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Activin negatively affects muscle fibers and progenitor cells in aging (sarcopenia) and
in chronic diseases characterized by severe muscle wasting (cachexia). High circulating
activin levels predict poor survival in cancer patients. However, the relative impact of
activin in mediating muscle atrophy and hampered homeostasis is still unknown. To
directly assess the involvement of activin, and its physiological inhibitor follistatin, in
cancer-induced muscle atrophy, we cultured C2C12 myotubes in the absence or in
the presence of a mechanical stretching stimulus and in the absence or presence
of C26 tumor-derived factors (CM), so as to mimic the mechanical stimulation of
exercise and cancer cachexia, respectively. We found that CM induces activin release
by myotubes, further exacerbating the negative effects of tumor-derived factors. In
addition, mechanical stimulation is sufficient to counteract the adverse tumor-induced
effects on muscle cells, in association with an increased follistatin/activin ratio in the
cell culture medium, indicating that myotubes actively release follistatin upon stretching.
Recombinant follistatin counteracts tumor effects on myotubes exclusively by rescuing
fusion index, suggesting that it is only partially responsible for the stretch-mediated
rescue. Therefore, besides activin, other tumor-derived factors may play a significant
role in mediating muscle atrophy. In addition to increasing follistatin secretion mechanical
stimulation induces additional beneficial responses in myotubes. We propose that in
animal models of cancer cachexia and in cancer patients purely mechanical stimuli
play an important role in mediating the rescue of the muscle homeostasis reported
upon exercise.

Keywords: skeletal muscle atrophy, myokines, mechanotransduction, exercise, C26 colon carcinoma,
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INTRODUCTION

Cancer cachexia is multifactorial and characterized by tumor-
and host-derived factors leading to muscle wasting (Fearon et al.,
2012). TGF-β family members, including activin and myostatin,
are key regulators of muscle development and homeostasis
(Chen et al., 2016) and have been reported to mediate cachexia
(Costelli et al., 2008; Chen et al., 2014). Since they bind
to activin type IIB receptor (ActRIIB), the latter has been
targeted to counteract muscle wasting (Barreto et al., 2016;
Hatakeyama et al., 2016; Toledo et al., 2016) or to promote
muscle hypertrophy (Morvan et al., 2017) and the regenerative
capacity of muscle (Formicola et al., 2018). Activin induces
muscle catabolism via p38β (Ding et al., 2017) and SMAD2/3
activation (Winbanks et al., 2016). Chemotherapy activates this
pathway too, further worsening muscle atrophy (Barreto et al.,
2016; Coletti, 2018). Follistatin (or activin-binding protein) is a
potent, physiological inhibitor of activin and myostatin (Zheng
et al., 2017). Several organs such as the gonads (Tilbrook
et al., 1996) and skeletal muscle (Ciaraldi et al., 2016) are
sources of follistatin.

Exercise modulates follistatin and other myokines (Yeo et al.,
2012) and the plasma profile of cytokines (Lira et al., 2009;
Donatto et al., 2013), producing marked beneficial effects on
muscle homeostasis (Barone et al., 2016; Coletti et al., 2016; Pigna
et al., 2016). This is the reason why exercise is recommended to
treat cachexia (Lira et al., 2012, 2014).

Even though a high level of circulating activin is an
adverse prognostic factor in cancer patients (Loumaye et al.,
2017), it is yet unknown if activin is a direct player or
only a mere marker of cachexia. Besides, it is not known if
beneficial exercise effects are mediated by purely mechanical
stimuli in the muscle, nor whether exercise itself modulates
the follistatin/activin ratio and its paracrine consequences. To
address these questions, we cultured C2C12 myotubes in the
absence or in the presence of mechanical stretching, and in
the absence or in the presence of tumor-derived factors, so as
to mimic the mechanical stimulation of exercise and cancer
cachexia, respectively.

MATERIALS AND METHODS

Cell Cultures
C2C12 were seeded at a density of 20000 cells/cm2 in the
multiwell plate of the Flexcell R© FX-6000TM Tension System
designed for unidirectional stretching (collagen coated silicon
membrane, 3.89 cm2). A vacuum was constantly applied to
stretch the membrane by 6%, in order to increase membrane
stiffness, a condition that preliminary experiments showed to
be necessary to allow a proper differentiation of the C2C12
cells into myotubes (data not shown). The following day,
at 80% confluence, GM (DMEM with 15% FBS, 4.5 g/L
of glucose, 2 mM of L-glutamine, 100 µg/mL of penicillin-
streptomycin; Sigma-Aldrich, St. Louis, MO, United States)
was replaced with DM containing 2% Horse Serum (HS,
Carotenuto et al., 2016). A mixed culture of myoblasts and

myotubes was kept for 4 days in DM at 37◦C, 5% of CO2
in the Flexcell apparatus, always under constant stretch. For
the experiments, the initial myotubes cultures were further
cultured for additional 2d under continuous stretching (SC,
Static Condition) or were subjected to 2 daily series of 2 h
cyclic stretching (0,5 Hz, 6% stretch), with a 3 h-pause between
them (DC, Dynamic Condition). As to media composition
during the 2d experimental treatments see figure legends
(Sigma reagents).

In order to obtain a tumor cell conditioned medium (CM),
C26 carcinoma cells (Cell Lines Service) were cultured for 2d
in serum-free DMEM and the supernatant being diluted to 20%
in HS medium. To obtain the control medium, DMEM was
incubated for 2d at 37◦C in the absence of C26 cells.

Immunofluorescence, ELISA
Samples underwent standard procedures (De Arcangelis et al.,
2005; Aulino et al., 2015). Antibodies: MF20 anti-MHC and
F5D anti-myogenin (DSHB); Alexafluor 555 or 488 secondary
Abs (Molecular probes). Regarding the ELISA quantification
of some specific factors secreted in C26 CM or in the
myotube culture media DAC00B Human/Mouse Activin A and
DFN00 Human Follistatin (R&D) systems were used following
manufacturer’s instructions.

Western Blot
Protein extraction and electrophoresis were performed as
previously described (Coletti et al., 2016). In brief: samples
were treated with lysis buffer RIPA containing Tris-Cl 50 Mm
pH = 7.5, 150 Mm NaCl, 1% NP40, 0.5% desoxyclorate
de sodium, EGTA 20 mM, DTT 1 mM, and a protease
inhibitor cocktail. Proteins were denatured with a Bolt kit
(Molecular probes, Invitrogen). Total protein content was
measured by Bradford and GAPDH was used as a loading control.
Membranes of nitrocellulose were incubated with blocking buffer
TBS-Tween with 5% not fat milk. Antibodies: anti-MyoD,
anti Phospho-SMAD2/3, anti-SMAD2/3 (Cell Signalling), anti-
GAPDH (Sigma). The sample size was 9, however, triplicate
independent samples were pooled to obtain a sufficient amount
of proteins to be loaded in each lane. Secondary antibody
fluorescence was detected by using the Odyssey system; for
each band, quantification of the signal was obtained by
ImageJ, following background subtraction, and each value was
normalized by the corresponding GAPDH band intensity; for
SMADs, the ratio between the normalized P-SMAD and SMAD
values was calculated.

Quantitative PCR
Total RNA was isolated with Trizol R© reagent (Invitrogen)
following the manufacturer’s recommendations and
homogenized. RNA concentration was determined by
measuring the absorbance in 260 nm/280 nm in a NanoDrop
spectrophotometer. cDNA synthesis was carried out using the
High capacity applied Reverse Transcription Kit (Biosystem).
Lightcycler 480 was used to detect SYBR Green signal in
Q-PCR. The mRNA levels were determined by the comparative
Ct method; the average 1Ct value of the control group was
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FIGURE 1 | Continued
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FIGURE 1 | Mechanical stimulation counteracts the negative effect of tumor-derived factors. (A) Myosin (red) localization and nuclei (blue) by immunofluorescence in
C2C12 myotubes at 4d (Aa) and 6d (Ab) of culture in a differentiation medium in the absence (HS) or presence (CM) of C26-conditioned medium, in combination
with the absence (SC) or presence (DC) of cyclic stretching. (B) Morphometric analyses were performed on replicate samples (n = 6). One-way ANOVA performed on
data from 4d and 6d (five groups) followed by Dunnet’s test indicated a significant increase in the fusion index (FI) and in the number of nuclei/myotube (NpM)
between 4d and 6d in any condition except CM. Two-way ANOVA performed on 6d values showed a significant effect for: (Ba) DC on myotube diameter (F = 12.66;
df = 1; p < 0.05); (Bb) CM and interaction with DC (for CM: F = 24.73; df = 1; p < 0.001; for interaction: F = 30.2; df = 1; p < 0.001) on fusion index; #p < 0.05,
##p < 0.01 by Tukey HSD test); (Bc) CM on number of nuclei/myotube (F = 5.64; df = 1; p < 0.05). (C) WB analysis for MyoD (Ca) and relative average density (Cb)
following normalization over the GAPDH signal in the same conditions as above. Two-way ANOVA showed a significant effect for DC (F = 19.47; df = 1; p < 0.001).
(D) Myogenin (red) and nuclei (blue) by IF (Da) in C2C12 myotubes at 6d of culture in the same conditions as above, and quantification of the percentage of
myogenin+ nuclei (Db). Two-way ANOVA showed the significant effect of both CM (F = 13.55; df = 1; p < 0.01) and DC (F = 451.7; df = 1; p < 0.0001), indicating
that the DC rescues myogenin expression. Data are shown as mean ± SEM.

subtracted from the test value to derive a −11Ct value. The
expression of each gene was evaluated by 2−11Ct , according to
Livak and Schmittgen (2001). List of primers used:

ActRIIBL: CTG-TGC-GGA-CTC-CTT-TAA-GC
ActRIIBR: TCT-TCA-CAG-CCA-CAA-AGT-CG
Activin-AL: CAG-TGG-GGA-GGT-CCT-AGA-CA
Activin-AR: CAA-AAG-GAG-CAG-CAG-AGA-CC
FollistatinL: CCT-CCT-GCT-GCT-GCT-ACT-CT
FollistatinR: TGC-TGC-AAC-ACT-CTT-CCT-TG
Wnt4L: CTG-GAG-AAG-TGT-GGC-TGT-GA
Wnt4R: GGA-CGT-CCA-CAA-AGG-ACT-GT
MyoDL: GAG-ATG-CGC-TCC-ACT-ATG-CT
MyoDR: TGG-CAT-GAT-GGA-TTA-CAG-CG
MyogeninL: GCA-CTG-GAG-TTC-GGT-CCC-AA
MyogeninR: TAT-CCT-CCA-CCG-TGA-TGC-TG

Imaging and Morphometry
Images were acquired by a Zeiss EM S3/SyCoP3 Macro-
apotome equipped with Zen software in the imaging facility
of the Institute of Biology Paris-Seine. The ImageJ software
was used for the morphometric analysis. Fusion index (FI)
was defined as the number of nuclei in myotubes on
total nuclei in 5 fields/sample; myotube diameter (DIA) was
measured in 50 myotubes/sample; nuclei per myotube (NpM)
were counted in 50 randomly chosen myotubes. Myotubes
diameter was measured as the average from three independent
measurements per myotube according to previously published
methods (Trendelenburg et al., 2009; Deane et al., 2013).
At least triplicate samples from two independent experiments
were analyzed for each condition; thus, 6 < n < 10 for
each data group.

Statistical Analysis
Comparisons of quantitative variables were performed
through 2-way ANOVA, after verifying parametric
assumptions. In case these assumptions were violated,
some transformations (square root or arcsin, as appropriate)
were used. Post hoc comparisons were performed through
Tukey’s significant difference method. When a comparison
of each treatment group with a single control group was
necessary, a Dunnett post hoc test was employed. The
significance level was set at 0.05. Statistical analyses were
performed by SPSS 25.0.

RESULTS

Mechanical Stimulation Counteracts the
Negative Effect of Tumor-Derived
Factors on Muscle Cells
C2C12 cultures, following 4d in DM, contained both
multinucleated myotubes and undifferentiated myoblasts
(Figure 1Aa). We further cultured these cells for 2d in control
conditions (i.e., in HS) in the absence (static condition, SC) or
presence (dynamic condition, DC) of mechanical stimulation,
represented by cyclical stretching of the substratum; furthermore,
we treated the cells with C26 tumor-conditioned medium (CM),
in a SC or a DC, and we analyzed 6d cultures undergoing four
combinatorial treatments (Figure 1Ab). The morphometric
analysis focused on myotube diameter (DIA), as a marker of fiber
size, on fusion index (FI), as a marker of the extent of myogenic
differentiation, and on the number of nuclei per myotube (NpM),
as an indication of myotube growth because of the addition of
nuclei deriving from the myoblasts. On day 6 myotube cultures
showed a significant increase in FI and NpM as compared to 4d
cultures, indicating that the myotubes continuously grew in size
by incorporating the nuclei from myoblasts, or, possibly, that
additional newborn myotubes formed (Figure 1B). Two-way
ANOVA on 6d-culture morphological features showed that: CM
decreased, while DC significantly increased, myotube DIA even
in the presence of CM (Figure 1Ba); CM diminished FI, while
DC interfered with CM and rescued FI. Given the significance of
the negative interaction between CM and DC we could perform
post hoc tests, which showed not only that the FI in the presence
of CM is lower compared to all the other treatments, but also that
the DC does not promote fusion per se (Figure 1Bb); indeed CM
had a negative effect on the number of NpM, with no interaction
with the DC, while the latter did not significantly affect the
number of NpM (Figure 1Bc).

Consistently with the previous results, the positive effects of
mechanical stimulation on myogenesis were confirmed by the
significant upregulation of the MyoD level (Figure 1Ca), likely
mirroring a sustained activation of differentiating myoblasts;
we also observed a decreased, albeit not significant, amount
of MyoD protein following CM treatment, with no interaction
between the two variables as shown by ANOVA (Figure 1Cb).
The immunofluorescence analysis of myogenin (Figure 1Da),
which is a later differentiation marker and is required
for terminal myogenic differentiation, revealed statistically
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FIGURE 2 | Continued
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FIGURE 2 | Follistatin is not sufficient to rescue myotube size in the presence of tumor-derived factors. (A) Quantification of activin (Aa) and follistatin (Ab) by ELISA
in 6d culture supernatant, in differentiation medium in the absence (HS) or presence (CM) of C26-conditioned medium, in combination with the absence (SC) or
presence (DC) of cyclic stretch. The follistatin/activin ratio was calculated (Ac). Two-way ANOVA showed: CM effect and a interaction with DC on activin levels;
interaction between CM and DC on follistatin levels; CM effect and interaction with DC on follistatin/activin ratio. #p < 0.05, ##p < 0.01 by Tukey HSD test. (B) WB
analysis for P-SMAD2/3 and SMAD 2/3 (Ba) and relative average density (Bb) following normalization over the GAPDH. Two-way ANOVA showed a significant effect
for DC (F = 6.25; df = 1; p < 0.05) and interaction of Dc with CM (F = 12.36; df = 1; p < 0.01). #p < 0.05, ##p < 0.01 by Tukey HSD test. (C) Immunofluorescence
for Myosin (green) and nuclei (blue) in C2C12 myotubes at 6d of culture (Ca) in differentiation medium in the absence (HS) or presence (CM) of C26-conditioned
medium and in CM supplemented with 100 ng/ml recombinant follistatin, in the absence of cyclic stretch (SC). The treatments were performed starting on 4d culture
and changing the medium daily. Morphometric analyses (Cb) were performed on replicate samples (n = 6). One-way ANOVA indicated a significant effect of
treatments on myotube diameter and on the number of nuclei/myotube. ∗∗p < 0.01 by Tukey HSD test.

significant, opposite effects of both CM and DC (Figure 1Db) on
the percentage of the myogenin positive nuclei.

Follistatin Is Sufficient to Rescue
Myogenic Differentiation but Not
Myotube Size in the Presence of
Tumor-Derived Factors
To assess the contribution of myokines and putative tumor-
derived factors on myotube size and myoblast recruitment, we
measured both activin and follistatin levels in the 6d culture
media. Worth noting, the C26 CM used throughout this work
contained 2800 ± 380 pg/mL activin (data not shown), implying
that, following a dilution to 20% in the culture medium, the
latter contained 590 ± 76 pg/mL activin of tumor origin
at the beginning of the treatments, i.e., on day 4 (data not
shown). Following 2 days in culture, activin concentration
decreased to 190 ± 18 pg/mL in control conditions (HS SC)
indicating a non-specific or myotube-mediated degradation or
internalization/absorption (Figure 2Aa); on the contrary, in the
presence of CM activin increased about 3 times, which suggests
an activin release from muscle cells (Figure 2Aa). In the DC
activin levels were significantly reduced, both in the absence
or presence of CM, even though they remained higher than in
unstimulated, control cultures (Figure 2Aa).

In order to better understand the novel finding of the release
of activin from muscle cells, we measured activin A expression
in the four culture conditions failing to see any statistically
significant difference, even though we noticed that activin

expression doubled in CM SC (Table 1); this suggests that activin
release from the myotubes could be partially dependent on activin
expression but mostly depends on post-translational events.

We also measured follistatin concentration in the four
conditions above and noticed that it significantly decreased in
the CM SC (Figure 2Ab), consistently with the physiological
role of follistatin as an activin-binding protein, and that its
level was rescued in the presence of mechanical stimulation,
i.e., DC. Worth noting, the CM and the DC have opposite,
significant effects on follistatin expression (Table 1), indicating
that the exposure to tumor-derived factors, including activin,
downregulates follistatin production in muscle cells, while the
mechanical stimulation rescues follistatin expression and release.

Since free activin binds to the activin receptor type-2B
(actRIIB) we could not exclude that mechanical stimulation
counteracted CM effects by affecting the actRIIB expression
as well. Therefore, we measured actRIIB receptor expression
in muscle cell cultures and we found a quasi-significant effect
of both CM and DC on its expression. In addition, we
found that mechanical stimulation interferes with the CM-
induced actRIIB expression increase, further contributing to
the myotube desensitization to activin (Table 1). Altogether,
these data suggest an adverse effect on myotubes of tumor cell-
and muscle-derived activin, which could be counteracted by
the mechanically stimulated secretion of follistatin by myotubes
(Figure 2A). Activin effects are further exacerbated by the
differential modulation of actRIIB by CM and DC (Table 1).

Given the pivotal role of actRIIB in mediating cachexia in vivo
(Zhou et al., 2010) and the negative effects of tumor-derived

TABLE 1 | Mechanical stimulation counteracts the negative effect of tumor-derived factors on P-SMAD transcriptional targets (MRF) and on Follistatin expression.

Gene HS SC CM SC HS DC CM DC ANOVA

ActRIIB 1.00 ± 0.36 5.35 ± 1.52 1.56 ± 0.51 0.99 ± 0.14 DC, CM QS interaction

Activin A 1.00 ± 0.30 2.02 ± 0.53 1.21 ± 0.38 1.18 ± 0.29 NS

Follistatin 1.00 ± 0.17 0.50 ± 0.09 1.77 ± 0.43 1.02 ± 0.25 DC and CM effects

Wnt4 1.00 ± 0.27 2.70 ± 0.74 1.58 ± 0.36 1.23 ± 0.27 interaction

MyoD 1.00 ± 0.09 0.44 ± 0.05 0.70 ± 0.15 0.66 ± 0.15 DC and CM effects interaction

Myogenin 1.00 ± 0.16 0.59 ± 0.08 0.97 ± 0.08 0.92 ± 0.11 DC and CM effects

Gene expression was assessed by Q-PCR in myotubes following 2d culture as indicated in the absence (HS) or presence (CM) of C26-conditioned medium, in combination
with the absence (SC) or presence (DC) of cyclic stretch. Gene expression is shown as fold induction in respect to control (HS SC), following normalization over GAPDH.
Data are shown as mean ± SEM of replicate samples (8 < n < 16). Two-way ANOVA significance is reported in the last column (ANOVA) and ANOVA results are reported
in parentheses for each gene, as follows: ActRIIB, activin Receptor IIB (for DC and for CM: Q.S.; interaction F = 8.67; df = 1; p < 0.01); activin A (NS); Follistatin (for DC:
F = 6.71; df = 1; p < 0.05; for CM: F = 6.09; df = 1; p < 0.05); Wingless-related integration site 4, Wnt4 (F = 4.74; df = 1; p < 0.05); MyoD (For DC: F = 12.58; df = 1;
p < 0.01; for CM: F = 6.85; df = 1; p < 0.05; interaction: F = 6.43; df = 1; p < 0.05); myogenin (for DC: F = 3.97; df = 1; p < 0.05; for CM: F = 4.42; df = 1; p < 0.05;
interaction: QS). NS and QS = not and quasi (p = 0.05) significant, respectively.
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factors on myotubes reported above, we aimed to confirm that
the ActRIIB signaling pathway was differentially activated by CM
and DC. Therefore, we measured SMAD2/3 activation (expressed
as P-SMAD2/3 over total SMADs, following normalization by the
housekeeping gene GAPDH, Figure 2Ba) and found consistent
results, i.e., SMAD2/3 activation by the CM and inhibition
by the DC (Figure 2Bb). To further confirm these results,
we analyzed SMAD2/3 transcriptional targets, including Wnt4
and, noticeably, the MRF MyoD and myogenin (Table 1). As
expected, a negative interaction was found between DC and CM
on Wnt4 expression: the latter was increased by the CM, albeit
not significantly (possibly a false negative result in this case);
in addition, a return to control levels was observed in the DC
(Table 1). As is known, SMAD2/3 transcriptional effects on MRF
are the opposite than those on Wnt4, since their expression is
inhibited by P-SMAD2/3: so, as expected and in line with the
protein levels shown in Figure 1, the CM significantly decreased
both MyoD and myogenin expression, while the DC restored
MyoD and myogenin expression to control levels (Table 1).

The correlation between a high follistatin/activin ratio and the
improvement of myogenesis prompted us to investigate whether
follistatin was sufficient to counteract CM effects upon myotubes.
To this purpose, we incubated myotube cultures in SC with CM in
the absence or presence of recombinant follistatin (Figure 2Ca).
While CM decreased myotube DIA and hampered FI and NpM
increase, follistatin rescued FI but failed to counteract CM effects
on DIA and NpM (Figure 2Cb). Worth noting, in a control
experiment recombinant follistatin alone was able to counteract
the adverse effects of recombinant activin upon myotube DIA
and FI, as a proof of concept of its inhibitory activity on activin
(Supplementary Figure S1).

DISCUSSION

Act receptor ligands are becoming increasingly important as
triggers of muscle wasting and as pharmacological targets to
treat cachexia. The myostatin-activin-SMAD cascade has been
shown to activate FOXO3a, a crucial activator of muscle-atrophy-
related gene expression (Mathew, 2011); ActRIIB antagonism
suffices to revert muscle wasting and prolong survival in animals
affected by cancer cachexia (Zhou et al., 2010). Additional
studies highlighted activin relevance to humans, since increased
circulating concentrations of activin may contribute to the
development of cachexia in cancer patients (Loumaye et al.,
2015). Here we showed that activin is present in the tumor-
conditioned medium, inducing myotube atrophy and inhibiting
the incorporation of myoblasts into nascent myotubes. We found
that a mechanical stimulation-dependent rescue of the myotube
size is indeed associated to an increase in the follistatin/activin
ratio, showing that this is an effective in vitro model to
identify beneficial muscle derived factors. In addition, CM
seems to promote the release of activin from myotubes -
inducing a vicious circle ultimately leading to myotube atrophy
and hampered myotube growth - while mechanical stretching
appears to diminish activin levels and increase the levels of the
activin inhibitor follistatin. However, follistatin per se is not

sufficient to fully revert CM negative effects, since recombinant
follistatin only rescues FI without affecting myotube size (both
in terms of diameter and recruitment of additional nuclei).
As a consequence, additional factors in the tumor CM control

FIGURE 3 | Proposed model of action of tumor-derived factors and
mechanical stimulation on myotubes and myoblasts. Mixed cultures of
myotubes and myoblasts mature in culture by increasing the diameter of
myotubes, the fusion index (i.e., myogenic differentiation tout court, including
the formation of novel myotubes) and the number of nuclei per myotube (i.e.,
myotube accretion by incorporation of myoblasts). C26 tumor-derived factors
include activin and induce further expression and release of activin as well as
a decrease of follistatin expression and its release by muscle cells, ultimately
leading to myotube atrophy, a block of myogenic differentiation and hampered
incorporation of myoblasts into myotubes. On the other hand, mechanical
stimulation counteracts the negative effects exerted by tumor-derived factors
on muscle cells by diminishing the levels of activin available to bind actRIIB:
this is obtained by reducing activin concentration in the medium and by
rescuing follistatin release by muscle cells. Recombinant activin (rActivin A)
mimics tumor CM and its effects are counteracted by recombinant follistatin
(rFollistatin). However, rFollistatin only partially counteracts CM: since, in the
presence of CM, follistatin rescues the fusion index but not myotube diameter
nor the number of NpM, while mechanical stimulation also reverts
CM-mediated effects on myotube size, follistatin is mostly responsible for the
regulation of myogenic differentiation, while mechanical stimulation preserves
myotube size through additional mechanisms. The signaling pathways
downstream of actRIIB involve the activation of SMAD2/3 transcriptional
activity, which is increased by tumor-derived factors and decreased by
mechanical stimulation, resulting in the regulation of MRF expression leading
to myoblast differentiation and fusion.
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myotube size and their negative effects are hampered by
mechanical stimulation independently of follistatin release from
myotubes. A model of the action of mechanical stimulation
combined with tumor-derived factors on the release of activin
and follistatin from myotubes is shown in Figure 3. In this
context, actRIIB plays a major role, since its expression does
not significantly change, through the activin-mediated SMAD2/3
transcriptional activity. The ratio between available activin and
follistatin is likely the major player in these responses, even
though the mechanisms underlying activin availability and the
inhibition of activin by follistatin remain to be elucidated.

In conclusion: (a) the development of novel activin-targeted
therapeutic approaches should consider the existence of further
significant tumor-secreted factors mediating cachexia, even
though activin plays a major role; (b) upon mechanical
stimulation myotubes activate other pathways in addition to
follistatin, which effectively counteract the adverse effect of
tumor-derived factors; (c) in particular, in the presence of
tumor-derived factors follistatin alone is not sufficient to recruit
additional cells (nuclei) toward the myotubes, even though it
increases the fusion index, representing the formation of new
myotubes. In vivo muscle acts as a secretory organ (Pedersen,
2013); our results suggest that the pleiotropic effects of exercise
are not limited to contraction-dependent endocrinological effects
and that pure mechanical stimuli have a direct and relevant effect
on muscle homeostasis.
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FIGURE S1 | (A) Immunofluorescence for Myosin (red) in C2C12 myotubes at 6d
of culture, following 2d of treatment with 10 ng/ml recombinant activin (rActivin),
25 ng/ml recombinant follistatin (rFollistantin) or both, with daily changes of
medium. (B) Morphometric analysis was performed on replicate samples (n = 7)
indicating a significant effect of both treatments and a negative interaction
between them. Two-way ANOVA showed: significant effects on myotube diameter
for activin (F = 7.72; df = 1; p < 0.05), follistatin (F = 4.35; df = 1; p < 0.05) and
an interaction of follistatin with activin (F = 7.91; df = 1; p < 0.01); significant
effects on fusion index for activin (F = 4.68; df = 1; p < 0.05), follistatin (F = 9.1;
df = 1; p < 0.01). #p < 0.05 ##p < 0.01 by Tukey HSD test. # p < 0.05 by Tukey
HSD test.
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