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Astrocytes, oligodendrocytes, and microglia are abundant cell types found in the central
nervous system and have been shown to play crucial roles in regulating both normal
and disease states. An increasing amount of evidence points to the critical importance
of glia in mediating neurodegeneration in Alzheimer’s and Parkinson’s diseases (AD, PD),
and in ischemic stroke, where microglia are involved in initial tissue clearance, and
astrocytes in the subsequent formation of a glial scar. The importance of these cells for
neuronal survival has previously been studied in co-culture experiments and the search
for neurotrophic factors (NTFs) initiated after finding that the addition of conditioned
media from astrocyte cultures could support the survival of primary neurons in vitro. This
led to the discovery of the potent dopamine neurotrophic factor, glial cell line-derived
neurotrophic factor (GDNF). In this review, we focus on the relationship between glia and
NTFs including neurotrophins, GDNF-family ligands, CNTF family, and CDNF/MANF-
family proteins. We describe their expression in astrocytes, oligodendrocytes and their
precursors (NG2-positive cells, OPCs), and microglia during development and in the
adult brain. Furthermore, we review existing data on the glial phenotypes of NTF
knockout mice and follow NTF expression patterns and their effects on glia in disease
models such as AD, PD, stroke, and retinal degeneration.

Keywords: CDNF, MANF, GDNF, BDNF, CNTF

INTRODUCTION

Tremendous work has been carried out in the field of neurotrophic factors (NTFs) over the
past years. The discovery of neurotrophins and the glial cell line-derived neurotrophic factor
(GDNF) family has provided considerable insight into the development of peripheral neurons, their
plasticity, and their involvement in neuroprotection and repair. Several groundbreaking works by
our predecessors and colleagues have defined present-day NTF research. As Isaac Newton once
wrote: “If I have seen further, it is by standing on the shoulders of giants.” Indeed, our current
knowledge has been highly influenced by Santiago Ramon y Cajal, the founding father of the
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modern neuroanatomy who received the Nobel Prize for his
studies of neuronal morphology and the structure of the
nervous system in 1906, and by Rudolf Virchow who was
the first to describe glial cells in 1856. Another fundamental
breakthrough was made in 1907 by Dr. Ross Granville Harrison,
who adopted from embryology the “hanging drop” technique,
which enabled the culture of neural tissue, and allowed for the
study of neural development, axon outgrowth, and ultimately
led to the discovery of growth cones (Vitriol and Zheng, 2012).
When Rita Levi-Montalcini was trying to answer the question
of how neurons are guided to their targets, she used this
technique in the presence of nerve growth inducing tumors
and discovered nerve growth factor (NGF) (Levi-Montalcini and
Calissano, 1979). She, together with Stanley Cohen, shared the
Nobel Prize in 1986.

The breakthrough work of David Schubert on clonal glial and
neuronal cell lines demonstrated that glial and neuronal cells
secrete significantly different sets of proteins (Schubert, 1973).
Together with his colleagues, he determined that astrocytes
release a relatively small number of proteins (Schubert, 1973;
Schubert et al., 2009) whereas neurons and neural progenitor
cells produce far more and with a greater function diversity
(Schubert et al., 2009). This extracellular pool includes proteins
that participate in cellular redox regulation, chaperones that
regulate protein folding, as well as many proteolytic enzymes
(Schubert et al., 2009).

It had been long known that primary dopamine neurons
survive better when cultured in conditioned medium collected
from astrocyte cultures. Later it was discovered that one of the
factors mediating this neuroprotective effect was GDNE which
is now recognized as one of the most potent NTFs promoting
dopamine neuron survival (Lin et al., 1993). However, in the case
of GDNE, the name can be somewhat misleading, as it has yet to
be shown, whether this protein is expressed and secreted by glial
cells in the adult brain.

At the same time as these advances were being made, cell
transplantation techniques and model systems were also being
developed. In one such experiment, Lars Olson and his colleagues
grafted fetal brain tissue into the anterior eye chamber, laying the
basis for future transplantation studies (Seiger and Olson, 1975).
These works allowed Barry Hoffer and, later, Anders Bjorklund
and their colleagues to initiate cell transplantation experiments as
well as to use GDNF as the first NTF to restore dopamine neurons
in animal models of Parkinson’s disease (Hoffer et al., 1994; Sauer
et al., 1995; Winkler et al., 1996).

In this review, we focus on the neurotrophins [brain-derived
neurotrophic factor (BDNF), NGE and neurotrophin-3 (NT-3)],
the ciliary neurotrophic factor (CNTF), GDNF and neurturin
(NRTN), and the cerebral dopamine neurotrophic factor
(CDNF) and mesencephalic astrocyte-derived neurotrophic
factor (MANF) family of proteins. Our main emphasis here
is to highlight in vivo findings. It is important to note that
while Ibal, CD11b, CD68, and OX-42 expressing cells are
classified as microglia, when injuries involve disruption of the
blood-brain-barrier, these markers do not allow to distinguish
between activated microglia and infiltrating macrophages
(Yamasaki et al., 2014).

NTF EXPRESSION IN GLIAL CELLS
DURING DEVELOPMENT AND IN
THE ADULT BRAIN

Problems and Caveats

Neurotrophic factors are generally secreted extracellular proteins,
with the exception of CDNF and MANEF, which are mainly
intracellular, and located in the lumen of the endoplasmic
reticulum (ER). Ideally, to understand their role in development
and disease, the expression patterns of both a given NTE, as well
as its cognate receptor(s), should be characterized temporally and
spatially. However, for some NTFs the receptor has not been
identified or adequately studied. Or, as is the case with CDNF and
MANE the NTF may exhibit predominantly intracellular rather
than the typical extracellular activity. While in situ hybridization
data do show expression patterns in specific brain regions
(Lein et al., 2007; Hawrylycz et al., 2012; Miller et al., 2014),
they do not provide the accompanying marker co-localization
information required to identify a specific glial or neuronal cell
type. Immunoshistochemical labeling should be interpreted with
caution due to antibody quality inconsistencies. In the best-
case scenario, their performance and specificity should be tested
on negative control (ideally KO) tissue. Furthermore, in many
cases immunostaining may be unable to distinguish between an
intracellular and an extracellular signal.

It is also important to keep in mind that cell-specific gene
expression analyses that utilize very sensitive methods, such as
qPCR, are critically dependent on the purity of the analyzed cell
population. The presence of a small “contaminating” population
of cells that express a high amount of target mRNA can lead to
false positives. Another issue is differential expression in cells
of the same type, which are localized in different brain regions.
For example, as discussed below, BDNF mRNA is expressed
in astrocytes isolated from the cortex and hippocampus, but
not from the striatum (Clarke et al., 2018). Advances in cell
sorting methods, as well as single-cell RNA sequencing will
undoubtedly resolve these issues and improve our understanding
of cell-specific expression (Cuevas-Diaz Duran et al, 2017).
A transcriptome database comprising data from mouse and
human neurons, glial and vascular cells, has been recently
released (Zhang et al., 2014, 2016). It is available online',
along with several other resources addressing cell-specific gene
expression [reviewed in Keil et al. (2018)]. One last, but important
caveat to take into account, is the fact that protein levels
do not necessarily correlate with mRNA levels, due to tissue-
dependent post-transcriptional regulation (Carlyle et al., 2017;
Franks et al., 2017).

Below, we review the available data on NTF expression in
glia (Figure 1).

BDNF

According to RNA in situ hybridization data, BDNF expression
in the mouse embryonic brain is detected already at E11.5
(Magdaleno et al.,, 2006) and continued to be present at later

'http://www.brainrnaseq.org/

Frontiers in Physiology | www.frontiersin.org

April 2019 | Volume 10 | Article 486


http://www.brainrnaseq.org/
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Poyhonen et al.

Effects of NTFs on Non-neuronal Cells in CNS

Expressed NTFs

+ BDNF * NRTN
« MANF + MANF
+ CDNF + CDNF

NTFs promoting survival

Expressed NTFs

NTFs promoting survival

Expressed NTFs
+ BDNF
* MANF

NTFs promoting survival
and differentiation

optic nerve injury, stroke
* NGF: CNS injury, MS,
PD, stroke
*  MANF: stroke

Beneficial effects on
astrocyte activation
+ BDNF (MS A) .
* NGF (SClv)

Detrimental effects on
astrocyte activation .
* BDNF (MS A) .

and differentiation and differentiation « NT-3
*« CNTF * CNTF
« NGF + NGF
« NT-3 « NT-3
+ BDNF
Microglia
(
Astrocyte
Oligodendrocyte
®

Normal NEUKen
Disease

Activated

astrocyte i&‘ﬂg Activated

o microglia

Upregulated NTFs [ Activatoal

. ) i
- BDNF: AD, MS, SCI, BRI oligodendrocyte

optic neuropathy, stroke Degenerating

* CNTF: CNS injury, MS, neuron

Upregulated NTFs

BDNF: MS
Downregulated NTF * NGF: MS
+ BDNF: optic neuropathy * NT-3: MS

* MANF: stroke

Downregulated NTF
BDNF: SCI

Beneficial effects on
oligodendrocyte activation
BDNF (stroke A)

NT-3 (MS A) y

FIGURE 1 | Expression of NTFs in glial cells and their effects on survival, differentiation, and activation of glia in normal and disease conditions. AD, Alzheimer’s
disease; ALS, amyotrophic lateral sclerosis; MS, multiple sclerosis; PD, Parkinson’s disease; SCI, spinal cord injury.
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developmental stages (Visel et al., 2004; Thompson et al., 2014).
In the adult mouse brain, high levels on BDNF mRNA are
detected in cortex, hippocampus, and olfactory areas and lower
levels in the thalamus, hypothalamus, midbrain, and medulla

(Lein et al., 2007). Cell-type specific transcriptome analysis of
the mouse cerebral cortex by RNA sequencing detected about
two-fold more abundant BDNF mRNA in astrocytes compared
to neurons, though the expression levels are relatively low
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(Zhang et al,, 2014) and declining with age in astrocytes derived
from the hippocampus and striatum, but not from the cortex
(Clarke et al., 2018). In contrast to mouse, BDNF mRNA levels
in human astrocytes and neurons are very low (Zhang et al,
2016). Several studies have specifically addressed the expression
and release of BDNF from glial cultures. Cultured astrocytes
from rat basal forebrain at post-natal day 1 express BDNF
mRNA (Wu etal., 2004). At protein level, immunohistochemistry
demonstrated increased BDNF in rat astrocytes and microglia
following the spinal cord injury (SCI) (Dougherty et al., 2000).
Similarly, stimulation of astrocytes with KCI, cholinergic agonist
carbachol, and glutamate increased BDNF mRNA levels and
protein release from cultured rat basal forebrain astrocytes (Wu
et al.,, 2004; Jean et al., 2008). Immunofluorescent staining of
mouse cortical astrocytes cultures and ELISA analysis of culture
medium samples showed that while basal expression of Bdnf in
unstimulated cells is relatively low, stimulation of astrocytes with
a drug used for the treatment of relapsing-remitting multiple
sclerosis (MS) increased BDNF expression and secretion about
two-folds (Reick et al., 2016).

CNTF

While the effects of CNTF on astrocyte differentiation have
been known for some time (Hughes et al., 1988; Rowitch,
2004), only a few reports address its expression pattern in glial
cells. In the developing mouse embryo its presence is relatively
weak and restricted to specific brain areas. Moderate levels are
detected by in situ RNA hybridization in the striatum and basal
ganglia, thalamus, and hypothalamus regions at E14.5 (Visel et al.,
2004). In the adult mouse brain, CNTF is found ubiquitously
at relatively low levels (Lein et al., 2007), with higher mRNA
levels seen in astrocytes, as well as maturing and myelinating
oligodendrocytes (OLGs) (Zhang et al., 2014). However, another
study addressing gene expression changes in astrocytes of mice
at different ages did not detect any CNTF mRNA expression
at any stage (Clarke et al., 2018). Similarly, RNA sequencing
was also unable to pick up any CNTF expression in the human
brain (Zhang et al., 2016). Yet, despite these findings, studies
focusing specifically on the detection of CNTF mRNA were
able to demonstrate its expression in astrocytes under normal
conditions (Dallner et al., 2002). Similar to BDNF, CNTF
mRNA was upregulated in reactive GFAP-positive astrocytes after
entorhinal cortex lesion (Lee et al, 1997) and stroke (Kang
et al., 2012). It has been proposed that this may be because,
under normal conditions, contacts with neurons may repress
CNTF expression in astrocytes via the integrin signaling pathway
(Keasey et al., 2013).

NGF

Original studies found NGF mRNA and protein expression in
rat astrocytes during development (E20) and post-natal day 3
with levels declining to approximately 50% by post-natal day 5.
These drop even lower (approximately 10% of E20 levels) in
astrocyte cultures prepared from adult animals (Schwartz and
Nishiyama, 1994). Similarly, basal forebrain astrocytes from post-
natal day 1 rat express NGF mRNA, with levels increasing in
response to glutamate stimulation (Wu et al., 2004), peroxynitrite

(Vargas et al., 2004), or proinflammatory polypeptides (Jauneau
et al, 2006). NGF mRNA and protein were also found in
oligodendrocyte precursor cells (OPCs) prepared from neonatal
mouse brain tissue (Byravan et al., 1994). In agreement with
these results, in situ hybridization also showed NGF mRNA
at low levels in the midbrain and hindbrain of E18.5 mouse
embryos (Thompson et al.,, 2014), but not in the adult brain.
RNA sequencing analysis of different cell types in the adult mouse
cerebral cortex detected the low presence of NGF mRNA in
neurons, OPCs, and newly formed OLGs (Zhang et al., 2014).
While RNA sequencing did not detect NGF mRNA in microglia,
its expression could be induced by adenosine A2a-receptors
(Heese et al., 1997) and lipopolysaccharide (Heese et al., 1998)
in rat microglial cultures.

NT-3

Expression levels of NT-3 in the developing mouse embryo are
very low and start to be reliably visualized by in situ hybridization
at E18.5 in the telencephalic vesicle. NT-3 mRNA increases
dramatically at post-natal day 4, being present in all examined
brain regions, and then gradually declines (Thompson et al.,
2014). It is barely detected by RNA sequencing in any cell type in
the adult mouse cerebral cortex (Zhang et al., 2014), yet is present
at low levels in the adult human neurons (Zhang et al., 2016).
In contrast to BDNF and NGE NT-3 mRNA is induced neither
by KCI, nor by glutamate or the cholinergic agonist carbachol
(Wu et al., 2004).

GDNF

Early studies utilized in situ hybridization to demonstrate GDNF
mRNA expression in the neural tube as early as E7.5 in mouse
embryos with expression in developing brain regions peaking
around E9.5 and declining after E10.5 (Hellmich et al., 1996).
At later developmental stages, GDNF mRNA is present only in
the ventral midbrain at E13.5. However, at E18.5 it becomes
widely expressed throughout the brain and persists at post-natal
day 14 and into adulthood (Lein et al., 2007; Thompson et al.,
2014). GDNF mRNA was detected by semi-quantitative PCR in
astrocyte cultures derived from human fetuses at 12-15 weeks of
gestation (Moretto et al., 1996) and from early post-natal mice,
where it can also be stimulated by lipopolysaccharide (Appel
et al., 1997). Recent cell-type specific RNA sequencing data from
the adult mouse cortex do not show any GDNF mRNA either
in astrocytes, or in myelinating OLGs, microglia, or endothelial
cells, although very low levels are found in neurons, OPCs
and newly formed OLGs (Zhang et al., 2014). In human brain
samples, only OLGs show very low amount of GDNF mRNA
(Zhang et al., 2016).

NRTN

The data on the developmental expression of NRTN mRNA
is rather controversial. While in situ hybridization suggested
its presence in the developing brain of E11.5 mouse embryos
(Magdaleno et al., 2006) with the expression pattern becoming
restricted to midbrain and hindbrain regions at E14.5 (Visel
et al., 2004), subsequent experiments were unable to find NRTN
mRNA at any developmental stage up to post-natal day 28
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(Thompson et al., 2014). Similarly, two sets of adult mouse brain
sections yielded completely opposite results, with one set showing
a widespread distribution of NRTN mRNA, and the other
failing to detect any NRTN mRNA (Lein et al., 2007). However,
in another study, RNA sequencing showed relatively high levels of
NRTN mRNA in newly formed and, particularly, in myelinating
OLGs, with lower levels present in neurons, and the lowest in
microglia in the mouse brain (Zhang et al., 2014), but not in the
human brain (Zhang et al., 2016).

MANF and CDNF

MANF and CDNF belong to a new NTF family and may not
act as “classical” NTFs. These proteins are mostly intracellular
and localize to the ER under normal conditions. They are
secreted from neurons only after ER calcium depletion, and from
proliferating cells in response to ER stress (Lindahl et al., 2017).
Furthermore, despite years of intensive research, there are no
cell surface receptor(s) identified for MANF or CDNEF. Available
data indicate that MANF is involved in the regulation of ER
stress and unfolded protein response (UPR) pathways (Lindahl
et al., 2014), having a role in neuronal differentiation, neurite
extension, and migration of neuronal progenitor cells in the
cerebral cortex (Tseng et al., 2017, 2018). These results, however,
do not exclude the possibility that MANF and CDNF may act
as intercellular signaling molecules promoting neuronal survival
in different neurodegeneration models (Lindholm et al., 2007;
Voutilainen et al., 2009; Airavaara et al., 2012). In a rat cortical
stroke model, MANF has been shown to upregulate phagocytotic
markers and recruit phagocytic cells (Mitlik et al., 2018). MANF
is also involved in retinal macrophage/microglia polarization
after inflammation and injury (Neves et al., 2016).

Strong  MANF mRNA signal is detected by in situ
hybridization in the developing mouse brain at all embryonic
stages analyzed (E11.5, E15.5, and post-natal day 7) (Magdaleno
et al., 2006) and in the adult mouse brain (Lein et al., 2007).
Accordingly, high levels of MANF mRNA were detected by RNA
sequencing in astrocytes, OPCs, newly formed OLGs, microglia,
endothelial cells, with somewhat lower levels in neurons,
and myelinating OLGs (Zhang et al., 2014). Levels in mouse
astrocytes remain relatively stable throughout the life span of the
animal, up to 2 years of age (Clarke et al., 2018). Similarly, MANF
mRNA is strongly expressed in the human brain, with the highest
levels detected in fetal astrocytes, but also in adult microglia
(Zhang et al, 2016). In mouse microglia, MANF mRNA is
detected from post-natal day 7 until adulthood (post-natal day
60). Furthermore, MANF expression in microglia, astrocytes,
OLGs, and, to some extent, in neurons, can be stimulated by
lipopolysaccharide (Bennett et al., 2016), as well as by ischemia
and ER stressors (Shen et al., 2012).

In contrast to other NTFs, CDNF expression has not been
studied in detail, apart from expression characterization by semi-
quantitative PCR that detected CDNF mRNA in developing and
adult mouse brains from E12 until post-natal day 21 (Lindholm
et al., 2007). RNA sequencing found very low mRNA levels
in mouse cortical neurons (Zhang et al., 2014). In contrast,
in the human brain CDNF mRNA is present in astrocytes and
OLGs (Zhang et al., 2016). Interestingly, CONF mRNA levels

in astrocytes from the mouse cortex and hippocampus increase
with age, with a tendency to peak at 9.5 months and remain
relatively high up to 2 years of age. In contrast, CDNF mRNA
is not detected in striatal astrocytes (Clarke et al., 2018).

The above studies reveal a common pattern of NTF expression
in glial cells. While basal expression levels of all NTFs, except
MANE in glial cells under normal conditions are relatively low,
they can be significantly induced in response to injury, ischemia,
and/or cellular stress. This is consistent with the theory that
they are of crucial importance to the mediation of neuronal
survival under stress conditions. Importantly, in many cases
NTF expression in human brain cells differed markedly from
the mouse, highlighting the importance of studies focusing on
human brain tissues and models, such as the rapidly developing
field of human brain organoids.

ROLE OF NTFs IN GLIAL CELL-
ASSISTED SYNAPSE FORMATION

Synapses play a key role in the nervous system. Their
establishment, modulation, and elimination occur throughout
a lifespan. Synaptogenesis occurs during development, learning
and memory formation, and recovery after nervous system
injuries (Causing et al., 1997; Roumier et al., 2004; Gomez-Casati
et al,, 2010; Bonner et al., 2011; Parkhurst et al., 2013; Miyamoto
et al., 2016). It requires a coordinated set of actions, including
the assembly of pre-synaptic and post-synaptic structures, which
are essential for the neurotransmitter flux in the synaptic cleft
(Pfrieger, 2010). Theories of “tripartite” and “quadripartite”
synapses propose that pre- and post-synaptic terminals cooperate
with supporting cells of the nervous system, such as astrocytes
and microglia (Araque et al, 1999; Schafer et al., 2013). As
abundant secretory proteins in the central nervous system (CNS),
NTFs perform crucial functions in synaptogenesis.

In the CNS, neuron-derived BDNF has been shown to
contribute to the modulation of synaptic density (Causing et al.,
1997). However, it has been established that neurotrophins can
also be expressed by supportive cells. It was initially hypothesized
that astrocytic BDNF secretion promotes the formation of
inhibitory synapses and their post-synaptic modulation by
increasing clusters of synaptic receptors, and that NT-3 has an
antagonistic effect (Coull et al., 2005; Elmariah et al., 2005;
Gomez-Casati et al., 2010; Parkhurst et al., 2013). BDNF secreted
by astrocytes was later shown not to be involved in synapse
formation, but only affected the modulation of GABAergic
synapses (Hughes et al., 2010). The only in vivo study that
supports BDNF’s involvement in synapse formation was focused
on vestibular sensory nerves. Supporting cells in this system
share analogous traits with astrocytes, such as molecular markers
and proximity to synapses, and BDNF secreted from these
cells acts as a synaptogenic signal. The expression of glial
BDNF and vestibular sensory nerve synaptogenesis is regulated
by NRG1/erbB signaling, which was also demonstrated to be
responsible for the regulation of multiple glia types (radial glia,
OLGs, astrocytes) in the CNS, and for neuron-glia connections in
the peripheral nervous system (PNS) (Gomez-Casati et al., 2010).
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The context-dependent involvement of BDNF at tripartite
synapses in the PNS has been recognized for some time now,
yet the mechanisms by which it functions remain largely unclear.
More in vivo experiments in the CNS are needed to explore this
pathway further.

The quaternary participant of the synapse, microglia, are also
capable of secreting BDNF. Previously, exogenous BDNF was
shown to be nonessential in the regulation of glutamatergic
synapses in vitro (Yamada et al., 2002). Later, however, microglia-
derived BDNF was suggested to be involved in glutamatergic
synapse development in the hippocampus and motor learning-
dependent synaptogenesis (Roumier et al., 2004; Parkhurst
et al., 2013). The deletion of the microglia-specific protein,
KARAP/DAP12 resulted in impaired BDNF signaling and
defective glutamatergic synapses, but did not cause any decline
in BDNF levels (Roumier et al., 2004). Mice carrying microglia-
specific deletion of BDNF shared very similar characteristics with
mice, in which microglia were depleted altogether, exhibiting
low synapse number and learning difficulties, thus asserting
the necessity of microglia-derived BDNF for synaptogenesis
(Parkhurst et al., 2013; Miyamoto et al., 2016). It is not completely
clear which BDNF-mediated or alternative signaling pathways are
responsible for such function. It was not reported, whether the
absence of BDNF resulted in the decrease of synaptic proteins
(Parkhurst et al., 2013). In addition, a recent study suggested
the potential involvement of microglial BDNF and GDNF as
facilitators of post-stroke neuronal rewiring (Sandvig et al., 2018).
Further development of imaging technologies, such as in vivo
time-lapse imaging, and highly specific genetic approaches,
would provide more powerful tools to study synapse/glia
interactions and the pathways involved (Parkhurst et al., 2013;
Miyamoto et al., 2016).

GDNF-family ligands (GFLs) were the second NTF family
linked to synaptogenesis. A study on cultured midbrain
dopamine neurons initially suggested that GDNF might promote
the formation of new synaptic terminals and increase dopamine
release through an unknown mechanism (Bourque and Trudeau,
2000). The GDNF family receptor alpha-1 (GFRal), a GDNF
co-receptor, can be released from the surface of neurons and
glia in its soluble form. GDNF/GFRal complex binds the
RET receptor at neuronal terminals (Paratcha et al., 2001).
The RET receptor localizes at both pre- and post-synaptic
membranes of hippocampal neurons, and mediates GDNF-
induced co-localization of pre- and post-synaptic markers (Ledda
et al.,, 2007). Unlike BDNE, GDNF cannot increase expression
of these proteins. Conversely, BDNF cannot assist clustering of
pre-synaptic proteins (Yamada et al., 2002; Ledda et al., 2007).
It is also known that GDNF contributes to synapse formation in
the hippocampus, so there exists the possibility that BDNF and
GDNF cooperate in learning-based synapse formation.

Pre-synaptic differentiation induced by GDNF/GFRal
signaling has been shown to be independent of RET, yet to some
extent, dependent on the neural cell adhesion molecule (NCAM)
(Ledda et al., 2007). Functional synapse development during
retina formation requires NRTN-mediated RET signaling.
Homozygous NRTN-KO mice have lower numbers of outer
retinal synapses, which were also abnormally aligned. While

the preferred co-receptor of NRTN is GFRa2, in the retina, the
RET receptor was found to co-localize with GFRal. Notably,
expression of neither of these GFL receptors was observed in
Miiller glia (Brantley et al., 2008). Yet, there have been concerns
regarding inconsistent results obtained with RET and GFRa
antibodies. Resolving their complete mechanism of action should
require immunohistochemical validation of these findings and
additional experiments employing GFRa null mutants. As recent
evidence points to Miiller glia, rather than astrocytes, being
perisynaptic in the retina directing future research toward the
Miiller glia/NTF relationship might bring new perspectives to
the subject of retinal synapse formation (Koh et al., 2018).

The necessity of supporting cells in synapse formation is
dependent upon the type and differentiation stage of both
neurons and glia (Pfrieger, 2010; Miyamoto et al., 2016). Whether
subtypes of glia exist that are specialized for specific synaptic
communications is an interesting possibility. Many of the
signaling pathways involved remain to be elucidated. The role
of NTFs appears to be largely developmental and region specific
and this is an area that needs to be explored further in vivo.
However, challenges arise here due to the severe neuronal damage
that occurs in mammals as a result of glial depletion (McCall
et al., 1996; Cui et al., 2001). Advanced genomic and proteomic
analyses, high-tech imaging technologies, and the generation of
complex mutant models can overcome this problem. Bringing
NTFs into this equation would be advantageous for the discovery
of novel signaling pathways in the synaptic quartet and present a
fresh perspective to how neuronal circuits are wired.

EFFECTS OF NTF DEPLETION ON GLIAL
CELLS OF THE CNS AND RETINA:
MOUSE KNOCKOUT MODELS

There exists at least one KO mouse model for each NTE, yet these
models have been generally understudied when it comes to the
characterization of glia. The available data on glial phenotypes in
NTF-deficient mice are listed in Table 1.

The most studied glial phenotype in NTF-deficient mice
is the fate of OLGs and myelination of neurons in the
CNS. OLGs differentiate from OPCs to become capable of
myelinating neuronal populations (Tang et al., 2000). Their
survival, maturation and functionality depend on multiple
factors (Wheeler and Fuss, 2016) that include several NTFs.
Neurotrophins and CNTF family ligands have been reported to
contribute to the proliferation, migration, maturation, survival
and myelination capacity of OLGs and their precursors.
Excluding NGF, engagement of these NTFs have been supported
by experiments utilizing various KO mice (McTigue et al., 1998;
Kahn et al, 1999; Vondran et al.,, 2010; Leferink and Heine,
2018; Nicholson et al., 2018). Homozygous NGF-KO mice assert
a challenge to the study of myelination, not only in vivo, but also
in vitro, because ~80% of dorsal root ganglia neurons (a common
model to study myelination), are lost during early developmental
stages (Crowley et al, 1994). Nevertheless, other in vivo and
in vitro studies support the involvement of NGF in promoting
proliferation and migration of OPCs (Leferink and Heine, 2018).
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TABLE 1 | Glial phenotypes observed with selected NTF-KO mice.

N/A

N/A

Increased Tau protein in glial cells at
cortex and hippocampus.

Decreased # of astrocytes, microglia,
OPCs and OLGs.
N/A

Decreased # of OPCs and OLGs at basal
forebrain, reduced myelination at CNS
and retinal ganglion.

Decreased # of OPCs and OLGs at basal
forebrain and optic nerve until adulthood,
reduced remyelination after injury.
Decreased oligodendrogenesis after
injury.

Delayed microglia and astrocyte
activation, reduced proliferation of radial
glia, and increased OLG apoptosis after
injuries, decreased # of OLGs in optic
nerve until adulthood.

Increased OLG apoptosis after injury.

Decreased astrocyte migration (shown
with an organotypic tissue model)
Increased microglia activation at
substantia nigra after methamphetamine.

Crowley et al., 1994

Crowley et al., 1994

Capsoni et al., 2000

Tessarollo et al., 1994; Kahn
etal., 1999
Conover et al., 1995

Jones et al., 1994; Cellerino
etal., 1997; Vondran et al.,
2010; Xiao et al., 2010
Vondran et al., 2010;
VonDran et al., 2011;
Nicholson et al., 2018
Miyamoto et al., 2015

Masu et al., 1993; Barres
et al., 1996; Hoffmann et al.,
2002b; Schubert et al., 2005

Escary et al., 1993; Bugga
et al., 1998; Emery et al.,
2006

Pichel et al., 1996; af Bjerken
etal., 2007

Pichel et al., 1996; Boger
etal., 2007

NGF Nof —/— Homozygous Post-natal
conventional KO lethal
Ngf +/— Heterozygous Viable
conventional KO
AD11 Phenotypic, Viable
monoclonal
antibody KO
NT-3 Nt3 —/— Homozygous Post-natal
conventional KO lethal
NT-4 Nt4 —/— Homozygous Viable
conventional KO
BDNF Bdnf —/— Homozygous Post-natal
conventional KO lethal
Banf +/— Heterozygous Viable
conventional KO
GFAPC'®/ Heterozygous Viable
BDNFW/Al conditional KO
CNTF Cntf —/— Homozygous Viable
conventional KO
LIF Lif —/— Homozygous Viable
conventional KO
GDNF Gdnf —/— Homozygous Post-natal
conventional KO lethal
Gdnf +/— Heterozygous Viable
conventional KO
NRTN Nrtn —/— Homozygous Viable
conventional KO
PSPN Pspn —/— Homozygous Viable
conventional KO
ARTN Artn —/— Homozygous Viable
conventional KO
MANF Manf —/— Homozygous Viable
conventional KO
CDNF Cdnf —/— Homozygous Viable

conventional KO

N/A Heuckeroth et al., 1999
N/A Tomac et al., 2002
N/A Honma et al., 2002
N/A Lindahl et al., 2014
N/A Lindahl et al., 2017

Further investigation of NGF-KO animals is crucial, especially
considering NGF’s implication in multiple neurodegenerative
injuries and diseases, such as traumatic brain injury, ischemia,
and PD (Goss et al., 1998; Lee et al., 1998; Micera et al., 1998;
Brown et al., 2004; Nakagawa and Schwartz, 2004).
Brain-derived neurotrophic factor and NT-3 have also been
shown to contribute to oligodendrogenesis in the CNS. An early
study by McTigue et al. (1998) demonstrated that neuronal
grafts with either NT-3 or BDNE, promoted oligodendrogenesis
following CNS injury. Furthermore, deprivation of either resulted
in reduced numbers of OPCs, and decreased myelination of CNS
neurons (Kahn et al., 1999; Vondran et al., 2010; Xiao et al., 2010;
VonDran et al., 2011; Nicholson et al., 2018). Both homozygous
and heterozygous BDNF-KOs had fewer NG2-positive OPCs
in the basal forebrain, and reduced levels of myelin protein

were observed during development in homozygous animals
(Cellerino et al., 1997; Vondran et al., 2010; Xiao et al., 2010).
In adult heterozygous BDNF mutants, the number of mature
OLGs did not correlate with reduced OPC numbers observed
during development, and a similar result was obtained for the
levels of myelin protein, demonstrating a transient nature of
this phenotype (Vondran et al., 2010; Xiao et al., 2010). Recent
data from BDNF heterozygous mice showed transient effects of
BDNF on OPCs and mature OLGs in the optic nerve (Nicholson
et al., 2018). It has been reasoned such transient effects may
be a consequence of the conditional redundancy of BDNF for
oligodendrogenesis (Xiao et al,, 2010). As it was verified by
two different BDNF KO models (conventional and conditional),
heterozygous mutants respond more severely to demyelinating
injury (VonDran et al., 2011; Miyamoto et al., 2015). After the
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insult, oligodendrogenesis was shown to decrease as a result
of lowered astrocytic BDNF (Miyamoto et al, 2015). Myelin
protein levels and remyelination were also reduced (VonDran
et al., 2011). Even though further confirmation might require
examination of this phenotype in homozygous mice, this study
reiterated the benefits of using cell type-specific, conditional
deletions of NTFs (Miyamoto et al., 2015). In addition, it would
be very informative to investigate the highly region-specific effect
of BDNF on OPCs and OLGs during post-natal development
using a similar approach (Vondran et al., 2010; VonDran et al.,
2011; Nicholson et al., 2018). Taken together, these data suggest
that BDNF is required for the generation of OLGs during early
development and after injury, but not necessarily under normal
conditions in adults.

Various studies suggest that, much like BDNE CNTF also
plays an important role in the maturation, proliferation, and
survival of OLGs (Leferink and Heine, 2018). Homozygous
CNTF-KO animals exhibit lower OPC numbers and less
myelination up until adulthood (Barres et al., 1996). In adult
animals, however, this phenotype is observed only after the
introduction of injury (Linker et al., 2002; Martin et al., 2003).
According to another injury study, radial glia proliferation and
neurogenesis were also found to be decreased in the hippocampus
of KO animals (Muller et al., 2009). Thus, CNTF deficiency may
cause the delayed maturation of specific glial types in the CNS.
On the other hand, one might expect the CNTF-KO mice to
have more severe glial phenotypes, since the GFAP promoter
contains response elements that can be regulated by cytokines
such as CNTF (Kahn et al., 2002). One explanation may the
existence of compensation mechanisms that may come into play
in the absence of CNTF. Such a pathway may be mediated
by the leukemia inhibitory factor (LIF), another neuropoietic
cytokine. All cells that respond to CNTF also have the ability
to respond to LIF (Bauer and Patterson, 2006). Although it
is controversial whether female LIF-KO mice exhibit reduced
OLG numbers, later studies have shown sensitivity of both
sexes to myelination-impairing injury (Bugga et al., 1998; Emery
et al., 2006). There is strong evidence that both CNTF and LIF
can promote the generation of multiple types of glia through
stimulation of GFAP expression (Barres et al, 1996; Bonni
et al., 1997; Bonaguidi et al., 2005; Bauer and Patterson, 2006).
Nevertheless, the impact of CNTF on glia seems to be more
robust than that of LIF.

The most abundant glial cell type in retina, Miiller
glia, originate locally and are responsible for the structural,
nutritive, and metabolic support of retinal neurons (Fischer
et al, 2010). Though not supported by KO models, their
genesis can be enhanced by CNTF (Goureau et al., 2004).
Apart from Miiller glia, most glial populations in retina
(microglia, OLGs, astrocytes) migrate from the optic nerve
(Fischer et al., 2010). For this reason, it is important to
point out that the retinal glial network can be directly
correlated with the expression of NTFs in the CNS. In
addition to the transient reduction of OLG numbers during
the development of BDNF- and CNTF-deficient mice, other
glia-related phenotypes were observed in the optic nerve of
CNTF-KO mice (Barres et al., 1996; Nicholson et al., 2018).

For example, the activation of microglia and astrocytes were
delayed in CNTF-KO animals, compared to wild-type littermates
(Martin et al., 2003).

The present data show that NT-3 deprivation results in
the most severe glial phenotypes among NTF-KO mice.
Surviving only until early post-natal ages, homozygous animals
suffer from decreased numbers of overall glia, indicating
that NT-3 is indispensable for glial development in the CNS
(Kahn et al, 1999). Other glial phenotypes reported in the
CNS of NTF-deficient mice are minor or understudied, but
they are also listed in Table 1. Detailed studies of some of
these models, such as the GDNF-KO, may provide greater
insights. The only glia-related phenotypical data from
homozygous GDNF mutants, was derived from isolated
organotypic fetal tissue with results describing decreased
levels of astrocyte migration (af Bjerken et al., 2007). In vivo
confirmation of this phenotype is not available, since the
conventional homozygous GDNF-KO is post-natal lethal
(Pichel et al., 1996). Generation of conditional KOs may assist
in overcoming hurdles such as lethal phenotypes and allow
studies to better address the significance of NTFs in CNS
glial cell function.

EXPRESSION PATTERNS OF NTFs IN
GLIA IN CNS DISEASE MODELS

Problems and Caveats

The glial cell expression patterns of different NTFs in disease
models are presented in Table 2 and summarized in Figure 1.
Currently, there are no data for CDNF [see review (Lindahl
et al, 2017)]. Effects of exogenous NTF administration on
glia in injury and disease models can be found in Table 3.
An important factor not discussed here is the age of disease
onset. Age has been shown to influence basal levels of some
NTFs such as BDNF and may also influence the regulation and
expression patterns of some NTFs after injury (Shetty et al,
2004; Primiani et al, 2014). Another less discussed topic is
the differential expression levels and functions of mature and
pro-neurotrophins. For example, pro-NGF and pro-BDNF have
been shown to increase soon after pilocarpine-induced seizures
in the hippocampus in vivo. This increase was associated with
neurons and reactive astrocytes, but not with microglia. In
addition, introduction of pro-NGF and pro-BDNF induced cell
death in hippocampal neurons in vitro. Endogenous pro-NGF
seemed to exert detrimental effects also in vivo, while anti-
pro-NGF antibody asserted a protective effect in neurons when
injected into the hippocampus 3 days after seizure (Volosin et al.,
2008). In another in vitro study, pro-NGF secreted by astrocytes
induced death of rat embryonic spinal motor neurons in culture
(Domeniconi et al., 2007).

BDNF

Neuronal BDNF Expression in CNS Disease Models
In human, rodent and fish CNS, BDNF protein is widely
expressed in neurons throughout the brain and spinal cord
(Murer et al.,, 2001; Ikeda et al., 2002; Stadelmann et al., 2002;
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TABLE 2 | NTF expression in glia in injury and disease models.

NTF Disease model Model description Glial cell type Expression  Expression (time-point, tissue) References
BDNF  AD Astrocyte 1 (p) + only near plaque. Burbach et al., 2004
Microglia 1 () + only near plaque. Burbach et al., 2004
ALS SODG93A Microglia 3 (m) — in lumbar spinal cord at end-stage Nikodemova et al.,
disease. No expression in brain stem or 2014
other parts of spinal cord. No expression at
disease onset.
Ischemic stroke permanent Astrocyte 1 (o) + in peri-infarct area: 3-8 d. Peak on 7 d, Qu et al., 2010; Bejot
astrocytes as main source on 8 d. et al., 2011; Madinier
Additionally in i.l. hippocampus (24 h) and etal., 2013
i.l. cortex (30 d).
Microglia 1 (p) + transient expression in lesion border at Bejot et al., 2011;
24 h. No expression on 8 d. Madinier et al., 2013
transient Astrocyte ()] + protein 1-2 wk in ischemic striatum, but ~ Grade et al., 2013;
0(m) no mRNA on 7 d. Choi et al: Choi et al., 2015
downregulation in striatal infarct core. No
significant protein change in striatal
peri-infarct area.
Microglia 1 (p) + protein on 1 wk in infarct core and Grade et al., 2013;
0 (m) peri-infarct area (ischemic striatum). No Choi et al., 2015
mRNA detected.
OLG 0 (m) No expression 1 wk in i.l. ischemic striatum ~ Grade et al., 2013
MS cuprizone Astrocyte 1 () + on 4 wk (=complete demyelination) in Fulmer et al., 2014
corpus callosum
chronic, genetic demyelination ~ OLG 4+ (m) + in ventral spinal cord at ages 3-9 m Smith et al., 2013
Optic neuropathy  DBA/2J delayed Astrocyte 1 (P + protein in vesicles of hypertrophic Crish et al., 2013
4 (m) astrocytes at age 10 m. mRNA decreased
atage 3-9m.
SCl permanent Astrocyte 1 () + 1 d-6 wk in the wound and surrounding Dougherty et al.,
area. 2000
Microglia 1 (p) + 1 d-6 wk in the wound and surrounding Dougherty et al.,
area. 2000
OLG 1 (P) — delayed downregulation of expression Dougherty et al.,
(1-6 wk) in the wound area. No change in 2000
the surrounding area.
transient Astrocyte ()] + 2 and 72 h (at 24 h also in Sham group) Tokumine et al., 2003
in white and gray matter L2-L6 segments.
incomplete Astrocyte A (m) + 24 hin lateral column lkeda et al., 2001
Microglia 4+ (m) + 1 wk in posterior column lkeda et al., 2001
CNTF  Ischemic stroke transient, global Astrocyte +* (p) + in hippocampus on 3 d. Park et al., 2000
transient, focal Astrocyte A% (m) + 14 d after stroke Kang et al., 2012
Mechanical injury  cortex and hippocampus Astrocyte A *(m) + in the area surrounding wound on Ip etal., 1993
3-20 d, peaked at 3 d.
entorhinal cortex Astrocyte +* (p) + Transient expression in the dentate gyrus ~ Lee et al., 1997
on 7-10 d. No expression on 2 wk.
optic nerve Astrocyte A *(m) + in the optic nerve on 1 wk. Kirsch et al., 1998
MS cuprizone Astrocyte 1 (p) + in the fully demyelinated corpus callosum  Gudi et al., 2011
on 4.5 wk
SCI transient Astrocyte < (p) at 72 h qualitative upregulation Tokumine et al., 2003
(Continued)
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TABLE 2 | Continued

NTF Disease model Model description Glial cell type Expression Expression (time-point, tissue) References
GDNF PD MPTP Astrocyte < #(m) in striatum on 1-3 wk. Hidalgo-Figueroa
etal., 2012
Microglia 0 #(m) none in striatum on 1-3 wk. Hidalgo-Figueroa
etal., 2012
6-OHDA Astrocyte 1 (m) + ini.l. striatum on 1 wk. Nakagawa and
Schwartz, 2004
MANF Ischemic stroke transient Astrocyte 1 (o) + in ischemic cortex after 24 h of Shen et al., 2012
reperfusion.
Microglia 1 (o) + in ischemic cortex after 24 h of Shen et al., 2012
reperfusion.
OLG 1 (p) + in ischemic cortex after 24 h of Shen et al., 2012
reperfusion.
NGF Ischemic stroke transient Astrocyte 1P + in peri-infarct area in ischemic cortex Lee et al., 1998
on3-7d.
Mechanical Injury Experimental ablation Astrocyte A (m) + in the hippocampus at 3-24 h; in Goss et al., 1998
cortex surrounding wound at 24 h
MS EAE Astrocytes and OLG (M, p) in corpus callosum on 2 wk Micera et al., 1998
PD 6-OHDA Astrocyte 1 (m) + ini.l. striatum on 1 wk. Nakagawa and
Schwartz, 2004
6-OHDA, MPTP Astrocyte A (Mm)# 7-10 d in striatum Schwartz and
Nishiyama, 1994
NT-3 MS chronic, genetic OLG 4+ (m) + in ventral spinal cord at ages 3-9 m Smith et al., 2013
SCI transient Astrocyte < (p) 2-72h Tokumine et al., 2003

1, expression is upregulated; |, expression is downregulated; <>, expression not changed; O, no expression detected (none, or below detection limit); (), NTF protein
expression (ICC, WB. . .); (m), NTF mRNA expression (ISH, gPCR. . ), i.I., ipsilateral; c.l., contralateral; d, day(s); h, hour(s); wk, week(s); m, month(s); *, no double-staining
on one section. Detection made by comparing the expression patterns of two adjacent sections, single stained with NTF or glial marker. #, glial cells isolated from

injured/diseased brain or spinal cord, then cultured and analyzed.

Cacialli et al., 2016). The expression of BDNF mRNA is
also observed in astrocytes, microglia, and OLGs (Dreyfus
et al, 1999; Murer et al., 2001). However, baseline levels of
BDNF in glia appear to be relatively low, and some studies
have failed to detect it at all (Stadelmann et al, 2002; Qu
et al, 2010; Bejot et al, 2011). In the spinal cord, similar
low BDNF mRNA expression is seen in gray matter neurons
(Widenfalk et al., 2001).

Following transient ischemic stroke, levels of BDNF mRNA
have been reported to increase in striatal neurons over the course
of a week, but return to control levels a week after that (Grade
et al, 2013). In permanent ischemic stroke, however, BDNF
protein was found to be upregulated in the acute phase within
the infarct core as well as in the surrounding peri-infarct areas
(Bejot et al., 2011; Ramos-Cejudo et al., 2012). Neurons of the
infarct area were largely dead within 24 h (Bejot et al., 2011),
and BDNF in the ischemic core was downregulated by day
3 (Ramos-Cejudo et al.,, 2012). Nonetheless, BDNF expression
remained slightly upregulated in the ipsilateral hemisphere
1 week post-stroke (Bejot et al., 2011). In another study that
distinguished pro-BDNF from mature BDNE the expression of
the latter showed delayed upregulation that persisted over a
longer period, whereas expression of pro-BDNF decreased in
the acute phase and continued to stay low for 1 month (latest

time-point analyzed) (Madinier et al., 2013). Importantly, when
permanent ischemic white matter stroke was induced, BDNF was
found to be the most abundantly expressed NTF in affected areas
(Sato et al., 2009).

Upregulation of BDNF mRNA has also been reported in
the acute phase after SCI (Gu et al., 1997; Ikeda et al., 2001;
Widenfalk et al., 2001). BDNF mRNA increased in the spinal
cord soon after injury, peaked at 24 h, and returned to
control levels by day 3 (Ikeda et al., 2001). Protein expression,
however, showed more prolonged expression, with BDNF levels
increasing 2-72 h after SCI and returning to control levels
1 week post-injury (Tokumine etal.,2003; Qin et al, 2006).
Upregulation of BDNF protein was localized to neurons in
close proximity to the lesion site (Qin et al., 2006). Notably,
the BDNF receptor TrkB showed a different expression pattern,
with its mRNA downregulated at the lesion site as well
as the area surrounding it, most likely attributable to cell
death (Liebl et al, 2001). Yet, after 1.5 months, expression
of a truncated form of TrkB was found in the white matter
and in astrocytes surrounding the lesion (Liebl et al., 2001;
Widenfalk et al,, 2001). At the same time, very low BDNF
levels were observed in the spinal cord (Widenfalk et al,
2001). No changes related to TrkB were observed in neurons
(Liebl et al., 2001).
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TABLE 3 | Effects of exogenous NTF administration on glia in injury and disease models.

NTF Disease model Vector + administration (site, time) Glial cell type Effects on glia References
BDNF Ischemic stroke, Injection in the brain upon surgery Microglia Increased microglial activation and Xu et al., 2010
transient phagocytic activity at 6-24 h after
reperfusion (IL-10 1, TNF-a |).
Intranasally 2 h after reperfusion onset Microglia Increased microglial activation and Jiang et al., 2011
(4 h after surgery) phagocytic activity at 6-24 h after
reperfusion (IL-10 1, TNF-a |).
Injection (i.v.) at 24 h after ET-1 injection. OLG Increased proliferation in SVZ on 7 d Ramos-Cejudo
after BDNF injection, and maturation in etal., 2015
lesion area on 28 d, restored myelin
integrity.
Excitotoxic lesion upon toxin injection into the brain Astrocyte Not inhibited early reduction of Husson et al., 2005
astrocytes and later astrogliosis.
HD transgenic R6/2 Infusion (s.c.) for 9 weeks (age: 4-13 wk) Microglia Attenuated microglial activation at ages Giampa et al., 2013
12-14 wk.
Mechanical injury in Intravitreal injection upon surgery Microglia Decreased microglial activation on 7 d Sobrado-Calvo
optic nerve in the nerve fiber layer. et al., 2007
Intravitreal injection upon injury Microglia Attenuated microglial phagocytic Galindo-Romero
activation 3-14 d in retina. etal., 2013
MS disease (upon Intracerebroventricular continuous 7 d Astrocyte No effect on astrocyte activation Fletcher et al., 2018
onset of infusion of BDNF or BDNF mimetic TDP6 (GFAP+ cells)
remyelination) upon onset of remyelination
Microglia No effect on microglia activation (Iba1+ Fletcher et al., 2018
cells)
OLG TDP6 enhanced density of post-mitotic Fletcher et al., 2018
oligodendrocytes, but not OPCs. BDNF
did not.
SCl Minipump infusion upon surgery to 2 wk. OLG Increased survival 3 d-1 wk after injury. lkeda et al., 2002
LV injection in injury area on 3 d Microglia Promoted M2 polarization 7-14 d after Jietal, 2015
SCI. (Pro-inflammatory cytokines |).
AAV injection upon surgery OLG Reduced apoptosis and increased Nakajima et al.,
number of NG2+ cells. 2010
MS (EAE) Injection i.p. daily, on post-immunization OLG Protected mature oligodendrocytes Kuhlmann et al.,
days 8-24. from apoptosis and enhanced 2006
generation of progenitors within the
lesions, decreased demyelination.
CNTF SCl CNTF nanospheres injected to lesion site Astrocyte Increased reactivity in contralateral gray Talbott et al., 2007
7 d post-surgery matter on 7 d after injection.
OLG Not enhanced long-term survival on Talbott et al., 2007
4 wk after CNTF-injection.
GDNF SCl Injection upon surgery to spinal cord. Microglia Increased phagocytic microglia in the Chang et al., 2006
spinal cord at 1 wk post-injury
Injection of GDNF-nanoparticles upon Astrocyte Not affected astrocyte reactivity. Wang et al., 2008
surgery to spinal cord.
Microglia Not affected microglial reactivity. Wang et al., 2008
MANF ischemic stroke, AAV7-MANF intracerebral injection 2 d Microglia Increased the number of phagocytic Métlik et al., 2018
transient post-injury microglia in the peri-infarct region at
4d.
NGF Mechanical injury to NGF or NGF-like peptide BB14 infused Astrocyte NGF or BB14 reduced astrocytic Cirillo et al., 2011,
sciatic nerve to spinal cord 3-10 d post-surgery. reactivity injury at 10 d post-injury. 2012
Microglia NGF or BB14 attenuated microglial Cirillo et al., 2011,
reaction at 10 d post-injury. 2012
NGF infused to spinal cord 7-14 d Astrocyte NGF attenuated astrocytic reactivity Cirillo et al., 2010
post-surgery. and hypertrophy at 14 d post-injury.
Microglia No difference in phagocytic microglia at Cirillo et al., 2010
14 d post-injury.
NT-3 MS injection upon injury to corpus callosum OLG Increased mature oligodendrocytes at Jean et al., 2003
15 d. (Less severe demyelination)
Mechanical injury in intravitreal injection upon surgery Microglia Decreased microglial activation on 7 d Sobrado-Calvo
optic nerve in the nerve fiber layer. et al., 2007
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In a model of demyelination and MS, BDNF levels increased
in the optic nerve, and an upregulation trend was also noted
in the spinal cord (Smith et al., 2013). In MS patients,
BDNF is primarily present in immune cells such as microglia,
especially in actively demyelinating lesions. There was also
weak to moderate BDNF expression in astrocytes (Stadelmann
et al, 2002). Plasma BDNF was, similarly, reported to be
lower in MS patients when compared to healthy individuals
(Al-Temaimi et al, 2017). In PD patients, BDNF levels
are elevated in the cerebrospinal fluid (CSF) (Salehi and
Mashayekhi, 2009). However, in investigations of Creutzfeldt-
Jakob disease and Amyotrophic lateral sclerosis (ALS), patients’
BDNF CSF levels proved normal (Grundstrom et al., 2000;
Albrecht et al., 2006).

Glial Cell BDNF Expression in Disease Models
Brain-derived neurotrophic factor protein expression in reactive
astrocytes has been shown to increase in ischemic stroke (Qu
et al., 2010; Bejot et al., 2011; Grade et al., 2013; Madinier et al,,
2013; Choi et al., 2015) and after SCI (Dougherty et al., 2000;
Tokumine et al., 2003). In ischemic stroke it was upregulated in
a delayed manner, whereas in SCI it was elevated within a day or
even within a couple of hours. Astrocytes were seen as the main
source of BDNF immunoreactivity in the ipsilateral hemisphere
1 week after stroke (Bejot et al., 2011). Meanwhile, another study
indicated that increased BDNF expression following stroke was
not due to upregulated transcription, but rather increased uptake
of the protein by astrocytes. In this study, BDNF was found
localized mainly to vesicles (Grade et al., 2013). In a genetic model
of optic neuropathy, increased BDNF was seen in the vesicles of
hypertrophic astrocytes, whereas BDNF mRNA was somewhat
downregulated (Crish et al, 2013). Elevated BDNF has also
been observed in astrocytes surrounding AD plaques (Burbach
et al,, 2004). In a demyelinating MS disease model, white matter
astrocytes in the corpus callosum exhibited increased BDNF
expression (Fulmer et al., 2014).

How BDNF signaling in astrocytes influences disease
progression, remains a matter of debate. The current knowledge
on downstream signaling of BDNF and its cognate receptor,
TrkB, with an emphasis on MS, is extensively reviewed (Colombo
and Farina, 2016; Ponath et al., 2018). In the MS model, BDNF
and TrkB signaling appear to exert very distinct effects. When
BDNF production in astrocytes was genetically depleted,
neuronal damage and disease severity increased. BDNF has
the ability to enhance JAK/STAT3 pathway activation and thus
contribute to reduced inflammation and astrogliosis, which in
turn reduce the severity of injury. However, signaling through the
BDNF receptor TrkB is hypothesized to activate the detrimental
NF-kB signaling pathway. Accordingly, when TrkB was deleted
in astrocytes in the MS model, disease severity was alleviated and
glial activation and inflammation decreased, resulting in milder
neuronal damage. This is attributed to TrkB/NF-kB signaling
regulation of nitric oxide release (Colombo and Farina, 2016;
Ponath et al,, 2018). Consistent with findings obtained from the
MS model, in the experimental model of SCI, astrocyte-specific
deletion of TrkB reduced pain hypersensitivity and improved
motor coordination (Matyas et al., 2017).

Althought microglia are known to upregulate BDNF after
distinct injuries and diseases, expression onset and duration
patterns appear to vary. In permanent ischemic stroke, BDNF
upregulation in microglia was confined to the acute phase (Bejot
et al., 2011; Madinier et al., 2013) while in transient stroke, high
protein levels were still apparent after 1 week (Choi et al., 2015),
even though BDNF mRNA was undetectable (Grade et al., 2013).
In SCI, increased expression of microglial BDNF persisted in the
wound and surrounding area from day 1 to as late as 6 weeks.
Microglial BDNF levels were also elevated near plaques in a
model of AD (Burbach et al., 2004). In an ALS model, however,
microglial BDNF mRNA was downregulated in the lumbar spinal
cord (Nikodemova et al., 2014).

Only a few studies address BDNF expression changes in OLGs
in disease or injury conditions. It was found that BDNF mRNA
expression was upregulated in OLGs of the spinal cord in a MS
disease model (Smith et al., 2013). However, ischemic stroke
model studies were unable to detect the presence of any BDNF
mRNA (Grade et al., 2013), and in the case of SCI, decreased
protein expression in the wound area was attributed to cell death
(Dougherty et al., 2000).

Exogenous BDNF Administration in

Disease Models: Effects on Glia

Brain-derived neurotrophic factor administration in the acute
phase following mechanical injury of the optic nerve has been
shown to attenuate microglial phagocytic activation and protect
retinal ganglion cells (Sobrado-Calvo et al., 2007; Galindo-
Romero et al., 2013). Delayed overexpression of BDNF after SCI
has been demonstrated to promote beneficial “M2 polarization”
(Ji et al, 2015). Continuous administration of BDNF has
attenuated microglial activation in a model of Huntington’s
disease (HD) and has been shown to increase the synthesis of
BDNEF in the brain (Giampa et al., 2013). However, acute BDNF
administration increased microglial activation and phagocytic
activity together with increased overall M2 marker expression
in ischemic stroke. Simultaneously, BDNF protected cells from
apoptosis in ischemic penumbra region (Xu et al, 2010;
Jiang et al., 2011).

Exogenous BDNF administration can increase proliferation
of OLGs in subventricular zone and their maturation in lesion
area after ischemic injury (Ramos-Cejudo et al., 2015). It has
also increased survival of OLGs after SCI (Ikeda et al., 2002;
Nakajima et al., 2010). BDNF seems to restore myelin integrity
and enhance white matter repair (Husson et al.,, 2005; Ramos-
Cejudo et al,, 2015; Fletcher et al., 2018). However, a recent study
showed that BDNF did not increase survival or differentiation of
mature OLGs in corpus callosum MS disease model, although
a BDNF peptide mimetic TDP6 did. TDP6 was suggested to
exert its effects through selective induction of TrkB receptor
phosphorylation in post-mitotic OLGs (Fletcher et al., 2018).
However, the mechanism of TrkB signaling in OLGs needs
further investigation.

There is a very limited number of studies revealing effects of
exogenous BDNF on astrocytes in disease models. Exogenous
BDNF did not influence early or late astrocyte reactivity in
a model of excitotoxic lesion (Husson et al., 2005). However,
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a study utilizing in vitro scratch wound of astrocyte monolayer
as a model of mechanical injury, suggested that astrocytes
derived from different brain areas might respond differently to
growth factors. Indeed, exogenous BDNF enhanced migration of
astrocytes to the wound area only in astrocyte cultures derived
from striatum, but not from cortex or hippocampus. NGF, on
the other hand, enhanced migration of astrocytes derived from
all studied areas (Cragnolini et al., 2018).

BDNF Mutations in Injury and Disease Models
Brain-derived neurotrophic factor polymorphism is mainly
studied regarding its susceptibility to psychiatric disorders
(Notaras et al., 2015, 2016). In addition, a recent review discusses
the controversial results around the role of BDNF polymorphism
in vulnerability to stroke (Kotléga et al., 2017) and the role of
BDNF polymorphism in AD is a matter of debate (Lim et al,,
2016; Rogaeva and Schmitt-Ulms, 2016). An interesting detail
is that some BDNF polymorphisms have been linked to better
recovery after traumatic brain injury (Rostami et al., 2011).

In heterozygous BDNF-KO mice, demyelination-induced
proliferation of OPCs was weaker, and these mice had more
severe deficits in many myelin proteins and myelin integrity
compared with wild-type mice (VonDran et al., 2011; Tsiperson
etal., 2015). Nevertheless, lesion-induced astrocyte reactivity did
not differ between genotypes (VonDran et al,, 2011).

CNTF

CNTF Expression in CNS Disease Models

In intact rodent brain, CNTF protein is expressed in white
matter astrocytes, whereas mRNA expression of its receptor,
CNTFRa is restricted to gray matter, especially in cortex, and
hippocampus (Dallner et al., 2002). CNTFRa is also present in
axons and dendrites of some neurons in CNS and periphery
(MacLennan et al., 1996; Lee et al., 1997). In embryos, CNTFRa
was most intense in soma and processes of differentiating
neurons (MacLennan et al., 1996).

In many diseases and injuries, CNS responds to insults with
upregulation of CNTF expression and its receptor. Indeed, CNTF
was transiently upregulated after SCI (Lee et al., 1997; Oyesiku
et al., 1997; Zai et al., 2005; Zhao et al., 2009) and transient
ischemic cortical stroke (Lin et al., 1998). There was a similar
pattern in CNTFRa expression after SCI (Oyesiku et al., 1997),
although CNTFRa decreased after stroke (Lin et al., 1998). In MS
patients, the expression of CNTF and its receptor increased in the
non-lesioned cortex, and were enriched in neurons. Interestingly,
in MS patients CNTF mRNA increased also in cortical astrocytes
(Dutta et al., 2007). Controversial to Dallner et al. (2002), no
CNTF protein or its receptor was detected at the regions.

CNTF Expression in Astrocytes in Disease Models

Compared to BDNE there are less studies about CNTF or
other NTFs and their expression in glial cells in disease models.
Increased expression of CNTF in astrocytes has been reported
after ischemic stroke (Park et al., 2000), mechanical injury of CNS
(Lee et al., 1997) and of optic nerve (mRNA), (Kirsch et al., 1998),
and in MS model upon complete demyelination (Gudi et al,,

2011). Majority of these studies do not include proper double-
labeling, instead detection is made by comparing the expression
patterns of two adjacent sections, single stained with NTF or glial
markers (Table 2, marked with *). A more recent study showed
that CNTF mRNA levels were upregulated in a subset reactive
astrocytes in the penumbra area at 14 days after ischemic stroke
(Kang et al., 2012).

Ciliary neurotrophic factor can activate the JAK/STAT3
pathway, as reviewed in Ben Haim et al. (2015), and,
therefore, contribute to astrocyte reactivity. However, inhibition
of astrocyte reactivity through selective JAK/STAT3 inhibition in
AD and HD models did not have an effect on neurodegeneration.
Thus, the role of CNTF signaling in astrocytes on disease
progression remains unknown.

Exogenous CNTF Administration in

Disease Models: Effects on Glia

Interestingly, exogenous CNTF increased reactivity of astrocytes
in the contralateral gray matter, when administered in a very
delayed manner after SCI, but failed to enhance survival of OLGs
(Talbott et al.,, 2007). However, in MS model, delayed CNTF
protected mature OLGs and enhanced generation of progenitors
within the lesions (Kuhlmann et al., 2006).

CNTF-KO in Injury and Disease Models

Null mutations in CNTF genes do not seem to be linked to
ALS (Orrell et al., 1995; Gelernter et al., 1997; Van Vught
et al., 2007). Also, a link to earlier onset of MS has been
questioned (Giess et al., 2002; Hoffmann et al., 2002a,b;
Linker et al., 2009); although CNTF-KO mice seem to develop
earlier and more severe symptoms in experimental autoimmune
encephalomyelitis (EAE) model of MS (Linker et al., 2002).

NGF

NGF Expression in CNS Disease Models

In adult mouse cerebral cortex low levels of NGF mRNA are
detected in neurons and OLGs (Zhang et al., 2014). In spinal
cord, NGF mRNA is expressed in gray matter neurons and
leptomeningeal cells, although NGF protein is detected only in
leptomeningeal cells (Brown et al., 2004). After SCI, NGF (mRNA
and protein) was expressed in the lesion area as well as many
other areas of gray and white matter for 3-7 days and decreased
by 2 weeks (Krenz and Weaver, 2000; Brown et al., 2004). Another
study reported increased NGF mRNA already few hours after SCI
and a peak as early as at 1 day (Widenfalk et al., 2001). However,
NGF protein levels peaked at 1 week and remained still elevated
3 weeks after SCI (Qin et al., 2006). NGF expression increased
also in the lesioned hippocampus after experimental unilateral
ablation (Shetty et al., 2004). NGF might be involved also in other
diseases, such as Creutzfeldt-Jakob disease, where patients had
increased NGF levels in their CSF (Albrecht et al., 2006).

NGF Expression in Astrocytes in Disease Models

NGF protein expression was upregulated in astrocytes in the
peri-infarct area in ischemic cortex after transient stroke (Lee
et al., 1998). NGF mRNA was upregulated after mechanical
injury in the hippocampus and in cortex surrounding the wound
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(Goss etal.,, 1998), and in PD models at lesioned striatum
(Schwartz and Nishiyama, 1994; Nakagawa and Schwartz, 2004).
In a model of MS, both astrocytes and OLGs showed elevated
BDNF expression in affected white matter of corpus callosum
(Micera et al., 1998).

Exogenous NGF Administration in

Disease Models: Effects on Glia

Cirillo et al. (2010, 2011, 2012), have quite extensively studied
the effects of exogenous NGF on glial cells after mechanical
injury to sciatic nerve. They have found that delayed infusion
of NGF or a NGF-like peptide to spinal cord can attenuate
activity of both astrocytes and microglia, and thus restore
some injury-induced deficits. However, too late administration
did not reduce the phagocytic microglia (Cirillo et al., 2010).
Attenuation of proliferation of astrocytes may occur via the
P75 neurotrophin receptor (Cragnolini et al., 2009). NGF may
enhance neuroprotective functions of microglia as shown in a
recent article utilizing an in vitro model of AD (Rizzi et al., 2018).

GDNF

Although it is a relatively well-studied NTE, there is a lack of
in vivo studies on GDNF regulation in glial cells after injury.
GDNF mRNA was upregulated only in astrocytes of lesioned
striatum in 6-OHDA model of PD (Nakagawa and Schwartz,
2004). Yet, in a MPTP model, GDNF mRNA expression did not
change (Hidalgo-Figueroa et al., 2012). This difference can be due
to the fact that 6-OHDA is given with an acidic vehicle solution.
No expression of GDNF in microglia was detected (Hidalgo-
Figueroa et al., 2012). It has been reported that exogenous
GDNF injection to spinal cord upon injury increased number of
phagocytic microglia in the spinal cord after SCI (Chang et al.,
2006). Nevertheless, in another study, GDNF administered in
nanoparticles to spinal cord upon surgery did not affect astrocyte
or microglial reactivity after SCI (Wang et al., 2008).

NT-3

NT-3 protein was found in intact spinal cord (Dreyfus et al.,
1999). However, mRNA levels were too low to be detected in the
region (Widenfalk et al., 2001; Smith et al., 2013). After SCI, NT-3
increased in neurons close to the lesion, at day 3 post-injury and
remained chronically upregulated (Qin et al., 2006).

NT-3 mRNA has been shown to increase in spinal cord only in
OLGs in chronic demyelination model of MS disease (Smith et al.,
2013). Exogenous N'T-3 injection upon injury to corpus callosum
has increased mature OLGs 2 weeks post-injury and resulted in
less severe demyelination (Jean et al., 2003). In another study,
NT-3 decreased microglial activation after mechanical injury in
optic nerve (Sobrado-Calvo et al., 2007).

MANF

Mesencephalic astrocyte-derived neurotrophic factor protein is
primarily expressed in mature neurons in the intact cortex,
whereas neither astrocytes nor microglia express it (Shen
et al, 2012; Tseng et al, 2018). After transient ischemic
stroke, MANF levels were elevated in the brain in an acute
phase within few hours to few days (Yu et al, 2010). In an
acute phase of severe transient ischemia, MANF expression

was upregulated in astrocytes, OLGs and microglia in the
ischemic cortex (Shen et al.,, 2012). However, in these studies
antibodies were not validated with KO tissue. Especially in
activated amoeboid microglia, MANF-immunoreactivity was
intense and co-existed with induction of ER stress markers.
Also in vitro studies revealed that ER stress induces MANF
expression in glial cells. ER stress is a common finding in
neurodegenerative diseases such as ALS, AD, HD, and PD which
involve protein misfolding, and it may play a role not only in
protein aggregation but also directly in disruption of synaptic
function (Cabral-Miranda and Hetz, 2017). Overexpression of
MANF increased the number of phagocytic microglia in the
peri-infarct region at 4 days after stroke (Mitlik et al., 2018).

CONCLUSION AND FUTURE ASPECTS

This review summarizes available NTF expression data, compiles
existing evidence on the effects of glial NTF signaling in healthy
conditions and in disease models (Figure 1), and highlights the
importance of this topic for future studies. The relationship
between NTFs and glia is crucial for both the developing and
adult brain. While some of these factors, such as NT-3 and CNTE,
have highly potent effects on gliogenesis, others like BDNF and
GDNE are important for glia-mediated synapse formation.

Neurotrophic factors play significant roles during neuro-
degenerative disorders. In many cases, these are evident by their
altered temporal regulation in glial cells. As some exogenously
administered NTFs, such as BDNF and NGE affect glial
activation states with beneficial effects on disease outcomes, they
are promising candidates for future therapies. Particularly in
the case of ischemic stroke, modulation of inflammation and
astrocyte scar formation could prevent delayed damage and
widen the current, narrow therapeutic time window. The survival
and differentiation promoting properties of NTFs on glia have
also been established. In demyelinating disease models, NT-3 and
BDNF have been linked to less severe phenotypes. As such, their
potential to ameliorate the symptoms of and enhance recovery
in diseases such as MS should not be overlooked. An improved
understanding of the involvement of glia and NTFs in the
etiology of neurological disorders is essential to the advancement
of drug interventions. In line with this, the development of high-
quality NTF antibodies and glial markers would provide powerful
tools for exploring their fundamental functions. Furthermore,
single-cell transcriptional, proteomic, and metabolic analysis
implemented in conjunction with cell-specific knockout studies
would advance the field considerably.
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