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A vast majority of the pathophysiological and metabolic processes in humans are

temporally controlled by a master circadian clock located centrally in the hypothalamic

suprachiasmatic nucleus of the brain, as well as by specialized peripheral oscillators

located in other body tissues. This circadian clock system generates a rhythmical

diurnal transcriptional-translational cycle in clock genes and protein expression and

activities regulating numerous downstream target genes. Clock genes as key regulators

of physiological function and dysfunction of the circadian clock have been linked

to various diseases and multiple morbidities. Emerging omics technologies permits

largescale multi-dimensional investigations of the molecular landscape of a given

disease and the comprehensive characterization of its underlying cellular components

(e.g., proteins, genes, lipids, metabolites), their mechanism of actions, functional

networks and regulatory systems. Ultimately, they can be used to better understand

disease and interpatient heterogeneity, individual profile, identify personalized targetable

key molecules and pathways, discover novel biomarkers and genetic alterations,

which collectively can allow for a better patient stratification into clinically relevant

subgroups to improve disease prediction and prevention, early diagnostic, clinical

outcomes, therapeutic benefits, patient’s quality of life and survival. The use of

“omics” technologies has allowed for recent breakthroughs in several scientific

domains, including in the field of circadian clock biology. Although studies have

explored the role of clock genes using circadiOmics (which integrates circadian

omics, such as genomics, transcriptomics, proteomics and metabolomics) in human

disease, no such studies have investigated the implications of circadian disruption

in oral, head and neck pathologies using multi-omics approaches and linking the

omics data to patient-specific circadian profiles. There is a burgeoning body of

evidence that circadian clock controls the development and homeostasis of oral

and maxillofacial structures, such as salivary glands, teeth and oral epithelium.

Hence, in the current era of precision medicine and dentistry and patient-centered

health care, it is becoming evident that a multi-omics approach is needed to

improve our understanding of the role of circadian clock-controlled key players in the
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regulation of head and neck pathologies. This review discusses current knowledge on

the role of the circadian clock and the contribution of omics-based approaches toward

a novel precision health era for diagnosing and treating head and neck pathologies, with

an emphasis on oral, head and neck cancer and Sjögren’s syndrome.

Keywords: clock genes, circadian disruption, systems biology, pathology, head and neck cancer, Sjögren’s

syndrome, precision medicine and dentistry, patient oriented research

INTRODUCTION

Precision health has emerged as a novel approach for disease
prevention, diagnosis, and treatment that accounts for individual
variability in genes, environment, and lifestyle; aiming to
tackle interpatient and disease heterogeneity to ensure accurate
diagnostic and tailored therapeutic approaches which take into
account the individual as a whole. Precision health approaches
require integrating comprehensive molecular, genetic, burden of
disease(s) aspects and exposure to risks into a holistic profile
of a given individual that will allow for a customized and
comprehensive care plan to improve individual health outcomes.
Multi-omics and system biology approaches are becoming the
golden standards to pave the road for precision health. However,
correlation-focused big data analytics are not yet standardized
for data collection, interpretation and objectivity, thus efforts are
hampered by biases and contradictory results, which often ignore
causality and individual complexity (Bottles and Begoli, 2014).

As an example for head and neck, Rai et al. reported a
review analysis of to-date studies based on omics-approaches
(total of 81, including genomics, proteomics, transcriptomics and
metabolomics) applied to differentiate among oral squamous cell
carcinomas, oral premalignant lesions (such as oral leucoplakia,
oral lichen planus, oral erythroplakia, oral submucous fibrosis)
and normal cases. This study highlighted the advanced ability
of omics technologies to screen for early changes in DNA,
RNA, protein, and metabolite expression, in support of a much
needed early detection of oral cancer through comprehensive
molecular profiling, to overcome the current diagnostic delays.
Worldwide, the vast majority of oral cancer cases are diagnosed
at late/advanced stages and this is responsible for the poor
oral cancer survival rate, one of the lowest among other most
common cancers types (Rai et al., 2018). Additional studies
reviewed other available databases (e.g., COSMIC, database
for somatic mutations in cancer) to compile a list of the
most frequently mutated genes in head and neck cancer
(Agarwal, 2016), highlighting the need for complementary multi-
omics approaches.

Multilayered omics-based analyses have emerged only
recently, along with open source big data analytic platforms,
databases and repository of health information, along with data
mining algorithms, but more often the effects of the circadian
clock regulatory events (as can be found in circadiOmics) are
ignored, and individual oral health morbidities even more
so. In flagrant contrast, the burden of oral health remains
extremely high worldwide. Poor oral and dental health is
universally recognized as having a profound effect on general

health, well-being and quality of life (Petersen et al., 2005),
while the oral conditions are the most common conditions of
humankind (FDI, 2015).

Taking into account that 43% of all protein coding genes
shown circadian rhythms in transcription (Zhang et al., 2014),
it is becoming evident that circadian clock regulatory effects on
gene and protein expression need to be taken in consideration
in parallel with the multi-omics analyses to achieve an authentic
level of precision health. Indeed, disruptions of the circadian
clock have been associated with nearly every major human
disease, and many of the most commonly-used medications
target circadian genes (Takahashi et al., 2008; Zhang et al.,
2014). Although the clinical relevance of the linkage of clock
genes and circadian disruption to disease pathogenesis is
yet to be fully elucidated, taking in consideration circadian
variations in multi-omics analyses, recently called circadiOmics
(Ceglia et al., 2018) is a critical step toward unbiased precision
health. Understanding the gaps in the role of the circadian
rhythm/clock gene in disease pathogenesis has the potential
to open new avenues for targeted therapies of clock gene-
controlled diseases. Recognizing the critical importance of
circadian clock in precision health is in alignment with the
recent acknowledgment of the clock genes’ major biological
significance, the 2017 Nobel Prize in Physiology or Medicine
was jointly awarded to Jeffrey C. Hall, Michael Rosbash and
Michael W. Young for their discoveries of the molecular
mechanisms controlling the circadian rhythms (https://www.
nobelprize.org/nobel_prizes/medicine/laureates/2017/press.
html). This further acknowledges the profound clinical relevance
of the circadian clock mechanism and highlights the need
for a better understanding of the implications of clock genes
and circadian disruption to disease pathogenesis and related
therapeutics (Bass, 2017).

We have recently shown that circadian clock is a major
determinant of craniofacial tissues cell homeostasis, regulating
proliferation and differentiation of salivary glands (Zheng et al.,
2012), dental cells (Athanassiou-Papaefthymiou et al., 2011;
Zheng et al., 2011, 2013) and oral epithelium (Zheng et al., 2011;
Papagerakis et al., 2014); linking circadian clock disruption with
major oral, head and neck pathologies, such as oral cancer and
Sjögren syndrome (Mitsiadis et al., 2014; Papagerakis et al., 2014;
Matsumoto et al., 2016; Zagni et al., 2017). In parallel, there
is an increasing interest in applying multi-omics and system
biology approaches to studying head and neck pathologies, thus
considering oral health as an integral part of precision health
initiatives (Niehr et al., 2018; Rai et al., 2018). Hence, this review
focuses on the importance of circadian clock in the system
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biology approaches applied to oral precision health as well as on
the high throughput omics-based techniques applications toward
identifying novel targetable molecular circadian alterations in
head and neck pathologies, with an emphasis on oral, head and
neck carcinoma and Sjögren Syndrome.

CIRCADIAN CLOCK, ORAL TISSUES
HOMEOSTASIS, AND HEAD AND
NECK PATHOLOGIES

The Circadian Clock Mechanism: Brief
Introduction to Circadian Biology
Clock Genes, Circadian Rhythms, and

Circadian Synchrony
Across all phyla, daily physiological and behavioral rhythms
are controlled by endogenous circadian clocks (Merrow et al.,
2005). The circadian system is a vital metabolic and behavioral
integrator that synchronizes rotation of the Earth on its axis with
physiological processes (Marcheva et al., 2009). In anticipation
of daily events, circadian cells that contain intrinsic rhythms
are synchronized to each other and to environmental cues, such
as the light/dark cycle (Xu et al., 2011). Circadian synchrony
has been described as a situation where cells or organisms
exhibit the same daily (near 24-h period) cycle (Herzog
et al., 2015; Husse et al., 2015). This has been described in
unicellular organisms, such as dinoflagellates, cyanobacteria; as
well as in metazoans including fungi, algae, plants, flies, birds,
rodents and humans (Bell-Pedersen et al., 2005; Herzog et al.,
2015). In a marching band, instrumentalists, synchronize their
pace to their neighbors and perform with the same period,
albeit they may be phase delayed in their sequence of arrival
(Herzog et al., 2015). Similarly, circadian synchrony may involve
oscillators that undergo frequency entrainment without the
requirement of peaking together (period synchrony), or they
may involve oscillators that establish a locked, stable, unique
phase relationship (phase synchrony) (Herzog et al., 2015).
Unicellular organisms utilize stand-alone clocks that are capable
of generating 24-h rhythms for various processes, but higher
organisms can establish and coordinate multiple biological
rhythms by partitioning clock gene functions; in both scenarios,
robust circadian rhythms of biological activity and gene
expression are generated under the temporal synchronization of
a multi-oscillator system (Bell-Pedersen et al., 2005).

Peripheral and Central Clocks
There are different models that describe the relationship
between the central and peripheral clocks, such as the “master-
slave,” “orchestra,” and “federate” models (Dibner et al., 2010;
Buhr and Takahashi, 2013; Pilorz et al., 2018). The canonical
“master-slave” model hypothesized that in humans (as in many
other metazoans), the master/central clock situated in the
suprachiasmatic nuclei (SCN) of the hypothalamus (Gillette and
Tischkau, 1999; Reghunandanan and Reghunandanan, 2006;
Rosenwasser and Turek, 2015) controls peripheral clocks that
are present in other regions of the body (Papagerakis et al.,
2014). SCN clock-gene rhythms are more rapidly entrained in
response to light than they are in peripheral oscillators (Yamazaki

et al., 2000; Bell-Pedersen et al., 2005; Duffy and Czeisler, 2009;
Papagerakis et al., 2014). In this model, the peripheral clocks can
be entrained by the central clock, or they can synchronize to the
environment, or to one another, to harmonize daily physiological
rhythms, such as sleeping/waking, feeding/fasting, metabolism,
hormonal levels, temperature, and gene expression (Baggs and
Hogenesch, 2010; Froy and Miskin, 2010; Feng and Lazar, 2012;
Papagerakis et al., 2014). The (orchestra) model alludes to the
independence and the potential for direct external influence of
the peripheral clocks, based on in vitro and explant rhythm study
evidences (Balsalobre et al., 2000; Yoo et al., 2005; Dibner et al.,
2010). These studies demonstrated that the central clock may
be acting as an orchestra conductor; while each peripheral clock
acts as a musician (Pilorz et al., 2018). Although, direct external
stimuli might fine tune peripheral rhythms, the peripheral clocks
still rely on entrainment from the SCN pacemaker cues. The
observation that genetic ablation of SCN pacemaker function
did not result in loss of light/dark entrainment in mice, led to
the development of the “federate model,” which hypothesizes
that SCN function on peripheral clocks is mostly important
under non-rhythmic environmental conditions (Husse et al.,
2014; Izumo et al., 2014). Our group has provided evidence of the
peripheral clock in various organs and tissues in the oral cavity,
such as salivary glands and teeth (Papagerakis et al., 2014).

Transcription-Translation Feedback Loops (TTFL) of

the Clock Genes
Because it is well-established that most organisms utilize
interlocked transcription-translation feedback loops (TTFLs),
the relevance of the circadian rhythm and its underlying
molecular physiology have been broadly analyzed by systems
and computational biologists (Novak and Tyson, 2008; Qin
et al., 2010; Brown et al., 2012; Rey and Reddy, 2013; McClung,
2014; Papagerakis et al., 2014; Ki et al., 2015; Hurley et al.,
2016). The mammalian circadian rhythm is influenced by
two important negative feedback loops in the TTFL network
(Barinaga, 2000; Papagerakis et al., 2014; Pett et al., 2016). In
the first negative feedback loop, Period (PER) and Cryptochrome
(CRY) protein form a complex casein kinase I, which then
undergoes nuclear translocation and inhibits BMAL1/CLOCK
heterodimers, which results in the suppression of Cry, Per and
Rev-Erbα transcription. In the second negative feedback loop,
CLOCK and BMAL1 activators are expressed, leading to their
own transcription inactivation via Rev-Erbα (Papagerakis et al.,
2014). A stoichiometric balance between activators, such as PER
and CRY and repressors, such as NPAS2 (Neuronal PAS Domain
Protein 2, which is paralogous to CLOCK, both key proteins
involved in the maintenance of circadian rhythms in mammals)
and BMAL1/CLOCK has been identified as pivotal to sustained
circadian oscillations (Kim and Forger, 2012). An imbalance in
the circadian rhythm can, therefore, lead to various diseases via
alterations in gene dosage in the TTFL (Lee et al., 2011).

Circadian Clock and Health
Circadian Disruption and Metabolism
Over the past decades, interconnections between metabolic
systems and circadian rhythm have received increased
attention in clinical studies (Marcheva et al., 2009). There
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are experimental and genetic evidences for crosstalk between
metabolic transcription networks and the circadian system.
Circadian clock genes have been found to be linked to metabolic
factors and nutrient signaling pathways (Bass and Takahashi,
2010; Schmutz et al., 2010). For instance, 119 mutations in
the Clock gene has been shown to cause hyperleptinemia,
hyperlipidemia, hypoinsulinemia, and hyperglycemia (Turek
et al., 2005). Loss of BMAL1 has also been shown to result in
impaired adipogenesis, loss of locomotor activity and altered
rhythm (Rudic et al., 2004; Shimba et al., 2005; Lamia et al., 2008).
Deficiency of CRY (1 and 2) has been shown to be responsible for
variations in circulating growth hormone patterns, impairment
of growth and alterations in the steroidogenic/lipogenic
pathways (Bur et al., 2009). In addition, alterations in bone
density and loss of glucocorticoid rhythmicity has been shown
to result from deficiency in PER2 (Fu et al., 2005; Yang et al.,
2009). Hassan et al. identified perturbation of circadian rhythms
in bone marrow stromal cells by titanium biomaterials that are
used for dental and orthopedic implants (Hassan et al., 2017).
They identified suppression of PER1 expression and an increase
in NPAS2 when bone marrow mesenchymal stromal cells were
cultured on titanium biomaterials; suggesting that the local
aberrant peripheral circadian rhythm may be important for the
bio-integration of the titanium into bone (Hassan et al., 2017).
Polymorphisms in themammalian core proteins, such as BMAL1
and CLOCK have been identified to be linked to certain features
of the metabolic syndrome, which is associated with the risk of
developing cardiovascular disease and type 2 diabetes (Woon
et al., 2007; Scott et al., 2008; Sookoian et al., 2008; Maury et al.,
2010). It has been hypothesized that circadian mechanisms may
influence pro-neurodegenerative activities because aggregation
of soluble neuronal proteins due to circadian disruptionmay lead
to proteostasis and may play a vital role in the pathophysiology
of neurodegenerative diseases (Hastings and Goedert, 2013).

Circadian Disruption and Multiple Morbidities
Perturbation of the internal clock system has been found
comorbid with various medical conditions, such as diabetes
mellitus, obesity, thrombosis, neurodegenerative diseases
(Musiek, 2015), cardiovascular disease (Takeda and Maemura,
2015), cancer (Hu et al., 2014), psychiatric disorders (Lamont
et al., 2007), autoimmune and inflammatory diseases (Maury
et al., 2010) and sleep disorders (Takahashi et al., 2008; Zhu and
Zee, 2012; Jones et al., 2013). Allergic conditions, such as asthma
is strongly interlinked with diurnal variations in circadian
rhythm (Bass, 2017). A growing number of epidemiological
studies stratifying the participants by sex, occupation, geographic
location and duration of sleep pattern disruption, have examined
associations between night shift work and the risk of various
types of cancers (including multiple primary cancers) and
various diseases that affect individuals’ life span (Bass and Lazar,
2016; Yuan et al., 2018).

Circadian Clock Disruption and Head and
Neck Development and Pathologies
Circadian clock genes and their expression have been reported
in head and neck tissues (Simmer et al., 2010; Zheng et al.,

2011, 2012, 2013). It has been observed that incremental
growth patterns and mineralization of dental tissue is under
the influence of various complex biological clock interactions
(Simmer et al., 2010). Ameloblasts differentiation regulatory
pathways can be characterized by an in-depth understanding
of circadian mechanism (Athanassiou-Papaefthymiou et al.,
2011; Zheng et al., 2013). Even though the role of circadian
clocks in the oral epithelium is poorly understood, circadian
rhythms and clock genes expression have been detected in
basal cells of oral epithelium, including palatal and junctional
epithelia, the epithelial rests of Malassez surrounding dental
roots; furthermore, expression of various clock genes were also
detected in ameloblast and odontoblast cells, dental pulp cells,
periodontal dental ligament cells, osteoblast and osteoclasts in
the alveolar bone (Zheng et al., 2011; Papagerakis et al., 2014).
Similarly, clock gene expression has been demonstrated both
in kidney and salivary gland tissues (Zheng et al., 2012), and
their expression may affect function and saliva composition
(Dawes, 1972). Furthermore, the kidney which has some similar
physiological function to the salivary glands (such as producing
ultrafiltrates of blood-urine and saliva, respectively) has been
shown to be under the control of circadian clock mechanisms
(Stow and Gumz, 2011). Upregulation of aquaporin genes
associated with fluid movement have been reported both in the
salivary glands, as well as in the kidneys (Ishikawa and Ishida,
2000; Maeda et al., 2008; Delporte et al., 2016). An abnormal
expression of clock genes can alter aquaporin expression which
may result in a change in salivary flow rate (Papagerakis et al.,
2014). Perturbation of the circadian clock genes can potentially
result in salivary gland disorders, such as chronic sialadenitis,
Sjögren’s syndrome or other complex immunological conditions
(Papagerakis et al., 2014). It is recognized that circadian clock
genes control cellular proliferation (Huang et al., 2011); hence,
it is plausible that frequent perturbation of these genes may play
a role in the cancer development. There are evidences suggesting
that circadian clock genes are involved in regulation of expression
of critical cancer-related genes, such as p53 and C-Myc (Fu et al.,
2002; Hunt and Sassone-Corsi, 2007). Bmal1 and Per2 have been
demonstrated to have tumor suppressor activities and alteration
of their promoter methylation has been linked with poor clinical
outcome and tumor progression in hematological malignancies
and gliomas (Taniguchi et al., 2009; Xia et al., 2010). Preliminary
evidence has been provided for alteration of the circadian clock
genes in oral squamous cell carcinomas and salivary gland
cancer (Papagerakis et al., 2014). Tang et al. demonstrated that
Bmal1 as a tumor suppressor, increases the sensitivity of tongue
squamous cell carcinoma (TSCC) to paclitaxel treatment, using
TSCC cell lines and xenograft mouse models (Tang et al., 2017).
In humans, oncogenes, such as p53 and Cyclin B1 have been
reported to be direct targets of the circadian clock genes and
to follow a circadian rhythm in vivo (Fu et al., 2002; Hunt and
Sassone-Corsi, 2007). Furthermore, early studies in regard with
the implications of clock genes in oral epithelium homeostasis,
provided evidence of a rhythmic circadian expression profile
of Per1, Cryl, and Bmal1; interestingly the major peak in Per1
expression in oral mucosa in healthy diurnal active volunteers
coincided with p53 (a G1-phase marker) while the peak for
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TABLE 1 | Circadian gene expression profile and circadian gene defects in different head and neck pathologies.

Circadian gene changes Changes Head and neck pathologies Effect Reference

Clock genes and AQP5 Abnormal expression of clock

genes

Sjögren’s syndrome (SS) and

chronic sialoadenitis

Xerostomia and salivary gland

disorder

Papagerakis et al., 2014

Clock genes and SLC4A2/AE2,

AQP5

Co-expression Salivary gland tumors Initiation and progression Papagerakis et al., 2014

BMAL1 mTOR-driven upregulation Oral cancer Possible poor clinical outcome

and tumor progression

Matsumoto et al., 2016

BMAL1 Alteration of tumor suppressor

activity

Tongue squamous cell

carcinoma

Increased sensitivity to paclitaxel

treatment

Tang et al., 2017

PER1 Downregulation Oral squamous cell carcinoma initiation and progression Nirvani et al., 2018

hCRY2, hPER3 and hBMAL1 Downregulation Head and neck squamous cell

carcinoma

Increases severity of tumor

progression

Hsu et al., 2012

PER1 and CLOCK Downregulation Head and neck squamous cell

carcinoma

Poor postoperative prognosis Hsu et al., 2014

HS3ST2 Hypermethylation Oral Cancer Initiation and progression Castilho et al., 2017

Bmal1 coincided with cyclin B1 (a M-phase marker), in support
of a circadian coordination of cell-cycle events in oral mucosa
(Bjarnason et al., 2001; Gaucher et al., 2018), similar to other
mucosa throughout the human gastro-intestinal tract (Buchi
et al., 1991; Hoogerwerf, 2010). A recent review discusses the
association of the circadian clock gene PER1 with oral cancer
pathogenesis and suggested that changes in its expression may
play an important role in the initiation and progression of oral
squamous cell carcinoma (Nirvani et al., 2018).

Downregulation of hCRY2, hPER3 and hBMAL1 in tumoral
tissues vs. their non-cancerous adjacent counterparts has been
previously correlated with severity of tumor progression in
a retrospective cohort of 40 head and neck squamous cell
carcinoma patients (Hsu et al., 2012). A recent review article has
further detailed the importance of circadian clock biology and its
potential in various fields of dentistry (Janjic and Agis, 2019).

Clock gene expression dysregulation in head and neck
pathologies reported above is also summarized in Table 1. Taken
all together, it’s becoming evident that circadian clock disruption
has major effects on oral diseases pathogenesis and treatment
(Figure 1).

PRECISION ORAL HEALTH, MULTI-OMICS
AND SYSTEM BIOLOGY APPROACHES

Precision Health and Circadian Clock
The dominant paradigm of “one gene at a time” has historically
been the core of biochemistry and molecular biology (Baggs
and Hogenesch, 2010). However, the completion of the Human
Genome Project (HGP) heralded a new era in the field of
systems biology through its integrated big science approach
(Shapiro, 1993; Hood and Rowen, 2013). This has resulted in
an overarching need to integrate the data explosion emanating
from digitalization of information, novel technologies with
advanced bioinformatics tools, for meaningful applications
in clinical medicine (Lopes et al., 2013; Boja et al., 2014).
The full molecular cross-talk and pathway networks can
now be captured/analyzed/deciphered using high throughput

instrumentation in tandemwith “state-of-the-art” computational
tools in a systems biology manner. Traditional biochemical and
molecular biology approaches have been useful in identifying
basic underlying genetic components of the circadian clock,
but progress toward a more robust understanding of the
circadian clock global landscape has been impeded by the
limited use of comprehensive/multi-omics approaches for clock
gene/chronobiology studies (Chow and Kay, 2013). Using the
Arabidopsis circadian clock model, Chow and Kay (2013),
were able to demonstrate that the circadian clock is intricately
regulated at multiple (from transcriptional to post-translational)
levels. Significant enrichment of feedback loop motif in the
predicted network was observed in a study focused on time-
course gene expression datasets in rat suprachiasmatic nucleus,
where circadian mechanisms were studied using a “reverse-
engineering” approach to probe functional interactions among
circadian genes by integrating various “omics” data (Wang et al.,
2009). The wide spread use of omics tools will significantly
improve our in-depth understanding of the circadian clock
architecture in the systems biology pipeline, as well as provide
mechanistic insight into the regulation of the circadian system
within a given clinical context (Baggs and Hogenesch, 2010).
Omics approaches (such as epigenomics, transcriptomics, and
metabolomics) have also been used to study the regulation of
the sleep-wake cycle, which is one of the vital daily physiologic
rhythms (Goel, 2015).

Oral Precision Health: Advances and
Limitations in Omics Approaches and
Circadian Clock Signaling Involvement
There is a complex, intricate and robust network of relationships
between physiological output and the circadian clock, which
requires novel technical and bioinformatics tools to unravel
this complexity in a seamless manner (Doherty and Kay, 2010;
Pruneda-Paz and Kay, 2010). In this complex network, cellular
responses are coordinated by multiple pathways and as such
the effect of a particular mutation can be compensated for by
other pathways (Doherty and Kay, 2010). Molecular biology
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FIGURE 1 | Schematic diagram showing the impact of circadian clock disruption on oral diseases pathogenesis and treatment.

and genetics have advanced our knowledge of circadian control,
but the mechanistic coordination of circadian rhythms by the
circadian players still remain unclear. Deciphering the full
complement of molecules (“omics” approach) and the crosstalk
between multiple omics field (multi-omics approach) has the
potential to provide a comprehensive insight into the complex
circadian mechanism.

Currently, there is a dearth of literature on the various high
throughput circadian omics applied to oral health and head
and neck pathologies. This gap is critical to address, given the
evidence highlighting the major role circadian disruption plays
in the development of oral, head and neck tissues as well as in
their related diseases’ pathogenesis. We discuss hereafter a few
applications of omics-based approaches to studying circadian
disruptions in head and neck pathologies, with an emphasis
on oral, head and neck cancer (OC) and Sjögren’s syndrome
(SS). We also discuss known links of circadian clock signaling
to HNSCC and SS. A potential framework for evaluating
circadian disruption links to oral health diseases is provided for
OC and SS (Figure 2).

Genomics
Genomics is a discipline of systems biology that addresses the
full complement of genes in a genome (Shimeld et al., 2010). It
also involves global studies of gene expression patterns under
various conditions and stages of development (Barrett and
Edgar, 2006). Using high density DNAmicroarrays, rhythmically
expressed genes in mouse SCN and other tissues have been
identified (Akhtar et al., 2002; Storch et al., 2002; Ueda et al.,

2002; Sato et al., 2004). Out of hundreds of identified cycling
genes, only about 50 cross-tissue cycling genes were found
which, interestingly, included Per2, Cry1, Bmal1, and Rev-
erbα (Sato et al., 2004). Sato et al. (2004), further carried out
functional cell-based genomic analysis, to verify if a circadian
transcription factor that activates Bmal1 expression could also
be one of the candidate genes on this list of 50 cross-tissue
cycling genes (Sato et al., 2004). They identified an orphan
nuclear receptor, Rora, as a gene involved in activation of
Bmal1 transcription in the SCN, suggesting that antagonizing
the activity of Rora and Rev-erbα (which also represses Bmal1)
are crucial for maintenance of circadian clock function (Sato
et al., 2004). In order to overcome the single platforms limitation
of the genome-wide profiling to date published studies of head
and neck squamous cell carcinomas (HNSCC), a recent multi-
institution initiative coordinated by the US National Cancer
Institute and National Human Genome Research Institute called
“The Cancer Genome Atlas Network (TCGA)” has generated the
today’s most comprehensive integrative multi-platform genomic
HNSCC profiling based of the analysis of 279 case cohort with
well-annotated clinical information stratified by age, sex, race,
anatomic site, stage, tumor histological differentiation, smoking
and drinking status, human papillomavirus (HPV) infection,
cancer treatment, clinical outcome and survival (Cancer Genome
Atlas Network., 2015). By providing the HNSCC landscape of
somaticmutations, DNA and RNA structural alterations, genome
alterations and pathways through integrative bioinformatics
analysis, the TCGA database proves an excellent starting
point toward deciphering the HNSCC molecular and genomic
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FIGURE 2 | Diagram showing a proposed framework for evaluating circadian disruption links to oral health diseases. Different activities can be undertaken by oral

health researchers to elucidate different parts of the circadian clock–oral health puzzle. GWAS: genome-wide association study; WES: whole exome sequencing.

heterogeneity, although the individual circadian profile, circadian
disruption extent and comorbidity burden were not taken
into account. A more careful analysis of the existing data,
characterizing possible mutation or polymorphisms of clock
genes and their targets in HNSCC, will further enhance our
understanding of these pathologies.

Transcriptomics
Transcriptomics permits the large-scale examination of
the full complement of RNA transcripts in a single cell or
a population of cells (Manzoni et al., 2016). Mammalian
transcriptome analysis using DNA microarrays has resulted
in the identification of hundreds of tissue-specific circadian
clock-controlled genes, resulting in the coordinated regulation
of a vast array of biological processes (Delaunay and Laudet,
2002; Hsu and Harmer, 2014). Systems-level analysis of circadian
mechanism permits differential comparisons of circadian
transcript regulation between tissues, thus providing much
needed insights into the roles, functions and regulation of
the peripheral tissue-specific circadian clocks (Doherty and
Kay, 2010). While measuring individual circadian rhythm
disruption using cortisol, melatonin and body temperature
can prove difficult in humans, transcriptomics has been
successfully used in animal studies, which have identified
novel biomarkers of circadian disruption in murine serum

(Van Dycke et al., 2015). A more robust understanding of
the circadian rhythm has been made possible throughout
transcriptomics analysis of the suprachiasmatic nuclei, which
has provided supporting evidence that the SCN transcription
timing is controlled by mechanisms that reset the gating
clocks (Pembroke et al., 2015). Diurnal variation of genome-
wide transcriptional responses to 90 kilobecquerel (kBq) of
Iodine-131 has been demonstrated in female BALB/c nude
mice thyroid, suggesting that circadian rhythm may plays
a role in response to irradiation of head and neck tumors
(Langen et al., 2015, 2016). Although there is paucity of
circadian genomics study of head and neck pathology, nine
circadian clock genes have been investigated in patients with
oral squamous cell carcinoma using quantitative real-time
polymerase chain reaction and immunohistochemistry, of which
PER1 and CLOCK were found differentially expressed in the
peripheral blood of those patients and thus could serve as
potentially reliable prognostic markers (Hsu et al., 2014). The
same group reported that downregulation of BMAL1, CRY2,
and PER3 expression was correlated with more advanced oral
cancer stages (Hsu et al., 2012). PER1 and PER2 genes are
considered to be tumor suppressor genes and their decreased
expression has been reported in head and neck cancer (Uth
and Sleigh, 2014). Using the golden hamster buccal mucosa,
Tan et al. provided in vivo evidence for the differential
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expression of various circadian genes at different stages of
cancer; demonstrating that prolonged circadian disruption leads
to changes progressing through the stages of carcinogenesis
(normal mucosa, precancerous lesion, and cancer) (Tan et al.,
2015). New studies taking into account circadian transcripts
expression differential disruption in HNSCC are needed to
further understand the role of circadian clock transcription
dysregulation in HNSCC.

Sequencing
Sequencing refers to various methods for the determination
of the order of the nucleotides in nucleic acids (RNA or
DNA) (Heather and Chain, 2016). This process, which was
previously laborious and cumbersome, has now been up-
scaled and automated such that identification of the nucleotide
sequences at a genome-wide level has now become feasible
at faster and affordable rates (Moorthie et al., 2011). This
technology was very instrumental in the establishment of the
Human Genome Project (HGP) (Shapiro, 1993), which has
significantly impacted the precisionmedicine concept (Hood and
Rowen, 2013). Also, the development of The Cancer Genome
Atlas (TCGA) project has created a robust database that archives
genomic profiles of over 500 cases of 20 different human
cancer types (Chandran et al., 2016). Accuracy, speed and
throughput depends on the generation of the sequencer (Heather
and Chain, 2016). RNA sequencing (RNA-Seq) provides in-
depth insight, global coverage and better resolution into
the cell transcriptome, than traditional Sanger sequencing or
microarray-based techniques (Kukurba andMontgomery, 2015).
Various sequencing approaches have been extensively used to
elucidate the pathophysiological roles of the circadian clock
genes in Aedes albopictus, Drosophila Spp. and rats (Woon
et al., 2006; Hughes et al., 2012; Summa et al., 2012; Kuintzle
et al., 2017; Matsumura and Akashi, 2017), but sparsely used in
humans due to disease heterogeneity, patient uniqueness, health
care affordability, overwhelm of data which is left unanalyzed
in the absence of adequate expertise, etc. Genomic sequencing
has been used to identify the circadian gene CLOCK as mutated
in other epithelial gastro-intestinal (GI)-derived cancers, such
as colorectal cancer (Alhopuro et al., 2010). This demonstrates
the potential of using sequencing approaches to investigate the
role of circadian gene disruption in head and neck pathologies,
particularly for oral cancer, salivary gland tumors, odontogenic
tumors, etc.

Epigenomics
Epigenomics is the omics field that investigates the full
complement of epigenetic changes, such as DNA methylation
and histone modification in a cell or a population of cells
(Sharma et al., 2010). Considering that the circadian clock system
responds to environmental cues, there is burgeoning evidence
that there is a plausible link between epigenomic regulators
and the circadian clock (Pembroke et al., 2015). Epigenomics
has been demonstrated to have predictive implications for
resistance to therapy, risk stratification, tumor progression
and resistance to therapy in head and neck cancer (Hsu
et al., 2014; Langen et al., 2015, 2016). Dysregulation of DNA

methylation of clock genes has previously been reported in
diseased oral mucosa [reviewed in Papagerakis et al. (2014)].
The circadian gene CLOCK and histone-related genes, such
as histone deacetylase HDAC3 and histone methyltransferase
MLL3 play a role in regulating metabolism using histone
modifications (Papagerakis et al., 2014). Castilho et al. reported
that the gene heparan sulfate-glucosamine 3-sulfotransferase 2
(HS3ST2), which performs circadian functions, is frequently
hypermethylated in oral cancer (Castilho et al., 2017). Heparan
sulfate biosynthetic enzymes, such as HS3ST2, generate various
biologically active heparan sulfate molecules. HS3ST2 has
also been reported to be hypermethylated in various other
human cancers affecting the colon, breast, stomach, prostate
gland, lung and pancreas (Hwang et al., 2013). Studies have
shown that inactivation mutation of the tumor suppressor
gene phosphatase and tensin homolog (PTEN), in association
with other epigenetic changes, leads to increased activity of
phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of
rapamycin (mTOR) pathway, which is found in most squamous
cell carcinomas of the head and neck region (Squarize et al.,
2013). Furthermore, Matsumoto et al. demonstrated that mTOR
signaling pathway and core clock protein BMAL1 can be
activated by oxidation-driven loss of PTEN function (Matsumoto
et al., 2016). Evidence indicated that circadian regulatory
pathways may give rise to rhythmic epigenetic modifications
resulting in circadian epigenomes and may result in malignant
transformation of normal lung samples to non-small cell lung
cancer (Salavaty, 2015). Hence, epigenomics is a vital tool for
studying the role of circadian disruption in oral, head and
neck pathologies.

Proteomics
Proteomics deals with large-scale study of the full complements
of proteins in a cell, organism, tissue or body fluid (Graves and
Haystead, 2002). This “omics” approach has been extensively
used to study various pathologies in the head and neck area
(Haigh et al., 2010; Garcia-Munoz et al., 2014; Gupta et al., 2015;
Harris et al., 2015; Gleber-Netto et al., 2016; Khan et al., 2016; Li
et al., 2016; Camisasca et al., 2017). Circadian clock genes have
been reported to demonstrate 24h rhythms in salivary glands,
and disruption of these clock genes may lead to autoimmune and
inflammatory diseases affecting saliva production, such as the
Sjögren syndrome (Zheng et al., 2012). Liquid chromatography
coupled electrospray ionization (ESI) tandem mass spectrometry
has been used to identify twelve novel proteins in minor
salivary glands, which may indicate that salivary proteomes
differences may be vital for specific oral functions (Siqueira et al.,
2008). However, literature is lacking with respect to the use of
proteomics to identify circadian clock disruption in head and
neck pathologies, such as Sjögren syndrome.

Metabolomics
Metabolomics involves the use of high throughput evaluation
of small molecular weight metabolites (which are downstream
product of various metabolic processes in cells, tissues or body)
to understand fundamental pathway changes in systems biology.
The integration of high throughput tools like nuclear magnetic
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resonance (NMR) spectroscopy, liquid chromatography/mass
spectrometry (LC/MS) and gas chromatography/mass
spectrometry (GC/MS) into the omics field, has increased
the accuracy of metabolite quantification with metabolomics
(Weckwerth, 2003). It has been suggested that the application
of integrated, systems-level, multi-omics approach can improve
our understanding on the link between circadian rhythms and
lipid metabolic networks (Eckel-Mahan and Sassone-Corsi,
2013; Ray and Reddy, 2016). Using a computational modeling,
an integrated transcriptome-metabolome study demonstrated
that there is synergism between nodes in specific metabolome
pathways and circadian transcriptome (Eckel-Mahan et al.,
2012). That study demonstrated that the uracil salvage pathway
(which is a nucleotide salvage pathway that synthesizes
nucleotides from intermediates in the degradative pathway
for nucleotides) and other metabolic pathways, oscillates in a
CLOCK-dependent circadian fashion. Using a drosophila model,
Xu et al. demonstrated that disruption of the circadian rhythm by
restricting feeding times results in disturbances of reproductive
fitness (Xu et al., 2011). Also, a study has shown that ad libitum
food intake (even at normal calories levels) is linked to obesity in
mouse (Hatori et al., 2012; Kuroda et al., 2012; Joo et al., 2016).
The human circadianmetabolome has been described (Dallmann
et al., 2012), and the efficacy of the use of metabolomics to study
circadian rhythms has been largely investigated (Haigh et al.,
2010; Gupta et al., 2015). Recently few studies are emerging
linking metabolite profiles with HNSSC and SS (Bengtsson
et al., 2016; Ishikawa et al., 2016, 2017; Ji et al., 2017; Sridharan
et al., 2017; Lohavanichbutr et al., 2018; Mikkonen et al., 2018;
Sant’Anna-Silva et al., 2018; Hsu et al., 2019). Interestingly
one of the studies highlighted the importance of timing when
evaluating the HNSCC metabolome (Ishikawa et al., 2017). Still
the role of circadian metabolome in head and neck pathologies
remain unexplored.

Lipidomics
Lipidomics permits the large-scale study of the total lipid
complements in cells using analytic chemistry tools in systems
biology (Yang and Han, 2016). Changes in the metabolism of
thousands of lipid species is related to changes in numerous
pathways and networks (Han, 2016). Circadian lipidomics is
essential to unravel the link between lipid metabolism and
circadian clock (Gnocchi et al., 2015). Using lipidomics, Loizides-
Mangold et al. provided in vitro evidence that membrane
lipid metabolites demonstrated oscillatory patterns in myotube
cells and muscle tissue, which might impact insulin signaling
(Loizides-Mangold et al., 2017). Such a finding is potentially of
far reaching significance for future therapy for insulin resistance.
Without yet linking circadian disruption and lipidomics profiles
to HNSCC and SS few studies are pioneering the field of
lipid biology and head and neck pathologies (Wang et al.,
2017; Bednarczyk et al., 2019). Even though lipidomics has
not been used to study circadian disruption in head and neck
pathologies, it has been extensively used to study circadian
control (Gooley and Chua, 2014; Adamovich et al., 2015; Gnocchi
et al., 2015; Aviram et al., 2016; Han, 2016; Loizides-Mangold
et al., 2017; Wang et al., 2017; Bednarczyk et al., 2019),

promising new discoveries are waiting in the head and neck
pathologies field.

Microbiomics
Microbiomics is a high throughput omics tool that provides in-
depth understanding of the role of the microbiota on human
health and physiology (Rajendhran and Gunasekaran, 2010).
Recently, gut microbiome research has demonstrated a vital role
for trillions of microorganisms resident in the gut as critical
determinants of disease and health in the host (Liang and
FitzGerald, 2017). Diurnal variations exists in gut microflora
synchrony with the host circadian clock (Liang and FitzGerald,
2017); and the circadian clock plays a key role in regulating
the microbiome and host responses to pathogens (Rosselot
et al., 2016). Microbiomics has been used to study the circadian
mechanism (Rosselot et al., 2016; Voigt et al., 2016; Liang and
FitzGerald, 2017), and is a potentially useful mechanism for
investigating circadian disruptions in head and neck pathologies
with an emphasis on oral flora.

In addition to microbiomics, several studies examining the
role of a large variety of ingested micro-organisms (viruses,
bacteria etc), antigens, toxins and carcinogens, in oral cavity have
highlighted the importance of stem cells differentiation which
comprises a particularly pronounced circadian rhythms and a
strong clock gene involvement in their equilibrium (Kellett et al.,
1989; Bjarnason et al., 1999; Thomson et al., 1999; Janich et al.,
2011). Alterations of both stem cell markers and clock genes
have been detected in oral squamous cell carcinomas (Grimm
et al., 2015). Approximately two thirds of oral cancers occur
in the oral cavity (lip, tongue, floor of mouth, palate, gingival,
alveolar and buccal mucosa, with tongue cancers considered the
most aggressive), while the remainder occurs in the oropharynx
(Shah and Batsakis, 2003). Evidence indicates infection of oral
epithelial stem cells by high-risk types of human papillomavirus
(HPV); clinical observations shown early lymphatic metastasis
in HPV-related HNSCC (Desai et al., 2009; Albers et al., 2012).
Deregulation of pathways controlling stem cell self-renewal (e.g.,
Wnt, Notch, Hedgehog, EGF, etc) leads to tumorigenesis in
rodent models but also play a critical role in human oral, head
and neck carcinogenesis (Winning and Townsend, 2000; Du
et al., 2003; Nickoloff et al., 2003; Al-Hajj and Clarke, 2004;
Klaus and Birchmeier, 2008). Both cancerous and normal stem
cells are long-lived and thus can accumulate consecutive genetic
changes under the continuous challenges imposed on the oral
mucosa, the evolution of DNA methylation has allowed them
to respond to environment cues in a flexible, yet stable manner
to ensure their genetic stability, however it has been shown that
variability in DNA methylation exists within HNSCC subtypes
as well as same subtype interpatient variability, influenced by
environmental factors, such as diet (Carvalho et al., 2006;
Tan et al., 2008; Agrawal et al., 2011; Stransky et al., 2011;
Sun et al., 2012; Colacino et al., 2013). Given that over 700
bacterial species inhabit the oral cavity, a growing body of
evidence implicates human oral bacteria in the etiology of oral
cancer (through potentially activation of alcohol and smoking-
related carcinogens, locally or systematically through chronic
inflammation), as well as an increased risk of these cancers in
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patients with periodontal disease and tooth loss (Ahn et al.,
2012). The vast majority (90%) of oropharynx cancers seems
likely related to high risk HPV (especially type 16) in contrast to
only 5% of the oral cavity cancers (Marani and Heida, 2018). The
TCGA network have revealed novel and previously recognized
gene and chromosomal region copy number alterations,
mutations, and expression clusters and defined their frequency,
co-occurrence, and relationship to common and rare subtypes of
HPV-negative and HPV-positive tumors that vary in prognosis
(Cheng et al., 2018). Furthermore, a recent study undertook
a comprehensive genomic and transcriptomic characterization
of long-established 15 HPV-negative and 11 HPV-positive head
and neck squamous cell carcinoma (HNSCC) lines, proven
valuable as in vitro HNSCC experimental models, comparatively
with the genomic alterations of the 279 HNSCC tumors from
the TCGA database; the findings highlighted the importance
of a network of pathways and the combined contribution of
genomic and transcriptomic alterations (shared or HNSCC
subtype-specific and HPV status-related) in promotion of the
malignant phenotype and therapeutic resistance, which was
heretofore limited to selected gene candidates (Cheng et al.,
2018). Other studies have undertaken a comprehensivemolecular
multi-layered omics-based approach applied to a single HNSCC-
derived cell line and its single-cell derived subclones, to
elucidate the tumor heterogeneity and treatment-induced clonal
selection (Niehr et al., 2018) or a single signaling pathway (e.g.,
AKT/PKB) (Fruman et al., 2017; Manning and Toker, 2017).
For instance, Niehr et al. (2018), analyzed the HNSCC-derived
HPV-negative cell line FaDu, recognized as an in vitro HNSCC
model of cisplatin resistance, by using targeted next generation
sequencing, fluorescence in situ hybridization, microarray-based
transcriptome and mass spectrometry-based phosphoproteome
analysis. This was followed by siRNA-based gene silencing to
determine the causal relationship between molecular features
and resistant phenotypes, and the clinical relevance of molecular
findings was validated throughout survival analysis of the
TCGA dataset of HPV-negative HNSCC patients with recurrent
disease after cisplatin-based chemo-radiation; their findings
demonstrated a link between the intratumor heterogeneity and
clonal evolution as mechanisms of drug resistance in HNSCC
and established mutant gain-of-function TP53 variants and
the PI3K/mTOR pathway as molecular targets for treatment
optimization in HNSCC (Niehr et al., 2018). Interestingly we
have shown that mTOR pathway is directly linked to clock genes
signaling (Matsumoto et al., 2016). Additional studies are needed
to further explore the links between circadian clock signaling,
HNSCC and microbiome of oral cavity.

FUTURE PERSPECTIVES IN PRECISION
ORAL HEALTH AND CIRCADIAN BIOLOGY

Saliva as a Source of Multi-Omics and
Circadian Clock Disruption Profiles
More recently, an increasing interest has been noted in the
incorporation of saliva analyses (metabolomics, biomarkers
profiling, microbiome, etc.) in the oral cancer diagnostics and

progression prediction, while the future of salivary diagnostics
seems to rely heavily on the integration of all the omics
(Mikkonen et al., 2016; Washio and Takahashi, 2016; Kaczor-
Urbanowicz et al., 2017).

More recently we are assisting to the circadiOmics and
chronobiome emergence which integrates high-throughput
time series of tissue and condition-specific circadian genomics,
transcriptomics, proteomics and metabolomics by taking
into account the 24 h expression profiling variations, thus
highlighting the critical importance of a systems approach to
achieve a more accurate view of the underlying global network
under circadian regulation as well as standardization of the time
of specimen collection and of the experimental measurements;
CircadiOmics uses data integration and artificial intelligence
module to compile information from all the currently available
databases, web services and tools which are regularly updated;
users can search the high-throughput experimental data
interactively plot time courses across different conditions and
tissues (Eckel-Mahan et al., 2012; Patel et al., 2012). Saliva in
fact may be the biological fluid of excellence to study the effects
of circadian clock disruption in head and neck pathologies
using a multi-omics approach combined with multiple
saliva sampling.

Single Cell Circadian Profile in Oral
Tissues: Opportunities and Pitfalls
Single cell analysis of circulating tumor cells and of tumor
biopsies for carcinomas has been applied both in cell lines and
clinical samples leading to enhanced diagnostic and therapeutic
tools. No studies that include single cell analysis have been
published in the area of head and neck pathologies yet (Stucky
et al., 2017). On the other hand, single cell analysis is just
emerging in the field of circadian biology (Abraham et al.,
2018). Analyzing the extend circadian rhythms disruption at
the single cell level and correlating the level of disruption with
clinical outcomes will offer us the highest possible level of
knowledge on the role of circadian clock disruption in head
and neck pathologies. However, the amount of data and the
correct interpretation for use in clinical scenarios may be delayed
due to complexity of both single cell analyses and the lack of
precise knowledge of circadian clock system disruption links to
oral diseases.

CONCLUSION

Most head and neck pathologies show a broad cellular
heterogeneity making it difficult to achieve an accurate diagnosis
and efficient treatment (Graf and Zavodszky, 2017; Lo Nigro
et al., 2017). Single cell analysis of circadian omics (Lande-
Diner et al., 2015; Abraham et al., 2018), may be a crucial
tool needed in the future to fully understand the circadian
control of head and neck diseases. It becomes more obvious
that there is only a small genetic component but a largely
unknown epigenetics and/or environmental component for most
of the head and neck pathologies (Moosavi and Motevalizadeh
Ardekani, 2016; Hema et al., 2017; Lindsay et al., 2017). Exposure
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FIGURE 3 | Diagram showing that applications of various high-throughput omics-based approaches and data integration are necessary to study the role of circadian

clock disruption in head and neck pathologies. Data can be collected from biological fluids and from components of patient lifestyle and combined with mechanistic

data can provide a holistic view of a patient’s health. This approach would lead to better prevention, diagnosis, targeted therapies and hopefully policy changes that

will result in better outcomes overall.

to bacteria, virus, toxins, pesticides, stress, life styles changes,
sleep disorders, etc, all (in combination or alone) affecting the
circadian clock and increase vulnerability to head and neck
pathologies (Hooven et al., 2009; LeGates et al., 2014; Cui et al.,
2016; Potter et al., 2016; Koch et al., 2017; Kopp et al., 2017).
Omics approaches need to be combined with tests and biosensor
data for each patient to get most out of them. Recently, there
was noted a growing interest on clinical testing of the ability
of drugs/small molecules to reset the circadian clock and treat
diseases, such as diabetes and cancer (Antoch and Chernov,
2009; He and Chen, 2016; Tamai et al., 2018). Combined omics
will be needed to monitor the effects of drugs and individual
health outcome. Not least, saliva may become a gold standard
for circadian time points monitoring and continuous assessment,
and may provide information on protein, bacteria, toxins, stress-
induced cortisol, and other circadian biomarkers compared to
saliva melatonin, an indicator of the circadian clock (Novakova
et al., 2011; Shinohara and Kodama, 2011). Many omics-based
techniques are yet to be widely utilized for studying the effect of
circadian disruption in diseases emanating from the head and
neck regions. Considering that the circadian rhythms controls
a vast repertoire of metabolic and physiological activities in
the body, it is vital to decipher circadian oscillations using
novel, “state-of-the-art,” high throughput “omics-based tools.”
It is also important to use these tools in an integrated multi-
omics manner, rather than in isolation, and most importantly
within a well-defined personalized clinical context which takes

in account individual variability, disease predisposition, lifestyle,
environmental exposure, the very core of the oral precision
medicine etc. Equally important, a comprehensive multi-
omics map of circadian network (Patel et al., 2012) which
integrates circadian, transcriptomics, metabolomics, genomics
and proteomics has been suggested as necessary step toward
precision health. Another study which generated high-resolution
multi-organ expression data, showed that almost 50% of the
mouse genome oscillate with circadian rhythm (Zhang et al.,
2014) further supporting the importance of circadian clock
in precision health approaches. Cyclic ordering by periodic
structure (CYCLOPS) machine-learning algorithm has also been
used to identify rhythmic transcripts in human lung and liver,
as well as hundreds of drug targets and diseases-related genes;
this method has been validated using mouse and human data
(Anafi et al., 2017). It is envisaged that such a map will
provide circadian clock researchers with access to mining of
high-resolution multi-omics data from the repository. With
increasing use of “omics” techniques for circadian clock biology,
multidimensional knowledge of the architecture and functioning
of the circadian system would be generated. Application
of novel technologies, such as single cell technology and
metagenomics is poised to significantly improve our knowledge
of circadian biology. Not least, greater understanding of many
more physiological and pathological conditions in the head
and neck region would be acquired thought data integration
approaches (Figure 3).
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