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Interests about the fine underpinnings of cardiovascular beat-by-beat variability have
historical roots. Over the last decades, various aspects of the relationships between
arterial pressure and heart period were taken as a proxy of the baroreflex in physiology
and medicine, stimulating the interest of investigators in several interconnected scientific
fields, in particular, bioengineering, neurophysiology, and clinical medicine. Studies of
the overall system facilitated the emergence of a simplified negative (vagal) feedback
model of the baroreflex and overshadowed the simultaneous interaction with excitatory,
sympathetic positive-feedback mechanisms that would, however, better suit the model
of a “paired antagonistic (parasympathetic/sympathetic) innervation of the internal
organs.” From the bioengineering side, the simplicity of obtaining the series of
subsequent RR intervals stimulated the analysis of beat-by-beat variations, providing
a multitude of heart rate variability (HRV) indices considered as proxies of the underlying
sympatho-vagal balance, and participating to the management of several important
clinical conditions, such as hypertension. In this context, advanced statistical methods,
used in an integrated manner and controlling for age and gender biases, might help shed
new light on the relationship between cardiac baroreflex, assessed by the frequency
domain index α, and the HRV indices with the varying of systolic arterial pressure (SAP)
levels. The focus is also on a novel unitary Autonomic Nervous System Index (ANSI) built
as a synthesis of HRV considering its three most informative proxies [RR, RR variance,
and the rest-stand difference in the normalized power of low-frequency (LF) variability
component]. Data from a relatively large set of healthy subjects (n = 1154) with a broad
range of SAP [from normal (nNt = 778) to elevated (nHt = 232)] show that, e.g., α and
ANSI significantly correlate overall (r = 0.523, p < 0.001), and that this correlation is
lower in hypertensives (r = 0.444, p < 0.001) and higher in pre-hypertensives (r = 0.618,
p < 0.001) than in normotensives (r = 0.5, p < 0.001). That suggests the existence of
curvilinear “umbrella” patterns that might better describe the effects of the SAP states on
the relationships between baroreflex and HRV. By a mix of robust, non-parametric and
resampling statistical techniques, we give empirical support to this study hypothesis
and show that the pre-hypertensive group results at the apex/bottom in most of the
studied trends.

Keywords: neural control, non-parametric bootstrap, non-parametric inference, patterned alternatives,
physiopathology, sympathetic activity, vagal activity, Winsorized correlation coefficient
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INTRODUCTION

Since seminal studies by Sayers (1973) and Akselrod et al.
(1981) a few decades ago it became clear that beat-by-
beat oscillations in RR interval [usually alluded to as heart
rate variability (HRV; Task Force of the European Society
of Cardiology and the North American Society of Pacing,
and Electrophysiology, 1996)] contain hidden information
on underlying neural control mechanisms, based on the
instantaneous balance between parasympathetic and sympathetic
(inhibitory, excitatory) mechanisms (Malliani et al., 1991).
Slowly initially, and faster subsequently, the increasing number
of studies, now surpassing 23,000 in the Medline database,
witness beyond doubt the growing interest on HRV as a de
facto standard.

Even a simple cursory look at available literature, it appears
that HRV may spark interest for different reasons, i.e., biological
and technical, alone or combined, risking to favor debates about
semantics rather than substance (Brown, 2017):

(1) First of all semantics: HRV (i.e., variability of heart
rate computed as the number of beats/time in minutes)
is frequently used interchangeably with RR V (i.e.,
variability of RR interval, in ms). RR V is taken as a
proxy of PP interval (with some imprecision; Takahashi
et al., 2016), and considered dependent of the dynamical
interaction between the efferent vagal and sympathetic
firing, combined with the humoral milieu and genetic
substratum (D’Souza et al., 2014).

(2) HRV may be conceived as a proxy of the powerful
beat-by-beat neural regulation of cardiovascular system
in health and disease, providing a simple, non-invasive,
means to estimate the changing equilibrium of the “paired
antagonistic innervation” (Hess, 2014) (sympathetic
and parasympathetic) governing RR interval. Contrary
to historical considerations that “all autonomic nerves
[are] motor” (Langley, 1921), evidence suggests that
cardiac innervation can be represented by a dual pathway
(sympathetic and parasympathetic) (Malliani et al., 1991)
made up of mixed (efferent, i.e., motor, and afferent, i.e.,
sensory) nerves, subserving negative (mostly vagal) and
positive (essentially sympathetic – Pagani et al., 1982;
Malliani and Montano, 2002) feedback reflexes. Central
structures (such as the recently highlighted Central
Autonomic Network – Benarroch, 1993) coordinate
and govern a number of nuclei exiting in a continuous
flow of inhibitory and excitatory activity regulating the
(sympatho-vagal) balance, hence eventually determining
hemodynamic performance. Accordingly, any given
setting of peripheral demands corresponds to a parallel
distribution of arterial pressures and flows throughout the
peripheral circulation. In physiological conditions at rest
vagal activity prevails over sympathetic activity (White and
Raven, 2014), approximately 4:1, and during activation,
such as with exercise, the relationship is reversed,
but even at maximal stimulation some level of vagal
activity remains.

(3) HRV may be treated within a bioengineering ontology
(Task Force of the European Society of Cardiology and the
North American Society of Pacing, and Electrophysiology,
1996), considering the variability signal and various
modalities of its management. Accordingly, mathematical
manipulations may help define best ways to extract
information (Haken, 1983) on the relative inhibitory and
excitatory drives to the SA node, but also as a more
subtle indicator of the underlying balance between positive
and negative feedback circuits. Modeling and computing
should not, however, be overemphasized against more
attention and clinical sense (Karemaker, 1997) as suggested
by a series of recent and older reviews and debates (e.g.,
Eckberg, 1997; Malliani et al., 1998; Paton et al., 2005;
Billman, 2013; Pagani et al., 2018).

(4) In this context, advanced statistical analysis approaches
combining non-parametric, robust, and resampling
techniques might prove helpful to provide practical tools
(e.g., graphical analysis) for easier clinical applications,
or to extract unexpected relationships between variables
(Lucini et al., 2018). Concurrently since initial studies,
it was clear that the proxies of autonomic regulation
were carrying different types of encoded information.
For instance, limiting our considerations to a linear
ontology, years ago we explored the use of a synthetic
descriptor of the sympatho-vagal balance employing
the numerical ratio between low frequency (LF) and
high frequency (HF) components detected with spectral
analysis of the RR variability signal (Pagani et al., 1986).
Subsequently, it was also clear that amplitude (such as
HRV) and frequency coding (particularly well represented
by LF and HF in normalized units) provide different
types of information (Pagani and Malliani, 2000). As
suggested by electroneurographic recordings (Schwartz
et al., 1973) and complex multivariate statistics (Lucini
et al., 2018), amplitude and frequency codes should both
be considered in the modeling of RR V. In this way, it is
possible to reduce the number of significant proxies and
minimize redundancy.

(5) Recently, we applied factor analysis in order to reduce
the large number of indices that are provided by spectral
analysis of RR V and found that the major part of
information (82.7%) embedded in RR V is carried by
three clusters of indices of homogeneous meaning (Sala
et al., 2017). Factor loadings suggest the following clusters:
normalized autonomic indices, absolute indices, and
heart period. The introduction of a unitary Autonomic
Nervous System Index (ANSI) may provide a way of
further reducing information proxies (Sala et al., 2017).
Notably this finding, as with all new findings, should be
treated with caution.

From a clinical perspective, it is crucial to recall that HRV
(particularly its time domain proxies) provides sensitive markers
of prognosis in several conditions, particularly in coronary
artery disease, predicting mortality in post-myocardial infarction
(Huikuri and Stein, 2013).
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Indeed the potential importance of assessing the short-term
baroreflex control of heart rate/heart period as a means to
describe clinical conditions was well established since several
decades ago for hypertension (Bristow et al., 1969), heart
failure (Eckberg et al., 1971), in addition to a strong predictive
capacity for post-myocardial infarction mortality (La Rovere
et al., 1998), even in animals (Billman et al., 1982). Implicitly
these findings support the view of an integrated complex two-
way (afferent/efferent) neural substratum of visceral regulation,
at variance with the traditional efferent only view proposed
by Langley (1921). It should also be considered that explicit
acceptance of a mixed neural model of the autonomic
(!) innervation could clear large fraction of the existing
inconsistencies about HRV interpretation. This aspect is beyond
the aim of the present study.

In the light of the above, here we aim to assess whether the
application of advanced statistical tools, used in an integrated
manner, might help unravel novel aspects of the (bivariate)
relationships between the cardiac baroreflex and the autonomic
indices (or proxies or measures) from RR V and arterial pressure
variability, as initially exemplified by simple correlation. Data
from a relatively large set of healthy subjects with a broad
range of systolic arterial pressure (SAP, from normal to elevated)
show that, in general, the frequency domain index α and the
ANS proxies have significant (positive or negative) correlations.
Accordingly, by a statistical data-driven approach, instead of
model-based, we investigate, first, how cardiac baroreflex, as
reflected by the α index, and ANS proxies [inclusive of ANSI
(Sala et al., 2017)] match. We then assess how SAP levels affect
these relationships, according to the study hypothesis that non-
normotensive states could induce changes in the strength and
significance of this kind of relationships.

We focus specifically on the role of SAP. Although arterial
pressure values describe a continuum in the population, arterial
hypertension definitions contemplate categories based on both
systolic and diastolic thresholds, with slightly different values
according to specific guidelines (Muntner et al., 2018). In
this context, it is well recognized that SAP lowering (SPRINT
Research Group, 2015) may be more important than diastolic
blood pressure as an independent predictor of cardiovascular risk
(Mourad, 2008). Systolic blood pressure also enjoys a specific role
in hypertension treatment, whereby intensive lowering provides
additional clinical benefit, as shown by the SPRINT Research
Group (2015).

We express, from a statistical point of view, the effects of
the three SAP categories (normotensive, pre-hypertensive, and
hypertensive states) on the bivariate relationships between the
α index and the ANS proxies as specific patterns of trends, i.e.,
increasing or decreasing trend as well as the so-called “umbrella”
trend, which consists of concave- or convex-shape effects. To
assess such effects and overcome several drawbacks inherent in
the data under analysis (i.e., spurious age and gender effects,
presence of subjects with outlying characteristics, improperness
of the usual normality assumption), we carry out statistical
analyses by combining a series of methods. Preliminarily, we
set up so-called adjusted variables, i.e., the α index and the
ANS proxies statistically transformed to be free of age and

gender effects, in order to prevent results and conclusions of
the study from potential biases caused by personal data not
directly comparable (Lucini et al., 2018). On the other hand,
ANSI being already free of age and gender effects by construction
(Sala et al., 2017) requires no further transformation. Then,
we use a robust measure of correlation computed with the
Winsorizing method (Wilcox, 2012) in order to avoid potential
influence of outlying subjects on the evaluation of the strength
of the linear relationships under study. After that, we apply
non-parametric statistical inference procedures (Hollander et al.,
2014) on the Winsorized correlation (WINcorr) coefficients
between the adjusted α index and adjusted ANS proxies plus
ANSI to detect the presence of the hypothesized patterned
effects without introducing any normality assumption. Finally,
we perform all the statistical analyses in a resampling perspective
according to the non-parametric bootstrap procedure (Davison
and Hinkley, 1997) in order to give a more general value to
the conclusions drawn. Results are displayed through convenient
graphical tools that aim at providing valuable insights into the
examined trends.

MATERIALS AND METHODS

Data for this observational, cross-sectional study, which is part of
an ongoing series of investigations, focus on the use of autonomic
indices in cardiovascular prevention. They refer to a population
of 1154 ambulant subjects, who visited our outpatient Exercise
Medicine Clinic for reasons varying from a health check-up to
cardiovascular prevention (Lucini and Pagani, 2012) for chronic
conditions, inclusive of hypertension (considering untreated,
non-smokers individuals within the 17–86 years age range). The
protocol of the study followed the principles of the Declaration
of Helsinki and Title 45, US Code of Federal Regulations,
Part 46, Protection of Human Subjects, Revised 13 November
2001, effective 13 December 2001. The project was approved
by the Independent Ethics Committee of IRCCS Humanitas
Clinical Institute (Rozzano, Italy). All subjects provided informed
consent to participate.

Autonomic Evaluation
Our approach to the non-invasive evaluation of autonomic
regulation has recently been summarized (Lucini et al., 2018). In
brief, ECG, non-invasive (Finometer, TNO, Netherlands) arterial
pressure and respiratory activity (piezoelectric belt, Marazza,
Italy) are acquired on a PC. Beat-by-beat data series of 5 min
rest followed by 5 min upright data are analyzed off-line with
dedicated software (Badilini et al., 2005). As described previously
(Pagani et al., 1986), from the autoregressive spectral analysis of
RR interval and arterial pressure variability, a series of indices
indirectly reflecting cardiovascular autonomic modulation is
derived (Table 1). The software tool (Badilini et al., 2005) labels
spectral components with a center frequency of 0.03–0.14 Hz
as LF, and components within the range 0.15–0.35 Hz as HF,
verifying the existence of an elevated coherence between RR
variability and respiration. In addition, recordings of
subjects with arrhythmias or LF breathing are discarded
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TABLE 1 | Definition of the variables (ANS proxies plus ANSI) employed in
the studya.

Vars.b Units Definition

HR beat/min Heart rate

RR Mean ms Average of RR interval from tachogram

RR TP ms2 RR variance from tachogram

RR LFa ms2 Absolute power (a) of LF component of RR variability (V)

RR HFa ms2 Absolute power (a) of HF component of RRV

RR LFnu nu Normalized power (nu) of LF component of RRV

RR HFnu nu Normalized power (nu) of HF component of RRV

RR LF/HF – Ratio between absolute values of LF and HF

1RRLFnu nu Difference in LF power in nu between stand and rest

α index ms/mmHg Frequency domain measure of baroreflex gain

SAP mmHg SAP by sphygmomanometer

DAP mmHg Diastolic arterial pressure by sphygmomanometer

SAP Mean mmHg Average of systogram (i.e., SAP variability by Finometer)

SAP LFa mmHg2 Absolute power of LF component of systogram

ANSIc Composite index of Autonomic Nervous System
computed as a synthesis of RR Mean, RR TP, and
1RR LFnu

aModified from Lucini et al. (2018). bLF components are comprised within the limits
0.03–0.14 Hz; HF components are comprised within the limits 0.14–0.45 Hz. Nu is
obtained as P(f)nu = [P(f)/(RR TP−VLF)] ∗ 100, where P is the component power,
f corresponds to either LF or HF, and VLF indicates the power of the very LF (0–
0.03 Hz) component. α index = average of the square root of the ratio between
RR interval and SA pressure spectral powers of the LF and HF components.
cMore detailed definition in Sala et al. (2017). In brief, ANSI is computed in three
stages: (1) to let the proxies be comparable in terms of magnitude, scale, and
unit of measurement, and free them from age and gender effects, the percentile
rank transformation is applied to RR Mean, RR TP, and 1RRLFnu within each
combination of gender and classes of age (Table 3); (2) an individual radar plot
is built for each subject using the values of the transformed RR Mean, RR TP, and
1RR LFnu. Each plot then contains a triangle with side lengths in the [0, 100]
range; (3) the final ANS indicator is computed as the area of the triangles, which is
subsequently transformed by percentile ranks over all the set of subjects. Ranging
from 0 to 100 by construction, ANSI has an immediate clinical interpretation: the
higher the value of ANSI, the better the individual autonomic condition, and vice
versa, the lower the value, the worse the autonomic condition.

(Lucini et al., 2017). The gain of cardiac baroreflex is also
assessed by a bivariate method (α index = average of the square
root of the ratio between RR interval and SA Pressure Spectral
powers of the LF and HF components; Pagani et al., 1988).
Finally, a unitary autonomic system index (ANSI) is derived
from the three HRV most informative measures (RR, RR total
power, and stand-rest difference of LFRR in normalized units),

as described in Sala et al. (2017). ANSI is treated as a percent
ranked unitary proxy of cardiac autonomic regulation, by
design free of age and gender bias. It should be pointed out that
there is a still ongoing debate regarding the interpretation of
individual autonomic indices, in particular LF/HF as markers
of the sympathovagal balance (Billman, 2013). Of probably
greater importance is the alternative view of the sympathetics
and the vagi as functioning in a purely efferent system (Langley,
1921) or a sympatho-vagal dual feedback (negative and positive)
organization. A summary of these aspects has recently been
published (Pagani et al., 2018).

Statistics
Participants to the study, amounting to 1154 in all, were divided
into the three SAP groups: normotensive (Nt), pre-hypertensive
(preHt), and hypertensive (Ht), according to the definition
reported in Table 2 (second column). The majority of individuals
fell into the Nt group (67.4%), while the others into the Ht
(20.1%) and preHt (12.5%) groups, respectively. We introduced
the further subdivision of the Nt and Ht groups in the SAP
intervals indicated in the last column of Table 2 in order
to better meet the aims of statistical analyses, as will be
described soon after.

We inspected potential links between baroreflex gain and HRV
using the set of the 14 ANS measures listed in Table 1, which we
treated as proxies of cardiovascular autonomic modulation and
SAP variability. We included, as well, ANSI, which is a composite
index of ANS set up such that it is free of age and gender effects
(Sala et al., 2017, and legend below Table 1). Controlling for age
and gender effects was one of the main problems with which
we had to cope. Age and gender are biological parameters that
inevitably affect the ANS proxies and the composition of the three
SAP groups, this latter shown in Table 3 within the combinations
of gender and classes of age. For instance, almost 84% of Nt
subjects are individuals with less than or equal to 49 years of
age in both female (55.98% out of 1154) and male (44.02% out
of 1154) groups. In the preHt group, this percentage reduces to
64.3% within females and 62.5% within males, while in the Ht
group to 35.3% within females and 56.9% within males.

For the same arguments extensively discussed in Lucini et al.
(2018), and with the same methodology therein presented, we
accomplished the comparability among the SAP groups by
statistically transforming the original ANS proxies in such a

TABLE 2 | Frequency and percentage distributions of the participants to the study within the three SAP groups and further subdivision in seven SAP intervals.

SAP groups Definitiona Count Percentage Further subdivision in SAP intervalsb

Normotensive (Nt) Subjects with SAP < 130 mmHg 778 67.4% Nt1 [80,100): 84 subjs (7.3%)
Nt2 [100,110): 158 subjs (13.7%)
Nt3 [110,120): 282 subjs (24.4%)
Nt4 [120,130): 254 subjs (22.0%)

Pre-hypertensive (preHt) Subjects with 130 ≤ SAP < 140 mmHg 144 12.5% preHt [130,140): 144 subjs (12.5%)

Hypertensive (Ht) Subjects with SAP ≥ 140 mmHg 232 20.1% Ht1 [140,160): 167 subjs (14.5%)
Ht2 [160,220]: 65 subjs (5.6%)

Total 1154 100.0%

aRecalculated from Muntner et al. (2018). bFor Nt and Ht groups only.
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TABLE 3 | Distribution of the 1154 participants to the study by gender and
classes of age within the three SAP groups.

Gender SAP groups Total

Nt preHt Ht

Female Age in
class

17–30 Count 204 8 4 216

% 41.8 14.3 3.9 33.4

31–49 Count 204 28 32 264

% 41.8 50.0 31.4 40.9

50–86 Count 80 20 66 166

% 16.4 35.7 64.7 25.7

Total Count 488 56 102 646

% 100.0 100.0 100.0 100.0

Male Age in
class

17–30 Count 124 17 14 155

% 42.8 19.3 10.8 30.5

31–49 Count 118 38 60 216

% 40.7 43.2 46.1 42.5

50–86 Count 48 33 56 137

% 16.5 37.5 43.1 27.0

Total Count 290 88 130 508

% 100.0 100.0 100.0 100.0

way they were free of age and gender effects. In short, we
fitted a two-way full ANOVA model for each ANS proxy
regarded as the dependent variable, and classes of age and gender
as the independent variables through their main effects and
interaction. Because not affected by age and gender, the resulting
ANOVA residuals (given for each proxy by the difference between
observed and predicted values) were referred to as adjusted ANS
proxies, and accordingly used in place of the original ANS proxies
in all the subsequent statistical analyses.

Following Lucini et al. (2002), our study hypothesis was that
potential connections, observed over the total set of subjects,
between the baroreflex gain (as measured by the α index) and
the other ANS proxies could differ in strength, direction, or
statistical significance depending on the SAP group. Focusing
specifically on the linear relation (or correlation) between the α

index and the other variables listed in Table 1, we were interested
in assessing whether the preHt group could represent a sort of
transition state from Nt to Ht group in which the correlations
between the α index and the other ANS proxies plus ANSI could
even strengthen. This research question mostly arose from our
experience in analyzing this type data, where frequently we had
observed non-monotonic (or curvilinear) effects of SAP groups
on the correlations involving the α index.

As a preliminary analysis illustrating the main idea, Figure 1
reports the scatter plots of the original ANS proxies and ANSI
against the α index set up over the entire set of subjects,
while these same graphs related to the three SAP groups are
in the Supplementary Material. For each bivariate comparison
involving the α index, Pearson correlation coefficients r and
the p-values, obtained by the usual procedure based on the
standardized normal distribution for testing the null hypothesis
H0: ρ = 0 against the alternative H1: ρ 6= 0 (at the 0.05
nominal level), are reported above each panel. All the correlation

coefficients result significantly different to zero; nevertheless, as
expected, they have different magnitude and sign. For example,
the correlation coefficients of α and RR TP (r = 0.653, p < 0.001),
and α and ANSI (r = 0.523, p < 0.001), both denote at least
medium positive linear relations, while a more moderate negative
correlation is observed between α and SAP Mean (r = −0.414,
p < 0.001) and a weaker negative correlation between α and
RR LFHF (r = −0.202, p < 0.001). Nonetheless, by performing
the same kind of analysis within each SAP group, we observed
that the correlations involving α might strengthen or weaken
depending on the SAP groups (Supplementary Figures S1–S3
in Supplementary Material). For example, there is a medium
correlation of α and ANSI overall (r = 0.523, p < 0.001) as well
as in the Nt group (r = 0.5, p < 0.001), but the correlation tends
to weaken in the Ht group (r = 0.444, p < 0.001) and strengthens
in the preHt group (r = 0.618, p< 0.001). Again, the correlation of
α and RR LFnu is weakly negative overall (r =−0.281, p < 0.001)
and in the Nt group (r = −0.261, p < 0.001), but it is not
significantly different from zero in the Ht group (r = −0.033,
p < 0.538). All that seems then to evidence the presence of either
monotonic- or curvilinear-type effects of the SAP groups on the
correlations between the α index and the other variables.

The analyses performed such as in Figure 1 also opened
us a critical viewpoint concerning the choice of the statistical
methodology to apply. Most importantly, that kind of inspection
suffers from several weakness points. First, as already observed,
the original ANS proxies are affected by age and gender effects,
so that a more cautionary approach would require to deal with
the adjusted ANS proxies (while ANSI is already free of such
effects). Second, a few anomalous values appear as isolated
points in the scatter plots. These correspond to subjects having
outlying characteristics on several (but not all) measures. That
is a typical situation that might occur with data collected from
autoregressive spectral analysis of RR variability. As known in
the statistical literature, the Pearson correlation coefficient is
extremely sensitive to the presence of outliers. Accordingly, one
recommendation is to carry out statistical analyses by using
alternative strategies. We overcame this problem by relying on
robust statistical measures (Wilcox, 2012) instead of removing
outlying subjects from the set of data because in this second case
the total amount of the available information would have been
reduced. Third, to give a more general value to the conclusions
drawn on the dataset at hand, it would have been more fitting to
replicate the study on additional sets of data, or alternatively, on a
much broader set of data suitable to be split, e.g., at random, into
a series of subsets on which replicating the analyses separately.
Since the whole available dataset was large enough to meet our
analysis objectives, but not large enough to be split into subsets,
we decided to turn to statistical resampling techniques, such as
the bootstrap (Efron, 1982; Davison and Hinkley, 1997). Finally,
we preferred not to apply the classical inferential procedures
based on the normality assumption, which could have been too
much restrictive in our case, and carry out, instead, the analyses
by a purely non-parametric approach (Hollander et al., 2014).

In the light of the above issues, correlations between the α

index and the other variables listed in Table 1 were inspected
both over the whole set of subjects and within the SAP groups by
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FIGURE 1 | Scatter plots of the α index against the ANS proxies and ANSI over the whole set of subjects. The Pearson correlation coefficient r between the α index
and each of the other ANS proxies plus ANSI is written above each panel, together with the p-value of the standard procedure for testing: H0: ρ = 0 against H1:
ρ 6= 0. In each panel, the regression line (with parameters estimated by the ordinary least-squares method) is depicted in red. It is worth stressing that these
regression lines are used only as graphical references for better visualization of the spread of the point clouds, i.e., the α index is not regarded as the dependent
variable of a regression model.

using the ANS proxies adjusted for age and gender effects and the
following statistical methods (for which further methodological
details are given in Figure 2):

(1) As a robust measure of correlation, we used the γ-WINcorr
coefficient (Wilcox, 2012), with a proportion γ equal to
0.1. Winsorization consists of estimating the means, the
variances, and the covariance involved in the Pearson
correlation coefficient formula of two generic variables X1
and X2 by, first, computing their γ-th and (1 – γ)-th order
quantiles and then replacing the first proportion γ and the
last proportion 1 – γ of their values with these estimated
quantiles. In such a way, two Winsorized distributions are
obtained for X1 and X2 to which the Pearson correlation
formula is applied (Wilcox, 2012);

(2) having decided to introduce no assumption for the data
distribution, as a resampling technique we applied the
non-parametric stratified balanced bootstrap to generate
B = 5000 bootstrap replicates from the original data, i.e.,

5000 new datasets each of size equal to n = 1154 subjects
with p = 16 variables (the adjusted ANS proxies plus ANSI,
and the classification variable given by the SAP group
membership), which were set up such that:

(a) by balancing, over the whole set of the nB bootstrap
observations generated, the same subject was randomly
sampled (with repetition) for exactly B times, but
he/she might not be present in each of the B bootstrap
replicates or might be present twice or more in any
bootstrap replicate. In such a way, simulation errors
were reduced considerably in comparison with the
ordinary bootstrap procedure (Davison et al., 1986);

(b) by stratification, in each of the B bootstrap replicates we
reproduced the structure of the original data concerning
the classification of subjects into the SAP groups. We
had no reasonable indication for assuming a weighting
schema different from the percentages computed on the
original data (Table 2, fourth column). However, we had
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FIGURE 2 | The bootstrap algorithm and the statistical methodology for non-parametric inference.

to take into account that especially the Nt group had an
internal considerably heterogeneous composition [i.e.,
SAP ranges from 80 to 130 mmHg (excl.)] as well as the
size of the three SAP groups was strongly unbalanced.
Accordingly, to prevent potential distortions caused
by the heterogeneous within-groups compositions and
the different size of the SAP groups, we applied the
bootstrap by stratifying within the SAP intervals defined
in the last column of Table 2. Such intervals represent a
further subdivision of the Nt and Ht groups into sub-
groups of a more similar (though not equal) size that
are internally more SAP homogeneous. Each bootstrap
replicate was therefore randomly generated to contain
n = 1154 (not necessarily distinct) subjects falling into
the SAP intervals in the same percentages as those
reported in the last column of Table 2.

The adjusted ANS proxies and ANSI were recomputed
on each of the B = 5000 bootstrap replicates obtained. In
its turn, the WINcorr coefficient was computed on each
replicate and for every comparison between the adjusted α

index and the other ANS proxies plus ANSI, both over the
whole set of subjects and within the SAP groups. In such

a way, we obtained 5000 values of the WINcorr coefficient
(i.e., a bootstrap distribution) for each type of examination
and each pairwise comparison involving the α index. As a
synthesis of the multitude of these bootstrap distributions,
we used the median rather than the mean for reducing
the influence of potential anomalous values on subsequent
analysis results;

(3) non-parametric inference was drawn, both on the overall
set of subjects and within the SAP groups, on the medians
of the bootstrap WINcorr coefficients according to the
following three approaches:

(a) with the aim of providing plausible ranges of variation
for every correlation coefficient involving the α index,
non-parametric 95% bootstrap confidence intervals
were computed through the BCa (i.e., “bias-corrected
and accelerated” intervals, given as adjusted bootstrap
percentiles) method (DiCiccio and Efron, 1996; Davison
and Hinkley, 1997);

(b) to test the null hypothesis of zero correlation coefficients
of the α index and the other variables, a bootstrap
permutation test (Hall and Wilson, 1991; Davison
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and Hinkley, 1997) was applied at the 0.05 nominal
significance level;

(c) in line with the study hypothesis above described,
we applied the Hettmansperger–Norton trend test
(Hettmansperger and Norton, 1987) to verify the
hypothesis, at the 0.05 nominal significance level, of no
effect of the SAP groups on the correlation coefficients
concerning the α index against the following two sets of
patterned alternatives (explicitly presented in Figure 2):

(i) the SAP groups have increasing/decreasing effects on
the strength of the correlations (so-called monotonic
ordered alternatives, similar to linear contrasts);

(ii) the SAP groups have concave- or convex-shape
effects on the strength of the correlations (so-
called umbrella alternatives, similar to quadratic or
curvilinear contrasts).

With the aim of simplifying the interpretations, we will present
most of the findings obtained by the bootstrap procedure and the
non-parametric inference through a synoptic figure and several
graphs, such as the correlation plot and the ridgeline plot. In
particular, this last graph turned out to be a powerful tool for
visualization of the SAP group effects and their trend patterns,
consistently with the Hettmansperger–Norton procedure.

All the statistical analyses and the pertaining routine codes
were implemented in the R software, version 3.5.1 (R Core
Team, 2018), along with the R libraries: “boot” for the bootstrap
(Canty and Ripley, 2017); “corrplot” for the correlation plot in
Figure 4 (Wei and Simko, 2017); “ggplot2” (Wickham, 2016)
and “ggridges” (Wilke, 2018) for the ridgeline plots in Figure 6;
“pseudorank” for the Hettmansperger–Norton test (Happ et al.,
2018); and “WRS2” for computation of the WINcorr coefficients
(Mair and Wilcox, 2018).

RESULTS

Descriptive data concerning the original ANS proxies and ANSI
are given in Table 4 as means and standard deviations computed
over the whole set of subjects and within the three SAP groups.
A further inspection based on the box plots of the distributions
of the (both original and adjusted) ANS proxies and ANSI within
the SAP groups is reported in SM. As expected, RR Mean, RR
TP, RR LFa, RR HFa, RR HFnu, 1RR LFnu, and the α index
present the highest mean values in the Nt group and the smallest
ones in the Ht group. On the other hand, HR, SAP, DAP, SAP
Mean, and SAP LFa have the highest mean values in the Ht group,
and the smallest ones in the Nt group. The preHt group has the
largest mean values for RR LFnu and RR LF/HF, and the Nt group
the smallest ones. Regarding ANSI, it is worth observing that its
mean values decrease from the Nt group to the Ht group, thus
proving its sensitivity to the different ANS states observed under
the various SAP conditions.

Regarding the bootstrap analysis, Figure 3 displays panels
of box plots of the within-groups bootstrap distributions of
the WINcorr coefficients (with γ = 0.1) computed for every
pairwise comparison involving the adjusted α index with the

other adjusted ANS proxies along with ANSI (Figure 2). At a first
insight, the umbrella pattern appears in its entire evidence in line
with our study hypothesis, especially in some of the panels. For
example, in the first panel concerning the WINcorr coefficient
between the adjusted α and HR, it can be seen a convex effect
of the SAP condition on the strength of the negative correlation,
i.e., the negative linear relationship between α and HR (the higher
the HR values, the smaller the α values) tends to strengthen in the
preHt group. On the other hand, in the last panel concerning the
WINcorr coefficient between the adjusted α and ANSI, a concave
effect can be clearly seen, i.e., the positive linear relationship
between α and ANSI (the higher the ANSI values, the higher the
α values) tends to strengthen, once again, in the preHt group.

The bootstrap within-groups WINcorr distributions in
Figure 3 are used, through their medians, as empirical support
to draw non-parametric inference. As a first result, Table 5
shows plausible ranges of variations, set up for both the
whole set of subjects and the SAP groups, of the correlation
coefficients between the adjusted α index and the other variables.
These ranges are given by the non-parametric 95% bootstrap
confidence intervals computed using the medians of the WINcorr
coefficients. Pearson correlation coefficients of the adjusted
variables computed on the original dataset are as well reported
(second column, Table 5). Moreover, the cells in the first three
columns of Table 5 are differently depicted according to the
strength and sign of correlations (legend below Table 5). Several
remarks are worth making. First, overall the medians of the
WINcorr coefficients prove to be similar in both magnitude and
sign to the Pearson correlation coefficients. No substantial change
of interval of strength is then observed. However, winsorization
has resulted in coefficients that are all, in the Nt group, or nearly
all, in the whole set, slightly higher than the Pearson coefficients,
while, on the other hand, in the preHt and Ht groups there is
a mix of situations (i.e., some are higher, and some others are
smaller than the Pearson coefficients). Moreover, by the figure
reported in the legend of Table 5, it can be seen that winsorization
has led, above all, to higher correlation coefficients (roughly+0.2)
between α and RR LFa as well as RR HFa (in the preHt group
especially), and to lower coefficients (nearly −0.1) between α

and RR LF/HF as well as SAP LFa. Second, although the sign of
both Pearson and WINcorr coefficients does not change across
the groups, it is the magnitude that changes, especially moving
from the Nt group to the Ht group. Regarding, in particular, the
HRV measures RR LFnu, RR HFnu, RR LF/HF, 1RR LFnu, along
with SAP, DAP, SAP Mean, and SAP LFa, the strength of the
linear relations with the α index reduces in the Ht group. Third,
the bootstrap confidence intervals present fairly small widths in
the whole set of subjects (0.096 on average) as well as in the Nt
group (0.121 on average), thus suggesting that the strength of
correlation in the various comparisons is appraised with high
stability. On the other hand, the confidence intervals result wider
in the preHt (0.270 on average) and Ht groups (0.240 on average),
thus reflecting a greater internal heterogeneity of these two
groups that is bolstered by their smaller sizes than the Nt group.

Figure 4 displays the correlation plot of the medians of the
WINcorr coefficients, computed over the whole set of subjects
and within the SAP groups, along with the results of the
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TABLE 4 | Descriptive data (mean and standard deviation) of the ANS proxies and ANSI within the SAP groups and over the whole set of subjects.

Nt preHt Ht Total

Vars. Mean SD Mean SD Mean SD Mean SD

HR 65.89 11.70 69.36 14.61 70.57 11.73 67.26 12.26

RR Mean 939.53 175.87 905.08 201.39 874.83 155.46 922.23 177.22

RR TP 3058.75 3233.55 2029.50 2944.21 1372.62 1271.78 2591.34 2988.47

RR LFa 895.37 1131.48 673.62 1173.97 423.88 523.82 777.87 1063.05

RR HFa 1016.94 1632.69 466.58 1744.07 262.98 495.39 805.99 1529.22

RR LFnu 50.08 21.08 57.75 22.28 56.73 21.90 52.37 21.63

RR HFnu 42.95 20.98 34.54 21.76 33.51 20.12 40.00 21.32

RR LF/HF 2.45 4.55 4.51 7.50 3.89 6.64 3.00 5.52

1RRLFnu 27.95 21.97 15.24 21.16 13.73 20.61 23.51 22.51

α index 23.23 16.96 13.36 10.20 10.19 6.36 19.38 15.69

SAP 111.78 10.27 132.22 2.71 152.81 15.02 122.58 19.78

DAP 70.86 8.61 82.31 8.32 92.07 11.62 76.55 12.65

SAP Mean 114.63 12.68 132.23 11.64 151.80 16.54 124.30 20.08

SAP LFa 4.14 5.40 6.49 9.14 7.11 10.09 5.03 7.22

ANSI 54.45 28.46 42.51 30.79 39.95 25.46 50.04 28.88

In every comparison among the within-groups means of each variable, a green cell denotes the largest computed mean, while a gray cell denotes the
smallest computed mean.

bootstrap permutation procedure for testing the hypotheses of
null correlation coefficients between the α index and each of
the other variables, all adjusted for age and gender effects.
Corresponding p-values are reported in the legend. In the graph,
cells containing non-significant coefficients are marked with an
X symbol. As can be seen, the hypothesis of the absence of a
linear relation involving the α index is accepted at the 0.05 level:
in the Nt group, with DAP; in the preHt group, with RR LFnu
and RR HFnu; in the Ht group, with RR LFnu, RR HFnu, RR
LF/HF, 1RR LFnu, SAP, DAP, and SAP Mean. All this seems to
support our starting conjecture about the existence of SAP group
effects on the pairwise relationships between α and the other
considered variables.

Regarding the trend analysis, Figure 5 combines the
results obtained with the bootstrap permutation test and the
Hettmansperger–Norton (HN) trend test, this latter having as
alternatives both monotonic ordered and umbrella effects of the
SAP groups (Figure 2). Two aspects appear immediately. First,
in all the considered pairwise comparisons, the HN test proves
that there are at least either increasing or decreasing effects of
the SAP condition on the strength of correlations between α and
the other variables (Figure 5, second column). For instance, the
positive correlation of α and RR TP tends to strengthen from Nt
to preHt and Ht (a similar trend is observed for RR LFa and RR
HFa). On the other hand, the positive correlation of α and RR
HFnu tends to weaken and approach to zero from Nt to preHt
and Ht. Second, in nearly all the pairwise comparisons, there is
clear empirical evidence toward the presence of umbrella effects
of either concave or convex shape (Figure 5, third column). For
example, the negative correlation between the α index and HR,
or also the positive correlation between the α index and ANSI,
prove to be stronger in the preHt group than in the other two
groups. The last two columns in Figure 5 sum up all the main
findings concerning the detection of the SAP groups in which

the strongest linear relationships involving α are observed. It is
worth pointing out that in just 10 out of the total 14 pairwise
comparisons the preHt group turns out to be the one in which
the linear relations involving α result as the strongest ones.
Specifically, in preHt, there are the strongest positive correlations
between α and RR Mean, RR TP, RR HFa, 1RR LFnu, and ANSI,
respectively, and the strongest negative correlations between α

and HR, RR LF/HF, SAP, DAP, and SAP Mean. On the other
hand, in Nt, there are the strongest positive correlation of α and
RR HFnu, and the strongest negative correlations of α and RR
LFnu and SAPLFa, while in Ht, there is the strongest positive
correlation of α and RR LFa. Nonetheless, saying “the strongest
correlation” does not necessarily intend a correlation of high
magnitude, but only that is the highest estimated correlation
(in absolute value) in the comparison among the three SAP
groups. Accordingly, the cells in the last two columns of Figure 5
are colored with different shades consistently with the interval
of correlation strength (legend below Table 5) into which the
pertaining 95% bootstrap confidence interval falls. Once again,
the preHt group has a particular role because the α index
proves to have a strong magnitude of positive correlation with
RR HFa (95% CI: [0.610, 0.800]) and ANSI (95% CI: [0.599,
0.771]), respectively.

These interpretations can be visualized better through the
ridgeline plots in Figure 6, in particular by observing, in each
panel, the relative position of the smoothed density curves
that interpolate the bootstrap distributions of the within-groups
WINcorr coefficients.

DISCUSSION

By using non-parametric and robust statistical procedures,
combined in the perspective of a multitude of simulated
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FIGURE 3 | Box plots of the bootstrap distributions of the WINcorr coefficients (with γ = 0.1) of the adjusted α index and the adjusted ANS proxies along with ANSI
computed within the SAP groups over the B = 5000 bootstrap replicates.

replications of the study, we give empirical support to the
conjecture, inspired by our empirical practice, that there exist
specific pressure states in which the relationship between
the cardiac baroreflex and ANS proxies can strengthen or
weaken. We have turned this conjecture into practical terms by
introducing the trend analysis of the SAP group effects on the
correlations between the α index and each of the ANS proxies
along with ANSI after adjustment for the potential biases by age
and gender. We have focused on both ordered monotonic trends,
i.e., increasing or decreasing effects moving from the Nt group
to the Ht group, and umbrella trends, i.e., concave- or convex-
shape effects concerning which the preHt group is regarded as an
intermediate transition pressure condition.

Undoubtedly, a delicate issue that we had to face concerned
the fact that the results found should not strictly depend
on the adopted statistical methodology. All the more so
because at present, we are not able yet to advance plausible
explanations of such an observed phenomenon. In order
to avoid potential straining caused by the applied statistical
methods, although robust and non-parametric, we conducted
an extensive preliminary study using alternative techniques

to make the conclusions as far as possible untied from the
specific analysis approach. In short, the results so obtained
gave, in every case, empirical support to the existence of the
patterned trends related to the SAP group memberships such as
the ones presented.

Ultimately, the study and the statistical analyses we addressed
should be more appropriately considered as a first exploratory
phase toward a broader investigation that should also take
into account the role of other individual characteristics (e.g.,
lifestyles), which we guess might affect the results found
here to some extent.

Further Considerations Concerning the
Statistical Approach
As already pointed out, the statistical approach we adopted
to meet the objectives of the study was designed in order to
overcome several drawbacks inherent in the type of data under
analysis, namely:

(a) the different age-by-gender composition of the whole set
of subjects, which led us to introduce the adjusted ANS
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proxies (while ANSI is free of age and gender effects
by construction);

(b) the presence of a small subset of outlying subjects
concerning certain, but not all, variables, a problem that
required us to use the WINcorr coefficient as a robust
measure of the linear relationship between the α index and
each of the other variables listed in Table 1;

(c) the necessity of providing a more general value to
the statistical analyses without having the possibility of
replicating the data collection on new sets of subjects,
a fact that we overcame by turning to the bootstrap
resampling technique;

(d) the improperness of the normality assumption for the
bootstrap distributions of the WINcorr coefficients,
for which reason we preferred to apply a non-
parametric approach for both the bootstrap procedure
and the inference.

Nevertheless, to ascertain which procedures or variants of the
statistical methods could be the fittest ones to the data, at a
preliminary stage we had to perform an extensive exploratory
study and examine a range of alternative options. At the same

time, this preliminary study allowed us to assess whether the main
findings were as far as possible untied from the specific statistical
approach used. One of the main problems was to assess the
value of the proportion γ for the application of the Winsorizing
method in the computation of correlation coefficients. We carried
out the bootstrap procedure and all the subsequent analyses
described in Figure 2 in the presence of three tentative values
of the quantile order, i.e., γ = 0.05, 0.1, 0.2. Given that there
were no noteworthy difference in the results, we fixed γ equal
to 0.1 as a sort of “compromise value,” in order to avoid either
still having a small number of outliers (γ = 0.05) or censoring the
correlation coefficient distributions too much (γ = 0.2), especially
in the preHt group, which is the SAP group with the smallest
size (Table 2).

Another critical point was the choice of the non-parametric
tests to employ against patterned alternatives. The typical
distribution-free procedures adopted for testing, on the one
hand, ordered monotonic and, on the other hand, umbrella
alternatives are the Jonckheere–Terpstra (JT) test and the
Mack–Wolfe (MW) test, respectively (Hollander et al., 2014).
However, it is well-known that, in the presence of within-
groups distributions with unequal variances, these tests are no

FIGURE 4 | Correlation plot of the WINcorr coefficients (with γ = 0.1) between the adjusted α index and ANS proxies plus ANSI over the whole set of subjects and
within the SAP groups. A cross placed on an ellipse in the cells indicates a non-significant result at the 0.05 nominal significance level achieved by the bootstrap
permutation test (B = 5000 replicates). The corresponding p-values are given in the following table:

A cell is colored in light yellow in the presence of a non-significant result.
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TABLE 5 | Non-parametric 95% bootstrap confidence intervals for the medians of the WINcorr coefficients (B = 5000 bootstrap replicates, γ = 0.1) between the adjusted
α index and ANS proxies plus ANSI over the whole set of subjects and within the SAP groups.

Variables Pearson corr coefficients Median of WINcorr coefficients 95% Low confidence limit 95% Upper confidence limit

All subjects

adj.HR −0.499 −0.531 −0.573 −0.491

adj.RRMean 0.488 0.531 0.490 0.576

adj.RRTP 0.606 0.619 0.574 0.661

adj.RRLFa 0.442 0.527 0.477 0.583

adj.RRHFa 0.522 0.589 0.538 0.637

adj.RRLFnu −0.223 −0.218 −0.276 −0.168

adj.RRHFnu 0.232 0.237 0.188 0.298

adj.RRLFHF −0.153 −0.230 −0.285 −0.186

adj.1RRLFnu 0.198 0.198 0.145 0.262

adj.SAP −0.279 −0.325 −0.372 −0.277

adj.DAP −0.203 −0.223 −0.275 −0.172

adj.SAPMean −0.305 −0.331 −0.380 −0.284

adj.SAPLFa −0.267 −0.368 −0.412 −0.326

ANSI 0.571 0.593 0.558 0.634

Normotensive

adj.HR −0.496 −0.527 −0.579 −0.478

adj.RRMean 0.476 0.521 0.471 0.577

adj.RRTP 0.604 0.607 0.553 0.661

adj.RRLFa 0.438 0.516 0.456 0.581

adj.RRHFa 0.534 0.588 0.528 0.647

adj.RRLFnu −0.211 −0.230 −0.301 −0.167

adj.RRHFnu 0.209 0.238 0.177 0.314

adj.RRLFHF −0.161 −0.240 −0.314 −0.188

adj.1RRLFnu 0.156 0.169 0.106 0.247

adj.SAP −0.208 −0.223 −0.292 −0.163

adj.DAP −0.073 −0.090 −0.162 −0.024

adj.SAPMean −0.255 −0.258 −0.325 −0.195

adj.SAPLFa −0.302 −0.390 −0.441 −0.339

ANSI 0.550 0.577 0.531 0.625

Pre-hypertensive

adj.HR −0.570 −0.563 −0.673 −0.441

adj.RRMean 0.569 0.565 0.438 0.681

adj.RRTP 0.589 0.692 0.592 0.778

adj.RRLFa 0.397 0.546 0.402 0.691

adj.RRHFa 0.461 0.713 0.610 0.800

adj.RRLFnu −0.265 −0.217 −0.417 −0.081

adj.RRHFnu 0.291 0.236 0.095 0.416

adj.RRLFHF −0.186 −0.293 −0.469 −0.190

adj.1RRLFnu 0.367 0.330 0.175 0.494

adj.SAP −0.404 −0.387 −0.531 −0.222

adj.DAP −0.306 −0.259 −0.417 −0.111

adj.SAPMean −0.327 −0.358 −0.532 −0.213

adj.SAPLFa −0.207 −0.245 −0.400 −0.115

ANSI 0.703 0.684 0.599 0.771

Hypertensive

adj.HR −0.483 −0.428 −0.541 −0.320

adj.RRMean 0.491 0.429 0.318 0.543

adj.RRTP 0.640 0.644 0.563 0.724

adj.RRLFa 0.501 0.567 0.464 0.677

adj.RRHFa 0.525 0.638 0.512 0.720

adj.RRLFnu −0.135 −0.123 −0.271 −0.014

(Continued)
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TABLE 5 | Continued

Variables Pearson corr coefficients Median of WINcorr coefficients 95% Low confidence limit 95% Upper confidence limit

adj.RRHFnu 0.149 0.121 0.007 0.268

adj.RRLFHF −0.102 −0.151 −0.299 −0.029

adj.1RRLFnu 0.142 0.083 −0.044 0.227

adj.SAP −0.135 −0.147 −0.297 −0.023

adj.DAP −0.170 −0.161 −0.322 −0.049

adj.SAPMean −0.158 −0.147 −0.293 −0.032

adj.SAPLFa −0.281 −0.359 −0.458 −0.260

ANSI 0.558 0.502 0.394 0.604

Pearson correlation coefficients of the adjusted variables (computed on the original dataset) are as well reported. Cells in the columns entitled “Pearson corr” and “Median
of WINcorr” are colored differently according to the following intervals of correlation strength:

• Negative correlation coefficients:

strong medium moderate 
weak / 

nearly null 

(−0.8, −0.6] (−0.6, −0.4] (−0.4, −0.2] (−0.2, 0) 

• Positive correlation coefficients:

weak / 
nearly null moderate medium strong 

[0, +0.2)  [+0.2, +0.4) [+0.4, +0.6)  [+0.6, +0.8)  

The cells containing the variable names (first column) are colored in the same way as the cells in the WINcorr column. Bold values in the columns “Pearson corr” and
“Median of WINcorr” refer to the pairwise comparisons between the two types of correlation coefficients, i.e., a coefficient in bold denotes that it is the largest (in absolute
value) between the two types. The following graph depicts the differences: “Median of WINcorr – Pearson corr” as colored squares.

more distribution-free (Hollander et al., 2014). The bootstrap
within-groups distributions of the WINcorr coefficients present
this problem, as it was verified on the data through the opportune
procedures (i.e., the usual tests for the homogeneity of variances,
results omitted). Consequently, the JT and MW test results are
not sufficiently trustworthy. Among all the possible alternative
procedures (Hollander et al., 2014), the choice fell on the HN
test, because it is less sensitive to the inequality of variances as
well as it allows specifying various patterns of trends among the
alternatives in a straightforward way (Figure 2).

As a final remark, we decided to carry out the analyses between
the α index and the ANS proxies according to a bivariate, rather
than a multivariate, approach. We are aware that the ANS proxies

are, in their turn, pairwise correlated with different strength
and sign, and that a multivariate approach could have taken
into account these intertwined connections at best. Nonetheless,
this would have required us to use methods of synthesis of the
data having as disadvantages the facts of introducing additional
margins of error in the analyses as well as making the reading of
the findings less clear from a clinical point of view.

Clinical Implications and Limitations
We have shown that statistical manipulation of population data
might suggest the existence of trends other than monotonic,
i.e., umbrella-like, underlying the linear relationships between
baroreflex gain and ANS proxies when SAP levels are taken
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FIGURE 5 | Synoptic figure summing up the results of both the bootstrap permutation (BPerm) test for null correlations and Hettmansperger–Norton (HN) test for
ordered monotonic alternatives and umbrella alternatives. In all the cases in which the null hypothesis (i.e., absence of the SAP group effects) is rejected, the p-value
is p <0.001. The trend of the SAP group effects on the correlation coefficients involving the adjusted α index is connoted as “increasing” or “decreasing” on the basis
of the sorting of the three SAP groups in the following order: Nt as first, preHt as second, and Ht as third (like in the box plots in Figure 3). Accordingly, the symbols
in the second column “BPerm test and HN test – monotonic trend” have the following meaning: 0: increasing trend from negative correlations to a nearly
null correlation. 0: increasing trend from negative correlations to a not significantly different from zero correlation. 0: decreasing trend from positive correlations to
a nearly null correlation. 0: decreasing trend from positive correlations to a not significantly different from zero correlation. +: increasing trend from positive
correlations to positive correlations. −: decreasing trend from a not significantly different from zero correlation to negative correlations. Moreover, the symbols in
the third column “HN test – umbrella trend” have the following meaning: ∪: convex alternative. ∩: concave alternative. --- : absence of empirical support. Finally, in
the fourth column, the SAP group with the strongest (negative or positive) correlation between the α index and each of the other variables is detected by the overall
summary of all the main findings, and the pertaining 95% bootstrap confidence interval from Table 5 is reported in the last column. In particular, a blue cell with a +
symbol reports the group where there is the strongest estimated positive correlation involving α, while an orange cell with a − symbol reports the group with the
strongest estimated negative correlation involving α. The different shades of colors (brighter/less bright) denote confidence intervals of stronger/weaker correlations,
according to the intervals of correlation strength given in the legend below Table 5.

into account. The performed statistical analyses have disclosed a
peculiar role of preHt, which is positioned at the apex/bottom of a
curvilinear trend in most of the examined correlations, especially
between the α index and ANSI (pertaining panel in Figures 3, 6),
where the correlation strengthen particularly in the preHt group
(Table 5 and Figure 5).

Overall, this investigation has highlighted the existence of
at least medium-strong correlations (i.e., equal to or greater
than 0.4 in absolute value, Table 5) between the α index and
several ANS proxies that keep in magnitude over the SAP
groups. That might bear potentially important implications in
the clinic, in particular, keeping in mind that the HRV proxies
are extracted from the simple (ECG derived) tachogram (even
if to an extent mathematically implicit). In fact, the time and

resources necessary to obtain the α index [more so if using
invasive arterial pressure, as originally proposed (Bristow et al.,
1969)] represent a strong barrier to its introduction in the clinic,
even if the clinical information provided by this measure is
definitively impressive (La Rovere et al., 1998). If, on the other
hand, the same (or rather similar) information is provided by
simpler methods, such as by indices like HRV (Task Force of
the European Society of Cardiology and the North American
Society of Pacing, and Electrophysiology, 1996; La Rovere et al.,
1998), the barrier in a sense could evaporate. In addition, the
growing availability of simple, wearable instruments, and related
SW applications is providing potentially everybody with a means
to measure HRV and derived indices throughout the day and
night. This possibility justifies the study of specific combinations
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FIGURE 6 | Ridgeline plots of the bootstrap distributions of the WINcorr coefficients (with γ = 0.1) of the adjusted α index and the adjusted ANS proxies plus ANSI
within the SAP groups. Blue density curves denote distributions of positive correlation values, while red density curves distributions of negative correlation values.
First row of panels: presence of ordered monotonic effects (increasing or decreasing) of the SAP groups. Second–third rows of panels: presence of umbrella
(concave-shape) effects of the SAP groups. Fourth–fifth rows of panels: presence of umbrella (convex-shape) effects of the SAP groups.

of instruments and SW applications, ideally in a supervised
network, whereby preventive strategies might take advantage of
personalized markers and indices, such as ANSI (Sala et al., 2017),
that profit from the analogous power of information hidden in
the baroreflex as predictive tool, ready to be incorporated, by
proxy (i.e., HRV indices or ANSI), into clinical routines that need,
however, to be more formally tested.

Among the limitations of the study, let us point out that
our findings of significant correlations fall short of cause–effect
relationship that would require different approaches to be tested
[e.g., moving to causal inference analyses based on structural
models for causality (Pearl, 2010)]. It should also be pointed
out that although significant and with medium/strong magnitude
(Table 5 and Figure 5), within-groups correlation values between
the α index and ANSI do not seem high enough to justify the
use of ANSI to predict raw α-values. ANSI can only provide
estimates of cardiac autonomic performance, as projected against
a reference benchmark population (Sala et al., 2017).

CONCLUSION

In conclusions, we have shown that using a combination of robust
and non-parametric statistical methods, along with the bootstrap,
it is possible to overcome some of the major limitations ingrained
into autonomic evaluation in a clinical setting. In particular,
statistical manipulation of data based on adjusted variables frees
the data structure from the inherent bias related to age and gender

changes. In addition, information from relatively minor study
groups can be improved in quality with statistical resampling
techniques such as the bootstrap, which we implemented using a
non-parametric procedure to avoid assuming conjectures about
the distribution of the correlation coefficients of the α index
and each of the other ANS proxies. It is also important to re-
emphasize (Pagani and Malliani, 2000) that we are dealing with
indirect data, hence variability proxies (e.g., LF component of
RR variability) cannot provide detailed information of actual,
raw electrophysiological figures of nerve activity but only suggest
hypothesis about (Haken, 1983) general properties of autonomic
regulation, within the overall model of a dual sympatho-vagal
(Hess, 2014) contrasting balance (Malliani et al., 1991).

Finally, not choosing any a priori model for the data structure
we were able to demonstrate the validity of non-monotonic
effects of the SAP states on the relationships between the
α index and the ANS proxies, disclosing an umbrella-like
pattern, reminiscent of the cue function of arousal (Moruzzi
and Magoun, 1949). That leaves us with a crucial indication
that the α index (as a proxy of baroreflex gain) is medium-
strongly correlated with several indices of ANS regulation (in
particular, the composite indicator ANSI), further supporting
the use in a clinical setting of the simpler HRV-derived proxies,
thus reducing the economic and organizational bias and potential
fostering a clinical use of ANS evaluation. There are potentially
practical implications in clinical management, particularly of
long-term conditions where autonomic impairment might be
an important issue, such as in diabetic cardiac neuropathy
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(Vinik and Ziegler, 2007), where traditional reflex-based models
of examination have reached widespread standardization (Ewing
et al., 1985). However, the introduction of novel diagnostic
approaches, based on HRV and baroreflex gain, combined
with advanced statistics, might facilitate the clinical assessment
of graded autonomic impairment. A deeper assessment of
the relationship between HRV and more complex autonomic
indices, such as the baroreflex, might in addition provide a
stronger and more rational basis for inferences supporting
the widespread, sometimes aggressive, promotion of heart rate
wearables. Furthermore, their use in a near future could
also support distance-controlled, Internet-based, home-centered
preventive behavioral (diet and exercise) therapies. The elevated
computational power of modern wearables and smartphones,
combined with the large bandwidth of Internet connections,
permit to foresee applications providing personalized programs
and regular support to individual patients (Wynter-Blyth and
Moorthy, 2017) combining “soft” autonomic information with
“hard” traditional clinical data (Editorial, 2004), avoiding to
overload the health systems (Barnett, 2017).
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