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Ticks act as vectors of pathogens affecting human and animal health worldwide, and
recent research has focused on the characterization of tick-pathogen interactions using
omics technologies to identify new targets for developing novel control interventions.
The regulome (transcription factors-target genes interactions) plays a critical role in
cell response to pathogen infection. Therefore, the application of regulomics to tick-
pathogen interactions would advance our understanding of these molecular interactions
and contribute to the identification of novel control targets for the prevention and control
of tick infestations and tick-borne diseases. However, limited information is available on
the role of tick regulome in response to pathogen infection. In this study, we applied
complementary in silico approaches to modeling how Anaplasma phagocytophilum
infection modulates tick vector regulome. This proof-of-concept research provided
support for the use of network analysis in the study of regulome response to infection,
resulting in new information on tick-pathogen interactions and potential targets for
developing interventions for the control of tick infestations and pathogen transmission.
Deciphering the precise nature of circuits that shape the tick regulome in response to
pathogen infection is an area of research that in the future will advance our knowledge
of tick-pathogen interactions, and the identification of new antigens for the control of
tick infestations and pathogen infection/transmission.
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INTRODUCTION

Ticks (Acari: Ixodida) are major vectors of pathogens affecting human and animal health
worldwide, and consequently the focus of research for developing novel control interventions
(de la Fuente, 2018). Among tick-transmitted pathogens, Anaplasma phagocytophilum
(Alphaproteobacteria: Rickettsiales) is mainly transmitted by Ixodes spp. and the causative agent of
human and animal anaplasmosis and tick-borne fever in small ruminants (Severo et al., 2015).
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Recent developments in tick genomics have advanced research
using latest omics technologies for the characterization of tick-
host-pathogen interactions and the identification of candidate
protective antigens (de la Fuente et al., 2016¢,a, 2017; Gulia-Nuss
et al., 2016; Shaw et al., 2017; de la Fuente, 2018). Vaccinomics,
a holistic perspective based on the use of omics technologies
and bioinformatics in a systems biology approach for the
characterization of tick-host-pathogen molecular interactions is
our platform for the identification of candidate vaccine antigens
(de la Fuente and Merino, 2013; de la Fuente et al.,, 2016a,
2018; Contreras et al,, 2017). In this context, tick cell lines
constitute a valuable resource because it is a proven model for the
study of tick-pathogen and particularly tick-A. phagocytophilum
interactions, easy manipulation without animal experimentation,
and the fact that A. phagocytophilum infects mainly one cell type
in vertebrates (neutrophils) but multiple cell types in ticks better
resembled by these cell lines (Munderloh et al., 1994; Severo et al.,
2015; Villar et al., 2015; Bell-Sakyi et al., 2018).

The regulome (transcription factors-target genes interactions)
and interactome (protein-protein physical and functional
interactions) play a critical role in cell response to different
stimuli including pathogen infection. Both regulome and
interactome are implicated in transcriptional regulation, which
is one of the most fundamental mechanisms for controlling
the amount of protein produced by cells under different
environmental and physiological conditions and developmental
stages (Gronostajski et al., 2011; Vaquerizas et al., 2012; Shih
et al., 2016; Rioualen et al., 2017). Therefore, the application of
regulomics and interactomics to host/tick-pathogen interactions
would advance our understanding of these molecular interactions
and contribute to the identification of new control targets for
the prevention and control of tick infestations and tick-borne
diseases (de la Fuente et al., 2018; Artigas-Jerénimo et al,
2018a,b; Estrada-Peqia et al., 2018).

Few studies have addressed the role of the regulome or
regulon (part of the regulome including a set of genes that
share a common regulatory element binding site) in the
interaction between tick-borne pathogens and vertebrate hosts
(i.e., Bugrysheva et al., 2015; Boyle et al., 2019). However, limited
information is available on the role of tick regulome in response
to pathogen infection (Artigas-Jerénimo et al., 2018b).

In this study, we applied complementary in silico approaches
to modeling how A. phagoctophilum infection modulates tick
vector regulome, and the possibilities for the identification of
new control target antigens. This proof-of-concept research
provided new information on tick-pathogen interactions and
potential targets for developing interventions for the control of
tick infestations and pathogen infection.

MATERIALS AND METHODS

Datasets

The RNA sequencing (RNAseq) datasets of differential expression
of I scapularis transcription factors (TF) and target genes (TG)
in response to A. phagocytophilum infection was obtained from
previously published transcriptomics analyses in ISE6 cells, and

fed adult female midguts and salivary glands (Ayllon et al., 2015;
Villar et al, 2015). Gene ontology (GO) level-3 annotations
for biological processes (BP) were conducted using Blast2GO
software (version 3.0)' (Villar et al., 2014; Supplementary
Dataset 1). The RNAseq data is available at http://dx.doi.org/10.
5061/dryad.50kt0 and http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE68881.

Network Analysis of the Tick Regulome

in Response to Infection

A network of interactions followed by a co-correspondence
analysis (CoCA) was used for the integration of TF and
TG interactions (regulome) of I scapularis tick response
to A. phagocytophilum infection. The methodology to build
the network of interactions between proteins and functional
metabolic processes has been previously described and validated
(Estrada-Pena et al., 2018). This network consists of a set of nodes
that are connected by edges where nodes are the interacting items,
and links between nodes represent the strength with which they
interact. In this development, a TF or TG is the source node
and the cell metabolic process(es) in which it is involved are the
target(s). The edge linking both nodes has a weight, which is the
expression of either TF or TG. Networks were built separately for
infected and uninfected I. scapularis ISE6 cells, salivary glands
and midguts. Only TF and TG with GO functional annotations
were included in the networks (Supplementary Dataset 1).
Centrality is a fundamental property of a network because it
refers to nodes that connect high score nodes (Opsahl et al,
2010; Estrada-Pefa et al., 2018). In this context, “high score”
applies to other nodes with high importance in the network.
We calculated the importance of a node in the “traffic” between
different nodes of the network using Betweenness Centrality
(BNC), giving a higher score to a node that sits on many
shortest paths of other node pairs (Barthelemy, 2004; Estrada-
Pena et al., 2018). In our context, it is an indicator of the
relative importance of a TF/TG in the links between two or more
processes. Other calculated indexes included the PageRank (PR),
a measure of the importance of the nodes linking with a given
node, and the Weighted Degree (WD), which was calculated from
the expression profile of each TF/TG linking to a cell process
(Estrada-Pena et al., 2018).

The interactions between TF and TG were demonstrated
using CoCA. Only TF/TG with values of BNC or PR higher
than zero were included. We did the CoCA using the indexes
of centrality obtained from the network explained above. The
function “coca” of the package “cocorresp” was used for the R
programming environment (Simpson, 2016). Data on BNC, PR
and WD of each infected and uninfected datasets from ISE6
cells, salivary glands and midguts were entered into separate
CoCAs. The analysis aimed to relate two different datasets from
uninfected and infected samples to find patterns that are common
to both and associating the TF and TG that are close in the
reduced multivariate space and establishing correspondences.
The plotting of the scores in the two first axes of the reduced
space gives the interaction between TF and TG, i.e., the closer
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they are in the space, the higher is the expected interaction. The
method produces a cloud of interacting TF and TG. To improve
the resolution of the charts, we plotted only TF/TG that were at a
maximum of two score units of distance. We assumed that other
TG separated by more than 2 score units from the values of TF
were not interacting with these TF.

In silico Prediction of TF-TG Interactions
Putative DNA binding sites in TG for TF present only in
infected tick ISE6 cells were predicted based on published
information for TF-interacting sequences in other species,
and the I scapularis genomic scaffold whole genome shotgun
sequence using cisTargetX® and direct search for TF binding
sequences in the predicted 5 gene regulatory regions of the
I scapularis genome (Supplementary Dataset 2; Potier et al.,
2012; Rougemont and Naef, 2012; Vaquerizas et al., 2012).
The BP with higher representation in the upregulated than
in downregulated regulome (peptidase inhibitor and stress
response) in response to infection were selected for further
characterization of TF-TG interactions.

RNA Interference (RNAI) for Gene

Knockdown in Tick ISE6 Cells

The I scapularis ISE6 cells (provided by U.G. Munderloh,
University of Minnesota, United States) was maintained in L-
15B300 medium as described previously (Munderloh et al., 1994).
Four different TF (HSF, Ap-2, Arx and Hox; Supplementary
Dataset 2) were silenced using two siRNAs for each TF (HSF:
5" GCA CUC AGG GCC AGG AUU A 3’ and 5 CCU CGG
AAG CAG ACA GGA A 35 Ap-2: 5 AGA AAG AGG ACA
CGA AGA A 3 and 5 CCA AGA AAG AGG ACA CGA
A 3’5 Arx: 5 CCA AGA AAG AGG ACA CGA A 3’ and 5
GAC CGA AGC CAG AGU GCA A 35 Hox: 5 CCU CCA
GCU UCA ACA CAU A 3’ and 5 ACG CCA CGG CCG
AGC UUA A 3') provided by Dharmacon (GE Healthcare
Dharmacon Inc., Lafayette, CO, United States). As control, two
Rs86 siRNAs (5" CGG UAA AUG UCG AAG CAA A 3’ and 5
GCG AAU AUG AAG UCG GUA A 3’) were used. The siRNA
experiments were conducted by incubating ISE6 tick cells with
100 nM of each siRNA diluted in 100 pl of serum-free medium
in 24-well plates using four wells per treatment. To facilitate
siRNA transfection, DharmaFECT (GE Healthcare Dharmacon
Inc.) was used following manufacturer’s reccommendations. After
24 h, 0.5 ml/well of fresh medium was added. After 48 h of
siRNA exposure, medium containing siRNA was removed and
replaced with 1 ml fresh medium alone or containing cell free
A. phagocytophilum NY18 obtained as previously reported (de la
Fuente et al., 2005). Cells were incubated for a total of 72 h, and
then collected for DNA and RNA extraction.

Determination of Gene Knockdown and

TG mRNA Levels by RT-gPCR

Total RNA was extracted from ISE6 cells using All Prep
DNA/RNA/PROTEIN Mini Kit (Qiagen, Hilden, Germany)

Zhttps://omictools.com/cistargetx-tool

following manufacturer’s recommendations. Gene knockdown
levels after TF RNAi were assessed for TF and TG by RT-
qPCR on RNA samples using gene-specific oligonucleotide
primers (Supplementary Table 1), the Kapa SYBR Fast One-
Step RT-qPCR Kit (Kapa Biosystems, Roche Holding AG, Basel,
Switzerland), and the QIAGEN Rotor-Gene Real-Time PCR
Detection System (Qiagen). A dissociation curve was run at
the end of the reaction to ensure that only one amplicon was
formed and that the amplicons denatured consistently in the
same temperature range for every sample. The mRNA levels
were normalized against tick rps4 using the genNorm method
[Delta-Delta-Ct (ddCt) method] as described previously (Ayllon
et al., 2013). Normalized Ct values were compared between test
siRNAs-treated tick cells and controls treated with Rs86 siRNA
by Chi?-test (p = 0.05; n = 4 biological replicates).

Determination of A. phagocytophilum
DNA Levels by qPCR

Total DNA was extracted from infected cells using an All Prep
DNA/RNA/Protein Mini Kit (Qiagen, Hilden, Germany). DNA
samples were analyzed by qPCR using gene-specific primers for
A. phagocytophilum msp4 as previously described (Ayllon et al.,
2013). Normalized against tick rps4 Ct values were compared
between test siRNAs-treated tick cells and controls treated with
Rs86 siRNA by Chi2-test (p = 0.001; n = 2-4 biological replicates).

RESULTS AND DISCUSSION

Rationale and Experimental Design

The tick regulome in response to A. phagocytophilum
infection was characterized in the I scapularis tick vector
to provide insights into tissue-specific regulome profiles,
and the identification of potential targets for the control of
tick infestations and pathogen infection/transmission. The
experimental design included two independent methods
for the in silico characterization of the tick regulome in
response to A. phagocytophilum using transcriptomics data
previously obtained from infected I scapularis ISE6 cells,
and fed female midguts and salivary glands (Supplementary
Figure 1A). The first approach was based on a network
analysis in which the nodes were either TF or TG together
with their corresponding GO BP annotations, and the link
between two nodes represented the expression of the gene
(Supplementary Figure 1B). The indexes of centrality were
calculated separately for each network of uninfected and
infected samples, and only nodes of TF and TG with indexes
of centrality higher than zero were used for co-correspondence
CoCA analysis (Supplementary Figure 1B). The second
approach was used in parallel with network analysis, and
consisted in the in silico prediction of TF-TG interactions based
on described TF recognition sequences by searching in the
I scapularis genomic scaffold whole genome shotgun sequence
(Supplementary Figure 1C). This analysis was focused on TF
present only in infected ISE6 cells, and TG in BP overrepresented
in the upregulated than in the downregulated regulome in
response to infection as a proof-of-concept to facilitate the
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identification of candidate target antigens for development
of vaccines and other control measures. The results of the
network analysis were then plotted with TF and TG together
in the reduced space to demonstrate that the position of the
TF correlates with the TG that are near to these TF after the
CoCA (Supplementary Figure 1D). Finally, the results of
both approaches were compared, and the TF-TG interactions
predicted by both methods were functionally characterized by
RNAI in A. phagocytophilum-infected and uninfected tick ISE6
cells (Supplementary Figure 1E).

The I. scapularis Regulome Shows
Tissue-Specific Signatures in Response
to A. phagocytophilum Infection

For the construction of networks, a total of 144, 86, and 93
TF (Supplementary Dataset 3), and 5225, 3919, and 4341 TG
(Supplementary Dataset 4) were used derived from tick ISE6
cells, salivary glands and midguts, respectively. Tick midgut did
not show detectable differences in the network indexes of TF
BP between uninfected and infected samples (close to 100%
BNG; Figure 1A). However, the TF multicell development and
anatomical structure development processes increased to near
200% in infected versus uninfected ISE6 cells (Figure 1A). The
network centrality of all the TF processes showed a clear increase
in infected salivary glands when compared to unifected controls
(Figure 1A). The multicell development process was represented
in TF from ISE6 cells only (Figure 1A).

Other than minor variations in the network indexes of
the TF, each test showed different TF that were present or
absent in either uninfected or infected samples. Four TF were
detected only in uninfected ISE6 cells, and other 4 were recorded
only in infected ISE6 cells (Figure 1B). The most prominent
TF in ISE6 cells (ISCW01819) was completely inhibited in
infected ISE6 cells (Figure 1B). The pattern was more complex
in the salivary glands showing up to 17 TF recorded only
in infected, and 4 in uninfected samples (Figure 1C). Nine
TF were recorded only in uninfected and 8 only in infected
midgut (Figure 1D). As in ISE6 cells, the three most highly
represented TF in uninfected midgut were not recorded in
infected samples (Figure 1D). The number of TG detected
only in uninfected or infected samples varied from 197
(uninfected) to 206 (infected) ISE6 cells, 159 (uninfected) to
585 (infected) salivary glands, and 360 (uninfected) to 129
(infected) midgut.

Every detected TF that was unique for uninfected or infected
samples was included in CoCA. Based on the values of network
indexes of TG, 70 TG in uninfected and 88 TG in infected
ISE6 cells, 5 TG in uninfected and 58 TG in infected salivary
glands, and 43 TG in uninfected and 25 TG in infected midgut
were included in the analysis. The results from multivariate
analyses showed a clear correspondence between TF and TG
recorded only in uninfected or infected samples while the origin
of the first correspondence axis (value = 0) separated completely
TF and TG occurring only in either uninfected or infected
samples (Figures 2A-C and Supplementary Figures 2A-C).
These analyses suggested that the TF closer to individual TG are

likely to regulate the expression of these genes (Figures 2A-C and
Supplementary Figures 2A-C).

These results evidenced tissue-specific differences between
infected and uninfected cells, thus supporting previous
findings at the mRNA, protein and metabolic levels in
I scapularis ISE6 cells, a model for hemocytes, midgut and
salivary glands, which are involved in A. phagocytophilum
life cycle in the tick vector (Ayllon et al, 2015; Villar
et al, 2015; reviewed by de la Fuente et al, 2017). These
results evidenced that the regulome regulates various
BP involved in tick-A. phagocytophilum  interactions
(Figures 1A, 3A and Supplementary Dataset 2), a finding
previously reported in other organisms (Shih et al., 2016;
Casella et al., 2017).

A. phagocytophilum Modulates the Tick
Regulome to Upregulate Biological
Processes That Facilitate

Pathogen Infection

To complement the network analysis approach to tick
regulome study, the putative DNA binding sites were
characterized in silico for TF and TG in the upregulated
regulome in response to infection in tick vector ISE6 cells
(Figures 3A,B and Supplementary Dataset 2). In particular,
the peptidase inhibitor and stress response BP with higher
representation in the upregulated than in downregulated
regulome (Figure 3A) were selected for further characterization
of TF-TG interactions (Figure 3B).

The results showed a correlation between complementary
in silico approaches (Figure 4A), therefore providing support
for the network analysis of the regulome to predict at the
transcriptomics level the most significant TF-TG interactions in
response to stimuli such as pathogen infection.

To characterize the functional implications of selected TF-
TG interactions predicted by both methodological approaches
(Figures 3B, 4A), RNAi was used in ISE6 cells to knockdown
the expression of TF and characterize the effect on TG mRNA
and A. phagocytophilum DNA levels (Figures 4B-D). The results
showed that after 77-87% (average £ S.D., 81 £ 4%) TF
silencing (Figure 4B), the levels of all predicted TG except
for ISCW011771 and ISCW012363 decreased when compared
to Rs86 siRNA-treated controls (Figure 4C). The two TG that
were not downregulated after TF knockdown had the lowest
mRNA levels (Figure 4C), which could affect the possibility of
detecting differences between test and control cells. Alternatively,
other TF or interacting proteins could be involved in the
regulation of these genes. Nevertheless, except for ISCW011771
and ISCW012363 the results supported the prediction that these
TF are implicated in the regulation of TG. Nevertheless, these
TF-TG interactions should be corroborated in future experiments
using different in vitro protein-DNA binding assays (Yang, 1998;
Forde and McCutchen-Maloney, 2002; Deplancke and Gheldof,
2012; Ogawa and Biggin, 2012).

Regarding A. phagocytophilum infection, the results
showed a 96-97% decrease in pathogen DNA levels after
TF knockdown (Figure 4D). These results suggested that the TF

Frontiers in Physiology | www.frontiersin.org

April 2019 | Volume 10 | Article 462


https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Artigas-Jerénimo et al.

Control Targets in the Tick Regulome

250

200

Percent of change of Betweenness Centrality

W |SE6
m Salivary gland
B Midgut

= w %l w + -+ .‘LI -
=3 o ] ] @ ] o £ ] € £ £ S
= o Q Q0 o ) Q0 [« X Q o c o Q
a 2 I £ i< I} £ =} 2 2 & L2 i
c S S ® S °© L) ] © ] 3 [} 7}
g L = £ = € £ > € 3 5 2 =
= = o] ] =
has 0 o S o 8 o = = = 2 o
o | 5 ; s c 5 3 o 3 g @
g @ : g g 8 o S 8 5 £
) an b Qo 17y a 5 © =
" £ ' @ g 2 £ 3 2 e
5 2 @ 2 8 € %
8 8 £ 'S S g
S o 3 ® . =2
an
=% . E g
[ ©
=
©
B
TF BNC (u)| BNC (i) TF BNC (u) BNC (i) TF BNC (u) | BNC (i)
1ISCW006446 0.0 39.1 ISCW017832 0.0 99.0 ISCW019692 0.0 15.1
ISCW007820 0.0 19.7 ISCW011969 0.0 57.2 ISCW024501 0.0 92.0
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FIGURE 1 | Changes in the expression of TF in tick ISE6 cells, salivary gland and midgut in response to A. phagocytophilum infection. (A) The percentage change of
the index Betweenness Centrality (BNC) infection among uninfected and infected target organs in the 13 BP GO annotations. (B) Values of BNC of the 8 TF that
showed the highest changes between uninfected BNC (u) and infected BNC (i) ISE6 cells. (C) Values of BNC of the 21 TF that showed the highest changes between
uninfected BNC (u) and infected BNC (i) salivary glands. (D) Values of BNC of the 17 TF that showed the highest changes between uninfected BNC (u) and infected

BNC (i) midgut. Abbreviations: reg., regulation; (u), uninfected; (i), infected.
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FIGURE 2 | Co-correspondence analysis (CoCA) of TF and TG in uninfected and A. phagocytophilum-infected samples. CoCA was conducted in /. scapularis

(A) ISEG cells, (B) salivary glands and (C) midgut. The charts show the position of TF (black symbol and label) and TG (blue symbol and red label) after the CoCA of
the indexes of centrality. The TF and associated TG with highest values of centrality in the network of infected cells appear together at negative values of the Axis 1
(n=4, 4, and 9 in ISEB cells, salivary glands and midgut, respectively). The TF and the associated TG with highest values of centrality in the network of uninfected
cells appear together at positive values of the Axis 1 (n = 4, 17, and 8 in ISEB cells, salivary glands and midgut, respectively). High-resolution images are shown in

and corresponding TG are upregulated by A. phagocytophilum to
facilitate pathogen infection.

Characterization of TF and Upregulated
TG in Response to Infection as Putative

Control Targets

The TF implicated in the regulation of selected TG included
heat shock transcription factor (HSF), Ap-2, Aristaless-related
homeobox gene (Arx) and Hox (Figure 3B). These TF has
been described before to function in different transcriptionally
regulated processes in other species. The mammalian Ap-2 TF
has been shown to be involved in transcriptional activation
and DNA binding/dimerization (Williams and Tjian, 1991). The
HSF family has been implicated in the regulation of different
physiological processes including cell response to stress and
infection (Gomez-Pastor et al., 2018). Hox and Arx are members
of a family of essential developmental regulators that bind to

homeodomains target DNA sequences to regulate embryogenesis
and neuronal processes in different organisms (Pellerin et al.,
1994; Cho et al., 2012).

Few studies in other host-pathogen models have shown that
some of these TF facilitate pathogen infection and therefore has
been proposed as potential targets for control interventions. In
primary peripheral blood monocytes, HSF1 is upregulated by
human cytomegalovirus (HCMV) for pathogen survival, and
has been suggested as a potential control target (Peppenelli
et al, 2018). The tick-borne pathogen, Ehrlichia chaffeensis,
upregulates the expression of certain Hox genes to facilitate
infection through epigenetic mechanisms in human monocytic
leukemia cells (THP-1) (Mitra et al., 2018). However, the role
of these TF during pathogen infection in ticks has not been
investigated before.

The BP modulated by the regulome of selected TEF-
TG interactions with a putative role facilitating
A. phagocytophilum infection included peptidase inhibitor

in
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FIGURE 3 | Biological processes affected by the tick ISE6 cells regulome in response to A. phagocytophilum infection. (A) Upregulated and downregulated target
genes in the in silico predicted tick ISE6 cells regulome in response to A. phagocytophilum infection were grouped according to their BP. The BP with higher
representation in the upregulated than in downregulated regulome in response to infection (arrows) were selected for characterization of TF-TG interactions.
(B) Predicted regulatory DNA motifs according to regulatory factors identified by RNAseq in infected cells only and involved in the control of upregulated target genes
annotated in the peptidase inhibitor and stress response BP with higher representation in the upregulated than in downregulated regulome.

and stress response (Figure 3A and Supplementary Dataset 2).
The stress response upregulated TG included genes coding for
peroxinectin and uncharacterized protein with heme binding
and peroxidase activity (n = 2), and glutathione peroxidase
with glutathione peroxidase activity. The peptidase inhibitor
TG encoded for a carboxypeptidase inhibitor precursor with
carboxipeptidase and metalloendopeptidase inhibitor activity,
uncharacterized protein, Kunitz-type proteinase inhibitor 5
II, serpin-2 precursors and secreted salivary gland peptides
with serine-type endopeptidase inhibitor activity (n = 6), and
cystatin and salivary cystatin-L with cysteine-type endopeptidase
inhibitor activity (n = 2).

These proteins are involved in key physiological processes
during tick life cycle such as heme/iron metabolism and
detoxification and tick-host interactions (Chmelar et al., 2016;
de la Fuente et al, 2016a). Glutathione peroxidase belongs
to the glutathione antioxidant defense system and protects
eukaryotic cells from oxidative damage (Espinosa-Diez et al,
2015). Glutathione peroxidase levels and activity are affected
in different ways by Anaplasma marginale infection in both
vertebrate and tick cells (Reddy et al, 1988; More et al,
1989; Kalil et al., 2017; Esmaeilnejad et al., 2018). While the

activity and expression of glutathione peroxidase and other
components of the antioxidant system was lower in A. marginale-
infected cattle and water buffaloes (Reddy et al., 1988; More
et al., 1989; Esmaeilnejad et al., 2018), glutathione peroxidase
coding gene was upregulated in embryonic Rhipicephalus
microplus BME26 cells in response to A. marginale infection
(Kalil et al, 2017). These results showed that A. marginale
infection induces a differential response of the glutathione
antioxidant defense system in the vertebrate and tick hosts.
RNAi-mediated gene silencing of glutathione peroxidase and
other antioxidant defense system genes increased A. marginale
infection in BME26 cells, suggesting that the antioxidant
response mediated by this molecule might play a role in
the control of infection in ticks (Kalil et al., 2017). Another
of the identified tick TG, peroxinectin, is a cell adhesion
protein involved in melanization of pathogens in invertebrates
(Sritunyalucksana et al., 2001; Cerenius and Soderhill, 2004),
was upregulated in crayfish resistant to white spot syndrome
virus, and susceptible crayfish failed to upregulate this gene
in response to viral infection (Yi et al, 2017). Strong
cellular adhesion in response to the invading agent during
crustacean encapsulation defense reaction was proposed as a
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protective mechanism mediated by peroxinectin in infected
crayfish. The heme-binding lipoprotein (HELP), a transporter
of heme in ticks, was previously found to be upregulated and
downregulated in midguts and salivary glands, respectively, of
A. phagocytophilum-infected ticks (Villar et al., 2016). HELP,
together with Vitellogenin 1 and 2, was proposed to transport
heme to other tick tissues such as salivary glands (Hajdusek
et al., 2009). The uncharacterized protein with heme binding
activity identified in this study may have a function similar to
HELP, suggesting that A. phagocytophilum affects hemoglobin
primary cleavage and heme transport in tick midguts and
salivary glands, possibly to regulate the levels of heme in
a tissue-specific manner with potential effects for pathogen
and vector survival. The expression of Kunitz-type proteinase
inhibitors have been found to be modified in several tick
species in response to infection by tick-borne pathogens such
as Bartonella henselae (Liu et al., 2014), flavivirus (McNally

et al., 2012), Babesia bigemina (Antunes et al., 2012), and

A. marginale (Zivkovic et al, 2010). Kunitz peptides are
moonlighting proteins that perform multiple functions within
the feeding lesion (Schwarz et al., 2014). Upregulation of Kunitz
proteins in salivary glands of ticks infected with B. henselae
(Liu et al., 2014) and flavivirus (McNally et al, 2012) may
be associated with host immunity modulation at the feeding
site. In contrast to upregulation, it is less clear why Kunitz
peptides, including a Kunitz-type proteinase inhibitor 5, would
be dowregulated in salivary glands following A. marginale
infection (Zivkovic et al., 2010). Additional studies show that
the expression of Kunitz peptides is complex and may be
related to the tick and pathogen species (Rachinsky et al., 2007;
Antunes et al., 2012).

These preliminary evidences based on selected TF-TG
interactions support that the analysis of tick regulome in
response to different stimuli such as pathogen infection could
provide potential targets for the control of tick infestations and
pathogen infection/transmission. Furthermore, some of these
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protein families have been proposed as protective antigens using a
rational approach for the identification of tick vaccine protective
antigens (de la Fuente et al, 2016a). As recently proposed
(de la Fuente et al., 2018), the combination of regulomics with
intelligent Big Data analytic techniques may contribute to the
high throughput identification of candidate vaccine antigens.

CONCLUSION

Our modeling of the modulation of the tick regulome in response
to A. phagocytophilum infection provided new insights into the
mechanisms that target specific functions in different tick tissues.
These results supported the use of network analysis for the study
of regulome response to infection. Although general mechanisms
affected by A. phagocytophilum infection may be conserved even
between tick and human cells (de la Fuente et al., 2016b),
the effect of vector-pathogen co-evolution on pathogen isolates
adaptation to grow in tick cells (Alberdi et al., 2015) may result
in differences between isolates in the modulation of the tick cell
regulome. Future research should be directed at validating the
results of the network analysis for regulomics studies and the
characterization of TF-TG interactions. Deciphering the precise
nature of circuits that shape the tick regulome in response to
pathogen infection is an area of research that in the future will
advance our knowledge of tick-pathogen interactions, and the
identification of new targets for the control of tick infestations
and pathogen infection/transmission.
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