitude of organs including liver, pancreas, and
immune cells based on the HSPA.

Compared to the LIS subjects, OIR subjects have higher
plasma levels of alcohol dehydrogenase 1A (ADH1), aldolase
(ALDOB, or fructose bisphosphatase B), apolipoprotein
C2, apolipoprotein C4, apolipoprotein E (APOE), ADP-
ribosyltransferase 4 (ART4), butyrylcholinesterase (BCHE),
betaine-homocysteine S-methyltransferase (BHMT), fructose-
1,6-bisphosphatase 1 (FBP1), coagulation factors IX and X,
4-hydroxyphenylpyruvate dioxygenase (HPD), inhibin-beta
C and E chain (INHBE, INHBC), proteoglycan 4 (PRG4),
serum amyloid A-4 protein precursor (SAA4), and vitronectin
(VTN). These plasma proteins are involved in the majority
of biological functions mentioned above, including glycolysis,
glucose and protein metabolism, lipid transport, and other
responses to inflammation and endocytic functions (Figure 3).
The overall plasma protein landscape matches that of the
literature, which has indicated that IR is associated with up-
regulation of glycolytic enzymes, aberration in coagulation
pathway and pro-inflammatory immune response in circulating
blood (Carayol et al., 2017; Sun et al., 2018).

Interestingly, fructose-2,6,bisphosphatase 2 (FBP2, also
known as FBPase-2) was the only protein with increased
levels in circulation among the OIR subjects that uniquely
originate from skeletal muscles, a major site of glucose
uptake and metabolism. The cellular concentration of FBP2 is
regulated by the enzyme 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase (PFK2/FBP2), and is critical in determining the
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FIGURE 3 | Diagram showing the membership of individual genes in biological processes. Black square implies that the corresponding gene in the column is
involved in the biological process in the row.

activity of 6-Phosphofructo-1-kinase (PFK1) in the regulation of
glycolysis and gluconeogenesis (Zhao et al., 2012).

Network-Based Predictive Analysis
Using Integrated miRNA and
Proteome Data
Analysis Strategy for Hypothesis-Driven
Data Integration
The plasma proteins and miRNAs discussed above originate from
various organ systems, and thus the relationship between the
two secretomes in the circulation remains elusive. In particular,
the origins of secreted miRNAs are largely unknown, and thus
the integrative analysis of the two data sets incorporating the
tissue of origin information for proteins can provide possible
cues for the primary sites of secretion for the miRNAs. Our basic
principle of integration is the following: each miRNA contributes
to the repression of synthesis of the proteins of its target genes
in the originating organ(s), and the circulation levels of the two
molecules are negatively correlated in each individual subject.

To this end, we analyzed the miRNA and proteomic data
using iOmicsPASS, a novel network-based predictive analysis tool
(Koh et al., 2018), and combined the results with tissue of origin

information for the proteins. The iOmicsPASS converts multi-
omic measurements into co-expression scores of interacting
molecules on a biological network of choice, and finds predictive
subnetworks for phenotypic groups (e.g., OIR and LIS). The
original implementation of iOmicsPASS integrates DNA copy
number, mRNA transcript abundance, and protein abundance,
and thus it only searches for positive co-expression patterns,
where the abundance of two interacting molecules are high
or low together in the same direction. For the integration
of miRNAs and proteins, we assume that a high level of a
circulating miRNA implies increased biogenesis of the miRNA
in the originating organ system, which in turn actively represses
protein translation of its target mRNA, resulting in a low level
of protein synthesis and secretion. Therefore, we revised our
algorithm to account for negative co-expression between miRNAs
and proteins, while still searching for positive co-expression of
physically interacting proteins.

Network-Based Integrative Analysis Identifies
Potential Origin of Secreted miRNAs and Sites of
Regulatory Action
Supplementary Figure S1A shows the misclassification errors
based on cross-validation in the selection of the optimal size
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FIGURE 4 | Heatmap of interaction score for miRNA–protein and protein–protein pairs. Only the pairs that are predictive of OIR and LIS phenotype are shown. For
miRNA–protein pairs in a subject, red color indicates that the protein level is greater and miRNA is lower in the sample than the average levels across the subjects.
For protein–protein pairs, red color means the circulation levels are higher for both proteins in the sample than the average levels.
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of a predictive subnetwork. Since the number of samples is
relatively small, we repeated this exercise 10 times and chose
the threshold that gave the lowest average misclassification
error rates, resulting in 98 relationships (85 miRNA–protein
regulation, 13 PPIs). The cross-validation error plots consistently
showed low-test errors at the optimal point and the probability
of classification was highly consistent with their actual groups
within the training data, suggesting that there is a robust co-
expression subnetwork signature, predictive of OIR in this data.
The optimized co-expression profiles clearly distinguished the
OIR from LIS subjects.

Figure 4 shows the negative co-expression profiles of
miRNA–protein pairs and positive co-expression profiles of
interacting proteins, both of which are predictive of OIR status.
Simultaneously, Figure 5 presents a graphical visualization of
the selected subnetwork (Supplementary Table S4 for the
details of the selected network data). We observed 71 negative
co-expression pairs of miRNA with proteins, with decreased
miRNA secretion and increased protein secretion levels in the
OIR subjects. TargetScan predicted several notable miRNAs as
regulators of a multitude of protein markers discussed above.
miR-128-3p, which was secreted less in IR, is predicted to
regulate synthesis of LEP and GHR in adipose tissues, CD2AP

in endocrine and gastrointestinal tissues, and LDLR in a large
variety of organs. Sud et al. (2017) previously showed that mice
fed high-fructose diet for 4 weeks showed downregulation of
liver miR-128-3p level, and the computing prediction further
showed that the miR-128-3p targets gene of IRS-1, FOXO1
and MTTP. miR-338 also regulates the synthesis of coagulation
factor F10 in liver and CD2AP. miR-493-5p targets APOC2 and
APOC4, uniquely produced in liver, and miR-379-5p regulates
the production of GLUD1 in liver which is an important
enzyme in the urea synthesis. In contrast, de Guia et al.
(2015) demonstrated that hepatic miR-379 expression in was
lower in lean (mean BMI 23.8 ± 0.8) compared to obese
(mean BMI 45.2 ± 6.5) individuals, and that mir-379 plays a
key role in the pathogenesis of the glucocorticoid-dependent
hypertriglyceridemia.

miR-24-3p, miR-223-3p, and miR-495-3p also had multiple
connections to various plasma proteins, but most of the target
proteins were ubiquitously expressed across organ systems (RNA-
level) and therefore it was difficult to designate potential sites of
regulatory action for those miRNAs. However, there were some
other interesting connections. TargetScan predicted miR-24-3p to
regulate IGFBP5, uniquely produced in muscle tissues in males,
and the data suggests that the increased secretion level of IGFBP5

FIGURE 5 | Predictive subnetwork surrounding the proteins with tissue of origin information highlighted in yellow boxes. Proteins and miRNAs are shown in ellipsoids
and diamonds, respectively. The proteins that are ubiquitously expressed across multiple organ systems were not highlighted.
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in IR is partly attributable to the reduced secretion levels of miR-
24-3p. Likewise, miR-495-3p is predicted to regulate glycerol-3-
phosphate dehydrogenase 1 (GPD1), produced in liver, and the
increased secretion of the latter in IR can be partially explained
by the decreased secretion level of the former.

Integrative Analysis Also Identifies the Protein
Interactome Predictive of IR
In the network-based predictive analysis, we also observed
13 pairs of proteins that are known to bind to one another
in the intracellular space. The most notable predictive sub-
interactome was anchored around glutamate dehydrogenase 1
(GLUD1) and vitronectin (VTN), both produced mainly in
liver. A hemopexin family glycoprotein VTN is most famously
known to bind to plasminogen activator inhibitor-1 (PAI-1 or
SERPINE1) to stabilize the active conformation of PAI-1 in
modulating fibrinolysis and cell migration (Zhou et al., 2003),
which is a part of the selected interactome. The higher levels of
VTN and PAI-1 in the OIR subjects also indicates the higher
risk of cardiovascular thromboembolic events among people with
obesity and insulin resistance. GLUD1 also binds to orosomucoid
1 (ORM1) and C-reactive protein (CPR), indicating that elevated
secretion of these proteins signals the activation of acute-phase
proteins and pro-inflammatory state of the OIR subjects.

Another interesting predictive protein interactome is that of
fructose 1,6-bisphosphatases (FBP1) and a bifunctional enzyme
fructose 2,6-bisphosphatase isozyme 2 (FBP2), both with higher
secretion levels in OIR. Synthesized and secreted from liver,
the two proteins are expressed in all metabolic organ tissues
(Supplementary Table S3), including pancreas (Supplementary
Figure S1), indicating their elevated binding activity and
regulation of glycolysis and gluconeogenesis in those sites.

On the other hand, IGFBP1-IGF2 and A2M-SHBG are
two pairs of physical binding partners that are simultaneously
downregulated in OIR, and both are likely liver-specific
interactions based on the origin of IGFBP1 and SHBG. However,
the magnitude of co-expression difference between OIR and
LIS was of a minor magnitude (see IR centroid column of
Supplementary Table S4), and therefore we did not pursue
further interpretation on these interactions.

CONCLUSION

The plasma secretome captures a complex mixture of
biomolecules secreted from various organ systems into
circulation. Despite having a small sample size, our data reflect
this phenomenon by showing protein biomarkers suspected to
originate from a multitude of metabolic organ systems, immune
cells, and other sites such as brain and heart. Whether the
elevated secretion levels of proteins in the OIR subjects are
directly influenced by the overall balance shift of miRNAs at
the site of protein synthesis remains to be thoroughly validated
in model systems and through replication in independent
studies of a sufficiently large sample size. However, as far as we
know, our work is one of the first studies that profiled plasma
secretome using both -omics platforms on the human plasma

samples from OIR and LIS subjects. Accordingly, we explored
the connections between the two types of secretomes via a novel
predictive analysis framework iOmicsPASS and tissue of origin
and expression information from independent source (HSPA).
This systems-level analysis allowed us to make an educated
guess on a few cases of miRNA-mediated translation regulation
of plasma protein levels and protein interactions in OIR in
specific tissues.

Two recent studies have attempted to integrate plasma
proteome and genomic data, where the protein expression
was measured using a multiplexed aptamer-based SomaScan
proteomic assay. Sun et al. (2018) identified 1927 genetic
associations with 1478 plasma proteins from 3,301 healthy
participants from the INTERVAL study. Similar to our findings,
they also reported that the plasma concentration of IGFBP1,
IGFBP2, SHBG and desmoglein-2 are negatively correlated with
BMI. Carayol et al. (2017) provided an integrative analysis of
changes in the plasma proteomes with gene expression from
494 obese subjects before and after a weight loss intervention.
At baseline, the authors found that the four plasma proteins of
IGFBP1, IGFBP2, SHBG, and desmoglein-2 are also negatively
correlated with BMI. These results provide us with confidence
that the four mentioned plasma proteins are unequivocally
altered (reduced plasma concentration) in obese subjects with
insulin resistance.

A lingering question we did not address in our analysis is the
connection between the miRNA species that were secreted more
in the OIR subjects and the proteome changes. It is plausible that
exosome and RNA binding protein-based export of a specific set
of miRNA species have increased in certain tissues to support
other biological functions to address the shortage of glucose
and meet the metabolic needs for energy expenditure. However,
this complex mechanism is only sparsely mapped in the current
literature, hence we leave this for future work.

Our work illustrates the opportunities and challenges of
integrating two different -omics scale data too, especially in
the context of analyzing the secretome. In our case, our data
analysis framework using protein interactome information was
able to identify two small protein interactomes in the liver,
one implicated in elevated inflammatory state and the other
directly involved in glycolysis and gluconeogenesis. TargetScan-
based connections also highlighted miRNA species with lower
secretion levels associated with elevated secretion levels of the
target proteins. However, it was also important to recognize that
these interactions likely occur in the intracellular environment
prior to being secreted into the blood. Therefore, the tissue
of origin information from the HSPA was crucial for proper
prioritization of the co-expression patterns observed in the
secretome, especially allowing us to distinguish the miRNA
species regulating protein synthesis in adipose tissues versus
other metabolic organs such as liver. As such, we recommend
that this site of origin aspect be taken into account for data
interpretation in future clinical studies.

From a therapeutic standpoint, our integrative analysis
clearly demonstrated that IR is a manifestation of mature
systemic metabolic dysfunctions rather than an isolated
event of disruption in cellular glucose uptake. Therefore, IR
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and subsequent dysregulation in cellular glucose uptake is
accompanied by perturbations in an array of other biological
functions in the system. As such, the search for future therapeutic
options or the therapeutic strategy may have to focus on jointly
modulating other biological functions to promote the balance
in the metabolism and transport of different fuel sources, while
improving insulin sensitivity and restoring glucose uptake. To
this end, we expect systems biology-based approaches hold great
potential to identify related and actionable targets for successful
treatment of IR in the future.
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TABLE S1 | Normalized microRNA and proteomics data and results of differential
expression analysis.
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