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Heart failure (HF) is one of the most frequent heart diseases. It is usually characterized
with structural and functional cardiac abnormalities followed by dysfunction of
autonomic cardiac control. Current methods of heartbeat interval analysis are not
capable to differentiate HF patients and some new differentiation of HF patients
could be useful in the determination of the direction of their treatment. In this study,
we examined potential of the ratio of the short-term and long-term scaling exponents
(α1 and α2) to separate HF patients with similar level of reduced cardiac autonomic
nervous system control and with no significant difference in age, left ventricular ejection
fraction (LVEF) and NYHA class. Thirty-five healthy control subjects and 46 HF patients
underwent 20 min of continuous supine resting ECG recording. The interbeat interval
time series were analyzed using standardized power spectrum analysis, detrended
fluctuation analysis method and standard Poincaré plot (PP) analysis with measures
of asymmetry of the PP. Compared with healthy control group, in HF patients linear
measures of autonomic cardiac control were statistically significantly reduced (p< 0.05),
heart rate asymmetry was preserved (Cup > Cdown, p < 0.01), and long-term scaling
exponent α2 was significantly higher. Cluster analysis of the ratio of short- and long-
term scaling exponents showed capability of this parameter to separate four clusters of
HF patients. Clusters were determined by interplay of presence of short-term and long-
term correlations in interbeat intervals. Complementary measure, commonly accepted
ratio of the PP descriptors, SD2/SD1, showed tendency toward statistical significance
to separate HF patients in obtained clusters. Also, heart rate asymmetry was preserved
only in two clusters. Finally, a multiple regression analysis showed that the ratio α1/α2

could be used as an integrated measure of cardiac dynamic with complex physiological
background which, besides spectral components as measures of autonomic cardiac
control, also involves breathing frequency and mechanical cardiac parameter, left
ventricular ejection fraction.

Keywords: heart failure, scaling exponents, detrended fluctuation analysis, Poincaré plot, autonomic cardiac
control, asymmetry
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INTRODUCTION

Real-life experience warns us that patients do not have the
same clinical response to a single treatment regimen and that
traditionally accepted clinical parameters are not good enough
predictors of the success of the performed therapy. This is also
the case in various areas of the heart failure (HF) treatment. For
instance, despite the availability of advanced imaging techniques
and strict clinical, echocardiographic and electrocardiographic
criteria for the selection of patients with HF and an indication
for cardiac resynchronization therapy device implantation, still
20–40% of these patients do not have positive response to this
therapy (Dhesi et al., 2017). Therefore, in this field it is necessary
to find new ways of separating HF patients, with the intent of
defining a group of them who would benefit most from the
cardiac resynchronization therapy.

Both intrinsic heart rate and its modulation are primarily
determined by alterations in the autonomic tone. The autonomic
tone is the general activity rate of the autonomic nervous system
(ANS) and it is considered to refer to its long-term activity.
It is accepted that measurements of linear time domain and
frequency domain variables of heart rate variability (HRV) are
simple and practical tools to assess autonomic function (Akselrod
et al., 1981; Task Force of the ESC and the NASPE, 1996).
However, introduction of methods derived from non-linear
dynamics for analyzing HRV have shown new complementary
insights into dynamic and structural nature of HRV signals
(Eke et al., 2002, 2012; Sassi et al., 2015; Platiša et al., 2016).
Since multiple regulatory mechanisms of cardiac control operate
across different time scales and have shown scaling behavior,
classical linear signal analysis methods are often unsuitable
to quantify complex HRV content which is far from simple
periodicity. One of the featured groups of non-linear measures
in quantifying complex physiological dynamics is a group of
fractal measures which are used to assess self-affinity of heartbeat
fluctuations over multiple time scales. Fractal organization of
healthy sinus rhythm dynamics represents complex output from
linear and non-linear processes, usually with non-stationary
properties. Long-term scaling properties of interbeat time series
was first quantified by the scaling exponent (β) as a slope of the
regression line of the power versus frequency relation on log-
log graph (Kobayashi and Musha, 1982; Saul et al., 1987). In
general, the power law scaling exponent is typically calculated
in the frequency domain as the β or in the time domain as the
Hurst exponent (H) (Bassingthwaighte et al., 1994; Eke et al.,
2000). The technique of detrended fluctuation analysis (DFA),
based on modified root mean square analysis of a random
walk, was proposed to assess the intrinsic correlation properties
of a complex cardiac system where scaling exponent (α) of
approximately 1 indicates fractal-like behavior of healthy heart
rate dynamics (Peng et al., 1995). The obtained exponent is
similar to the Hurst exponent, except that DFA may also be
applied to non-stationary signals. With this method, the presence
of correlations in the fluctuations of heartbeat intervals can be
quantified by short- and long-term scaling exponents (α1 and α2)
in two distinct linear regions that determine range of the short-
and long-term correlation properties.

Beside monofractal complexity, multifractal analysis intro-
duced by Ivanov et al. (1999) revealed new informations
about physiological complexity of HRV signals. Multifractal
complexity arises from a large number of local scaling exponents
which physiological background was explained with involvement
of coupled cascades of feedback loops in healthy cardiac
system. More, Amaral et al. (2001) showed significant impact
of parasympathetic control on the multifractal properties on
HRV where atropine administration resulted with a marked
loss of multifractality. Reduced multifractality also was found
in pathological state, in patients with congestive HF (Ivanov
et al., 1999). Further, Silva et al. (2014) found that loss of
multifractality may indicate an impairment of the left ventricular
ejection fraction (LVEF) in patients after acute myocardial
infarction. One of the later papers of Ivanov et al. (2009)
showed that physiological or physical systems with similar
1/f scaling behavior can differ in various levels of complexity
which depend on the nature of control mechanisms. The
necessity for developing new methods to detect the network
between individual organ systems as well as between network
of coupled control mechanisms, in response to changes in
(patho)physiological conditions, has been recognized in the
proposed interdisciplinary area known as a Network Physiology
(Lin et al., 2016; Ivanov et al., 2017). This new field focuses
on understanding physiological functions with new theoretical
framework and analytic formalism.

Fractal view of physiology has become the basis in under-
standing and controlling physiological networks where both
homeostatic and allometric control mechanisms existed (West,
2009). Homeostatic control has a negative feedback character
which is local and rapid while allometric control can take into
account long-range interactions in complex phenomena (West,
2010). Hence, in recent modeling the dynamics and control of
complex physiological phenomena the fractional calculus is more
frequently applied (Bogdan et al., 2013). Furthermore, there have
been efforts of reconstructing the network between physiological
processes when some physiological signals are not observed
yet capturing their fractional behavior through fractional order
derivatives (Gupta et al., 2018).

In this study, we analyzed heterogeneity of HF patients
through application of various methods of HRV analysis. More,
we examined potential of the ratio of short- and long-term
scaling exponents to differentiate subgroups of HF patients with
different short-term and long-term correlation properties. We
also calculated standard linear HRV measures with twofold aim.
The first one was to show that our data are in line with previously
reported results (their reduction and alterations in HF patients)
and the second one was to help us to reveal the physiological
background of the obtained results.

MATERIALS AND METHODS

Subjects
The group of HF patients comprised 46 patients (nine females)
with a mean age of 59 ± 2 years (range 37–78 years). All patients
had HF with reduced LVEF, on average below 30%. They all
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had sinus rhythm without any supraventricular or ventricular
rhythm disorders, including supraventricular and ventricular
extrasystoles. Most of them were in functional class NYHA
II (36 patients) and 10 patients had worse functional capacity
(NYHA III). Majority of HF patients in this study were receiving
optimal therapy for HF, including β-blockers, angiotensin-
converting enzyme (ACE) inhibitors, and aldosterone blockers.
An individual therapeutic approach had always been applied
to the patients, which means that patients were not exclusively
receiving in the guidelines recommended, but maximum
tolerated doses of drugs, and rarely, in the presence of certain
contraindications, some of previously mentioned group of drugs
was left out of therapy. Control healthy group was formed from
35 volunteers (17 females) with a mean age 44 ± 2 years (range
35–59 years). All subjects were non-smokers, without medical
history. Ethic Committee of the Faculty of Medicine, Belgrade
University approved this study (Ref. Numb. 29/III-5).

Experimental Protocol and
Data Acquisition
Experiments were performed in the morning between 7:00 and
10:00 a.m. in a quiet setting at the Pacemaker Center of the
Clinical Center of Serbia and at the Laboratory for Biosignals,
Institute of Biophysics, Faculty of Medicine, Belgrade University.
Twenty minutes electrocardiogram (ECG) and respiratory signal
data were recorded with sampling rate 1 kHz using Biopac
and AcqKnowledge 3.9.1 software (BIOPAC System, Inc.,
Santa Barbara, CA, United States). The ECG data were collected
using the ECG 100C electrocardiogram amplifier module. The
classic 1 channel ECG for the measurement of Lead I based
on three electrodes placed on left and right shoulder and the
right leg was used. The RSP 100C respiratory pneumogram
amplifier module with TSD 201 transducer attached to the
belt (adjustable nylon strap) was used to measure abdominal
expansion and contraction. Transducer was placed on the
abdomen, at the point of minimum circumference (maximum
expiration). Subjects were relaxed before measurement, and they
were supine and breathed with spontaneous breathing frequency.
Interbeat (RR) intervals and interbreath intervals were extracted
from recorded signals using the Pick Peaks tool from Origin 6.0
(Microcal Origin, Northampton, MA, United States). Breathing
frequency (BF) was obtained as a reciprocal value of the mean
interbreath interval.

HRV Analysis in Time Domain
A few standard HRV parameters in time domain were
determined from time series of RR intervals with our Matlab
program: (1) standard deviation of the RR intervals (SDNN), (2)
root mean square difference between successive RR intervals, and
(3) the percent of RR intervals which were longer by more than
50 ms than the immediately following RR interval (pNN50) (Task
Force of the ESC and the NASPE, 1996).

Frequency Domain Analysis
Heart rate variability analysis in frequency domain was
performed using Origin 6.0 (Microcal Origin, Northampton,

MA, United States) (Platiša and Gal, 2006; Kapidžić et al., 2014).
RR interval series were resampled using the mean RR-value for
each subject. Power spectrum densities were obtained using FFT
with Hanning window (Microcal Origin, Northampton, MA,
United States). Absolute values of spectral components were
determined carrying out an integration of the power spectrum in
the range of total power (TP, 0.0033–0.4 Hz), very low frequency
(VLF, 0.0033–0.04 Hz), low frequency (LF, 0.04–0.15 Hz) and
high frequency (HF, 0.15–0.4 Hz) (Task Force of the ESC and
the NASPE, 1996). The power of RR variability in VLF range
is related to long-term regulation mechanisms related to the
thermoregulation, to the renin-angiotensin system and to other
humoral factors (Task Force of the ESC and the NASPE, 1996).
The physiological interpretation of LF spectral component is
still controversial because both sympathetic and parasympathetic
contributions are involved in this measure (Task Force of the ESC
and the NASPE, 1996; Billman, 2011), while HF spectral power
is generally accepted as a marker of parasympathetic activation
(Akselrod et al., 1981; Billman, 2011). In order to achieve a
normal distribution of the data, natural logarithm of spectral
powers in absolute units was taken. Relative units of spectral
powers were calculated by dividing each spectral component with
the sum of all three spectral powers.

Detrended Fluctuation Analysis (DFA)
A modification of the random walk model analysis has been used
to quantify the fractal-like scaling properties of RR interval time
series (Peng et al., 1995). The root-mean-square fluctuations of
the integrated and linear detrended data F(n) were measured
in observation windows of varying sizes n and then plotted
against the size of window on a log–log scale. The power-law
behavior was quantified as the slope of the linear regression
line, log F(n) ∼ α log n. This slope is defined as the scaling
exponent α. In this study detrended fluctuation function F(n)
was calculated by using algorithm from PhysioNet1 (Goldberger
et al., 2000). The short-term scaling exponent α1 was calculated
over the window size n = (4–16) and the long-term scaling
exponent α2 was calculated over the window size n ≥ 16.
Scaling exponents were estimated with standard errors and the
coefficient of determination (R2) was calculated in OriginPro 8
(OriginLab Corporation, Northampton, MA, United States). An
α < 0.5 characterizes signal with anticorrelations (with stronger
anticorrelations when α is closer to 0). If α = 0.5 there are no
correlations and signal represents (Gaussian) white noise; if α≈ 1
represents 1/f noise and if α = 1.5 the signal is random walk
(Brownian motion) (Peng et al., 1995; Bashan et al., 2008).

Asymmetry of the Poincaré Plot
A typical HRV Poincaré plot (PP) represents scatter graph
of RRi+1 = f (RRi). The two standard parameters SD1 and
SD2, called the PP descriptors, describe distribution of points
around two diagonals. It is accepted that SD1 describes instant
heartbeat intervals variability and quantifies short-term HRV,
while SD2 quantifies long-term HRV. Pearson correlation
coefficient of PP, noted as r, measured the association between

1https://physionet.org/physiotools/dfa/
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all pairs (RRi, RRi+1) in the time series of RR intervals
of one subject. Beside excellent visualization capability and
short- and long-term HRV information quantification, the
standard PP technique revealed asymmetry as one of unexploited
physiological phenomena in resting healthy people (Piskorski
and Guzik, 2007). Guzik et al. (2006) extended standard
descriptor SD1 (dispersion of the PP across the line of identity,
y = x) to two new finer descriptors SD1up and SD1down. Shortly,
pattern of heart rate during acceleration is different to the pattern
of deceleration, i.e., in deceleration contribution of the points
above the line of identity (RRi < RRi+1) is higher than that of
the points below the line (RRi > RRi+1). They introduced two
variables Cup and Cdown:

Cup =
SD12

up

SD12 (1)

Cdown =
SD12

down
SD12 (2)

which determine the relative contribution of SD1up and SD1down
to SD1. Analysis of the PP of RR intervals was done with
our Matlab program (The MathWorks Inc., United States).
Relation between Cup (Cdown) and Bauer’s deceleration
(acceleration) capacity (Bauer et al., 2006) is explained in
the Supplementary Material.

Statistics
Normal distribution of data was examined by the Shapiro–Wilk
test (appropriate for a small sample size of up to 50 subjects).
We used natural logarithm of the spectral powers to obtain their
normalized values. The K-means cluster analysis with Euclidean
distance measure was performed for continuous variable – the
ratio of the scaling exponents α1/α2. One-way ANOVA was
applied to find significant difference in mean values of each
variable or parameter: (1) between control and HF group;
(2) between four clusters in HF group with Bonferroni post hoc
test; and (3) between control and each cluster of HF with
Bonferroni post hoc test. Multiple regression analysis was applied
to find which variables and parameters predict the ratio of
the scaling exponents in HF patients. Statistical analyses were
performed using IBM Statistical Package for the Social Sciences
(SPSS) version 19.0. Data are presented as mean ± standard
errors. P < 0.05 was used as statistically significant.

RESULTS

Table 1 shows clinically relevant data of HF subjects and
descriptive statistic results for all linear and non-linear HRV
measures in healthy control group and HF patients. It can
be observed that, as it was expected, patients with HF had
statistically significantly reduced values of linear measures
of autonomic cardiac control compared with healthy control
group. However, some quantifiers of HRV properties were not
statistically different between groups (Cup and Cdown, as well as
short-term scaling exponent α1). Also, younger control subjects
had higher heart rate than HF patients (p< 0.01).

TABLE 1 | Anthropometric data, clinical parameters, and linear and non-linear
parameters of heart interbeat intervals in healthy control subjects and heart
failure patients.

Control, Heart failure,

N = 35 (17 F) N = 46 (9 F) p

Age (years) 44 ± 2 59 ± 2 < 0.01

NYHA 2.22 ± 0.10

LVEF (%) 27.52 ± 0.93

SDNN (ms) 46.3 ± 2.6 34.1 ± 2.4 < 0.01

RMSSD (ms) 31.6 ± 2.8 18.4 ± 1.5 < 0.01

pNN50 (%) 11.2 ± 2.1 3.02 ± 0.67 < 0.01

SD1 (ms) 16.4 ± 1.4 11.8 ± 1.1 0.013

SD2 (ms) 43 ± 2.4 32.0 ± 2.3 < 0.01

r, Pearson PP 0.735 ± 0.028 0.727 ± 0.035 0.86

SD2/SD1 2.94 ± 0.16 3.42 ± 0.27 0.16

Cup 55.3 ± 1.0∗∗ 54.27 ± 0.96∗∗ 0.47

Cdown 44.7 ± 1.0 45.72 ± 0.96 0.46

RR (s) 0.873 ± 0.018 0.938 ± 0.023 < 0.01

ln[VLF (ms2)] 5.68 ± 0.15 5.08 ± 0.19 0.04

ln[LF (ms2)] 5.59 ± 0.15 3.97 ± 0.18 < 0.01

ln[HF (ms2)] 5.27 ± 0.17 3.86 ± 0.19 < 0.01

ln[TP (ms2)] 6.72 ± 0.14 5.70 ± 0.17 < 0.01

BF (Hz) 0.239 ± 0.10 0.258 ± 0.089 0.49

α1 0.895 ± 0.029 1.000 ± 0.035 0.22

α2 0.830 ± 0.022 0.932 ± 0.020 < 0.01

α1/α2 1.111 ± 0.052 1.099 ± 0.047 0.44

∗∗p < 0.01 (Cup vs. Cdown). Data are presented as mean values ± standard errors.
LVEF, left ventricular ejection fraction; SDNN, standard deviation of RR intervals;
RMSSD, root mean square of successive differences of RR intervals; pNN50,
percentage of consecutive RR intervals that deviate from one another by more than
50 ms. SD1, SD2, and r (Pearson PP), Cup, and Cdown are parameters of Poincaré
plot. RR, mean interbeat interval; VLF, very low frequency spectral component;
LF, low frequency spectral component; HF, high frequency spectra component;
TP, total power of spectral power density; BF, breathing frequency; α1, short-term
scaling exponent; α2, long-term scaling exponent.

By applied cluster analysis we found that the ratio of the short-
and the long-term scaling exponents, α1/α2, was significantly
capable to differentiate four clusters of HF subjects. All curves
of detrended fluctuation functions F(n) plotted versus segment
size n on the log-log graph are presented on Figure 1 for healthy
subjects and on Figure 2 for the four clusters of HF patients.
Values of estimated scaling exponents for each patient in each
cluster of HF group could be found in the Tables 2–5.

Table 6 reports results of cluster analysis, with the mean and
standard errors of all linear and non-linear HRV indexes for
each cluster. Averaged values of short-term scaling exponent
(α1), long-term scaling exponent (α2), as well as their ratio for
each cluster and control group of healthy subjects are shown
on Figure 3. It can be seen that in HF patients with reduced
autonomic cardiac control, interplay of different correlation
properties in heart rhythm over short-term and long-term
scales determines four independent subgroups. In comparison of
clusters with control group we found that there is no significant
difference in α1 neither in the ratio α1/α2 between control and
2nd cluster, while α2 was significantly lower in control group than
in the first two clusters (Figure 3).
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FIGURE 1 | Detrended fluctuation functions F (n) for time series of interbeat
intervals (approximately N = 1,200 samples) versus segment size n on the
log-log graph, in the control group of healthy subjects. Dashed line separates
the two ranges in which the scaling exponents have been determined (n = 16).

Comparison of heart rate dynamics indices between patients
with HF showed that there is no significant difference between
time HRV measures neither between absolute values of spectral
components. However, we found significant difference between
subgroups in relative values of spectral powers as well as
in their comparison with control group (Figure 4). Results
of statistical analysis could be found in the legend of the
Figure 4. Also, there is no significant difference with respect
to age, NYHA, LVEF, or breathing frequency between clusters
patients (Table 6).

Poincaré plot descriptors SD1 and SD2 showed that they were
not able to separate patients in obtained clusters, but there was a
tendency toward statistical significance for their ratio SD2/SD1
(Table 6 and Figure 5). Asymmetry variables Cup and Cdown,
determined from the Poincaré plots, indicated that HF patients
could be separated only into two subgroups: one with dominant
deceleration mechanism and the second one, where there was
no statistical difference between deceleration and acceleration
pattern of regulatory mechanisms (Figure 6). We also found that
there is no statistical difference between control group and each
cluster in Cup and Cdown.

FIGURE 2 | Detrended fluctuation functions F (n) for time series of interbeat intervals versus segment size n on the log-log graph; in the first (A), second (B), third (C),
and fourth (D) cluster of heart failure patients. Dashed lines separate the two ranges in which the scaling exponents have been determined (n = 16). Estimated
scaling exponents with the coefficient of determination for every patient in each cluster are given in Tables 2–5.
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TABLE 2 | Estimated values of short-term (α1) and long-term (α2) scaling
exponents in the first cluster of heart failure patients.

Patient α1 R2 α2 R2

1 0.728 ± 0.060 0.95 1.143 ± 0.012 0.99

2 0.661 ± 0.011 0.99 1.001 ± 0.014 0.99

3 0.661 ± 0.038 0.98 0.937 ± 0.021 0.99

4 0.536 ± 0.027 0.98 0.8971 ± 0.0037 0.99

5 0.420 ± 0.028 0.97 1.0636 ± 0.0077 0.99

6 0.550 ± 0.012 0.99 0.831 ± 0.051 0.99

7 0.414 ± 0.013 0.99 0.863 ± 0.012 0.99

8 0.512 ± 0.017 0.99 0.940 ± 0.016 0.99

Values are mean ± standard error. R2, coefficient of determination (the
goodness of linear fit).

TABLE 3 | Estimated values of short-term (α1) and long-term (α2) scaling
exponents in the second cluster of heart failure patients.

Patient α1 R2 α2 R2

1 1.015 ± 0.041 0.99 1.035 ± 0.027 0.99

2 0.956 ± 0.016 0.99 0.904 ± 0.018 0.99

3 0.948 ± 0.018 0.99 0.954 ± 0.015 0.99

4 0.830 ± 0.022 0.99 1.0147 ± 0.0069 0.99

5 0.964 ± 0.028 0.98 1.1064 ± 0.0094 0.99

6 0.827 ± 0.036 0.99 0.999 ± 0.012 0.99

7 0.898 ± 0.044 0.99 0.929 ± 0.015 0.99

8 1.060 ± 0.043 0.99 1.0073 ± 0.050 0.97

9 0.967 ± 0.033 0.99 1.033 ± 0.038 0.98

10 0.963 ± 0.016 0.99 0.929 ± 0.032 0.99

11 0.992 ± 0.014 0.99 0.9549 ± 0.0059 0.99

12 0.901 ± 0.0.37 0.99 1.021 ± 0.044 0.97

13 0.862 ± 0.044 0.99 0.988 ± 0.020 0.99

14 1.0029 ± 0.0088 0.99 1.227 ± 0.012 0.99

Values are mean ± standard error. R2, coefficient of determination.

A multiple regression analysis was performed to determine
predictors of the ratio α1/α2. We found that relative spectral
powers (rHF and rVLF), the LVEF, normalized total spectral
power, and breathing frequency statistically significantly
predicted α1/α2 in HF subjects, F(5,40) = 20.966, p < 0.01,
R2 = 0.724 (Table 7). This result indicates complex physiological
background of the ratio of scaling exponents which comprised
relative cardiac vagal and central autonomic control, mechanical
efficiency of the left ventricle, total variability as well as
modulatory effect of the breathing process.

DISCUSSION

In the last few decades DFA method, i.e., short-term and long-
term scaling exponents separately, showed a greater prediction
potential in several cardiac diseases than any parameter from
HRV analyses. In this study, we found that in HF patients
short- and long-term correlation properties quantified by scaling
exponents could gradually change in the opposite directions.

TABLE 4 | Estimated values of short-term (α1) and long-term (α2) scaling
exponents in the third cluster of heart failure patients.

Patient α1 R2 α2 R2

1 1.301 ± 0.033 0.99 1.065 ± 0.025 0.99

2 1.238 ± 0.016 0.99 0.950 ± 0.018 0.99

3 1.187 ± 0.037 0.99 1.031 ± 0.015 0.99

4 1.119 ± 0.029 0.99 0.853 ± 0.019 0.99

5 0.965 ± 0.050 0.98 0.771 ± 0.038 0.97

6 0.978 ± 0.037 0.99 0.778 ± 0.017 0.99

7 0.959 ± 0.018 0.99 0.8275 ± 0.0086 0.99

8 1.104 ± 0.062 0.98 0.892 ± 0.066 0.92

9 1.137 ± 0.038 0.98 0.557 ± 0.051 0.88

10 1.339 ± 0.018 0.99 1.189 ± 0.040 0.99

11 1.162 ± 0.041 0.99 0.909 ± 0.016 0.99

12 1.088 ± 0.020 0.99 0.865 ± 0.035 0.97

13 0.944 ± 0.032 0.99 0.697 ± 0.022 0.98

14 1.017 ± 0.016 0.99 0.841 ± 0.029 0.99

15 1.1356 ± 0.0083 0.99 0.968 ± 0.024 0.98

Values are mean ± standard error. R2, coefficient of determination.

TABLE 5 | Estimated values of short-term (α1) and long-term (α2) scaling
exponents in the fourth cluster of heart failure patients.

Patient α1 R2 α2 R2

1 1.060 ± 0.025 0.99 0.7804 ± 0.0081 0.99

2 1.235 ± 0.018 0.99 0.847 ± 0.030 0.99

3 1.179 ± 0.058 0.99 0.828 ± 0.037 0.98

4 0.9603 ± 0.0018 0.99 0.739 ± 0.020 0.99

5 1.3185 ± 0.052 0.99 0.869 ± 0.065 0.91

6 1.1010 ± 0.0046 0.99 0.729 ± 0.029 0.97

7 1.3314 ± 0.0092 0.99 0.8894 ± 0.019 0.99

8 1.412 ± 0.011 0.99 0.504 ± 0.062 0.81

9 1.2142 ± 0.0089 0.99 0.863 ± 0.011 0.99

Values are mean ± standard error. R2, coefficient of determination.

We introduced new parameter, the ratio of short- and long-
term correlation properties of heart interbeat fluctuations, which
could be used as an integrative parameter of regulatory cardiac
mechanisms in HF patients. This parameter is capable to
differentiate four clusters which could not be simply classified by
some clinical parameters (LVEF or NYHA) or solely by linear and
non-linear measures of autonomic cardiac control.

The finding for the first cluster could be a good example
of previously recognized interactions between short-term and
long-term cardiovascular control mechanisms under specific
pathological conditions (Hoyer et al., 2007). Namely, Hoyer et al.
(2007) showed that cardiovascular system incorporates dominant
short- and long-term control mechanisms which are in optimal
adjustment in normal healthy conditions. Under pathological
conditions, realized with increased collapse of the short feedback
loop, the inverse association between their randomness has
been recognized. As a system inherent type of readjustment,
short-term randomness increased and long-term randomness
decreased. We found in the first cluster of HF patients that
the ratio of the scaling exponents had the lowest value; α1 was
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TABLE 6 | Comparison of clinical data, and linear and non-linear HRV measures between four clusters of heart failure patients.

First (N = 8) Second (N = 14) Third (N = 15) Fourth (N = 9) p

Age (years) 62.1 ± 2.7 55.4 ± 2.5 61.1 ± 2.3 59.2 ± 3.2 0.85

NYHA 2.25 ± 0.16 2.21 ± 0.11 2.27 ± 0.12 2.11 ± 0.11 0.28

LVEF (%) 28.1 ± 2.7 25.8 ± 1.7 28.9 ± 1.7 27.3 ± 1.7 0.61

SDNN (ms) 26,6 ± 4.4 41.8 ± 4.8 31.0 ± 3.5 34.0 ± 6.5 0.15

RMSSD (ms) 20.4 ± 3.0 21.9 ± 3.1 16.4 ± 2.1 14.8 ± 3.5 0.29

pNN50 (%) 2.3 ± 1.2 4.9 ± 1.7 2.19 ± 0.82 2.1 ± 1.1 0.34

SD1 (ms) 14.8 ± 2.6 10.7 ± 1.6 13.0 ± 2.5 8.83 ± 6.4 0.37

SD2 (ms) 25.6 ± 4.2 36.2 ± 4.8 30.9 ± 3.5 33.1 ± 6.4 0.50

r, Pearson PP 0.44 ± 0.10 0.818 ± 0.029 0.707 ± 0.061 0.872 ± 0.018 < 0.01

SD2/SD1 2.06 ± 0.48 3.95 ± 0.62 3.25 ± 0.43 4.10 ± 0.33 0.07

RR (s) 1.027 ± 0.043 0.932 ± 0.041 0.910 ± 0.047 0.916 ± 0.044 0.24

ln[VLF (ms2)] 4.10 ± 0.43 5.40 ± 0.37 5.16 ± 0.31 5.31 ± 0.30 0.36

ln[LF (ms2)] 2.88 ± 0.43 4.04 ± 0.34 3.93 ± 0.26 4.88 ± 0.28 0.06

ln[HF (ms2)] 4.12 ± 0.35 4.10 ± 0.34 3.47 ± 0.35 3.89 ± 0.47 0.46

ln[TP (ms2)] 5.06 ± 0.35 5.88 ± 0.36 5.66 ± 0.28 6.07 ± 0.31 0.79

rVLF (%) 43.4 ± 7.3 63.5 ± 3.6 63.1 ± 4.7 53.8 ± 6.5 0.045

rLF (%) 12.6 ± 2.4 17.8 ± 2.0 21.9 ± 3.4 32.1 ± 3.2 0.002

rHF (%) 44.0 ± 7.5 18.6 ± 2.2 15.0 ± 3.0 14.1 ± 4.1 0.001

BF (Hz) 0.247 ± 0.022 0.252 ± 0.017 0.265 ± 0.016 0.266 ± 0.020 0.74

Data are presented as mean values ± standard errors. LVEF, left ventricular ejection fraction; SDNN, standard deviation of RR intervals; RMSSD, root mean square of
successive differences of RR intervals; pNN50, percentage of consecutive RR intervals that deviate from one another by more than 50 ms. SD1, SD2, and r (Pearson PP),
Cup, and Cdown are parameters of Poincaré plot. RR, mean interbeat interval. Absolute and relative values of VLF, very low frequency spectral component; LF, low
frequency spectral component; HF, high frequency spectral component; TP, total power of spectral power density; BF, breathing frequency.

significantly reduced and significantly lower than α2. The short-
term scaling exponent has shown greater clinical discrimination
of various cardiac diseases. A reduced α1 indicates loss of fractal
organization in cardiac interbeat intervals and it is a good
predictor of mortality in post-infarction patients (Huikuri et al.,
2000; Tapanainen et al., 2002), specific risk factor for cardiac
death in the elderly and it has been proposed as a strong predictor
for HF patients (Ho et al., 1997; Mäkikallio et al., 2001). In
this state of cardiac system with reduced ANS activity, loss
of short-term correlations in heartbeat intervals could result
from reduced capacity for cardiovascular adaptation, vagal tone
(high percentage of rHF) and/or alterations in breathing pattern
independent on the breathing frequency. This is an interesting
finding because there are plenty of data on factors that affect
the breathing frequency in HF, such as the effects of some drugs
like sedatives, or LVEF, NYHA, some lung diseases, but we have
not found out enough about alterations in breathing patterns so
far (Forleo et al., 2015). In our earlier papers we showed that
fractal organization of interbeat intervals dynamic could also be
altered with some physiological processes like standing, exercise,
and recovery (Platiša and Gal, 2008). Additionally, in our study
with voluntary breathing at different breathing frequencies we
found reduction of α1 with increase in breathing frequency
(Platiša and Gal, 2010). Perakakis et al. (2009) also showed that
breathing frequencies may bias evaluation of short-term fractal
scaling properties.

Compared with control, in patients from this cluster fractal
long-term correlations become stronger (α2 increased). Some
previous studies have reported change of fractal scaling behavior
with aging, where both scaling exponents increased with aging

(Ryan et al., 1994; Lipsitz, 1995; Pikkujämsä et al., 1999).
That type of correlations is usually related to the rigidness of
regulatory mechanisms with reduced control ability. According
Guzik’s variables of asymmetry these patients also preserved
asymmetry in short HRV, as it is observed in healthy subjects,
which indicates that dominant deceleration mechanism had a
different pattern from acceleration mechanism/s (Guzik et al.,
2006). Relative spectral powers of very low frequency (rVLF)
and of high frequency (rHF) regions had similar percentage
values and we assumed that regulatory mechanisms in this
range of frequencies are equally involved in the state of reduced
autonomic cardiac control as the result of readjustment in system
control mechanisms.

In the second cluster we did not find statistically significant
crossover between scaling exponents (fractal correlations are
very similar in both ranges). This cluster is very similar to the
control group, but with significantly higher long-term scaling
exponent α2. However, comparison of distributions of relative
spectral powers revealed similar rHF, but with a significant
reorganization of rLF and rVLF and with domination of slower
regulatory mechanism from domain of very low frequencies in
these HF patients. More, asymmetry was not reached, and the
pattern of short-term deceleration and acceleration mechanisms
was not different. We only may speculate that patients from
second cluster were in state with some developed compensatory
mechanisms of cardiac control.

Regarding relationship between scaling exponents, the third
and fourth cluster were similar, i.e., short-term scaling exponent
is significantly higher than long-term. Compared with control
group, α1 gradually increased while α2 remained statistically
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FIGURE 3 | Mean values plus standard errors of short-term scaling exponent
(α1), long-term scaling exponent (α2) and their ratio α1/α2 in control group and
four clusters of heart failure patients. ∗∗p < 0.01 (α1 vs. α2). Short-term
scaling exponent (α1) values were significantly different between control group
and three clusters (1st, 3rd, and 4th), p < 0.01. Long-term scaling exponent
(α2) values were significantly different between control group and two clusters
(1st and 2nd), p < 0.01. The ratio α1/α2 was significantly different between
control group and two clusters (1st and 4th), p < 0.01, and with tendency
toward statistical significance with the 3rd cluster (p = 0.07). After
comparisons only between clusters for α1 we obtained following significances:
(1st vs. 2nd, 1st vs. 3rd, and 1st vs. 4th, p < 0.01) and (2nd vs. 3rd, and 2nd
vs. 4th, p ≤ 0.01). For α2 we obtained: (1st vs. 4th, p < 0.01) and (2nd vs.
3rd, p = 0.06 and for 2nd vs. 4th, p < 0.01). For the ratio α1/α2 all
comparisons were statistically significant (p < 0.01).

unchanged. This type of interactions between short-term and
long-term randomness under HF as pathological condition, also
may be another type of system inherent readjustment, here in
the opposite direction compared with the first cluster. In the
literature, it can be found that the increase in α1 is usually
related to vagal withdrawal (Tulppo et al., 2001; Castiglioni et al.,
2011) but in this HF states probably with preserved feedback
loops of regulatory mechanisms. Tendency to decreased α2 in
the fourth cluster may be related to sinus node dysfunction (Shin
et al., 2011) or the β-receptor blockade (Castiglioni et al., 2011).
It is believed that complexity of interbeat interval fluctuations
is generated solely by ANS activity and that quantified linear
and non-linear parameters of HRV are quantifiers of modulatory
mechanisms of ANS. However, recently published data revealed
that interbeat intervals reflect intrinsic complexity with origin
in sinoatrial node cells (Ponard et al., 2007; Yaniv et al.,
2013) which usually is integrated in the whole complexity
of the heart rhythm. Hence, Yaniv et al. (2013) concluded
that HRV is determined by the intrinsic properties of cells in
the sinoatrial node and the competing influences of the two
branches of the autonomic neural input. With these findings,
the importance of assessments of long- term scaling exponent
has increased. Hotta et al. (2005) showed that α2 is a more
powerful measure for predicting cardiac morbidity and mortality.

FIGURE 4 | The distribution of relative spectral components in clusters
determined by the ratio of the scaling exponents. Values are given as mean
plus standard errors. Relative VLF spectral component (rVLF) was significantly
different between control group and two clusters (2nd and 3rd), p < 0.01.
Relative LF spectral component (rLF) was significantly different between
control group and three clusters (1st, 2nd, and 3rd), p < 0.01. Relative HF
spectral component (rHF) was significantly different between control group
and two clusters (1st and 3rd), p < 0.05, and with tendency toward statistical
significance with the 4th cluster (p = 0.08). Significant and toward significant
differences of comparison between clusters of heart failure patients are for
rVLF (1st vs. 2nd, p = 0.07 and 1st vs. 3rd, p = 0.08), for rLF (1st vs. 4th,
p < 0.01, and 2nd vs. 4th, p = 0.01), and for rHF (1st vs. 2nd, 1st vs. 3rd, and
1st vs. 4th, p < 0.01).

In the study of Shin et al. (2011) long-term scaling exponent
was the only parameter which was capable of discriminating
differences in heart rate dynamics between patients with sinus
node dysfunction. They concluded that reduced value of α2 is a
robust measure and could be an adjunctive tool for improvement
of diagnostic performance in detection of sinus node dysfunction.
The question is whether this finding can be applied to our
patients, because they were mostly treated with highly selective
beta blockers, whereas in the previously mentioned study, non-
selective propranolol was used in blocking the beta receptors.
Also, in healthy subjects in a much lesser extent, such alterations
of scaling exponents are characterized as age-related degradation
of integrated physiological regulatory systems (Iyengar et al.,
1996). Our patients probably had superposition of both effects
which are more pronounced in the fourth cluster. The reason for
decrease of α2 may be related to some other physiological back-
ground (Figure 2D). In the sixth and eighth patient, even with
statistically approved linear regression analysis, a new scaling
regime which is probably related to some slower regulatory
mechanism could be identified. Unfortunately, our time series of
20 min length with approximately 210 points was not long enough
to detect this regime in all patients of the fourth cluster.

It can be observed that the third and fourth cluster are
different with respect to the distribution of asymmetry variables.
While there was asymmetry in the third cluster, in the fourth
cluster short-term asymmetry has ceased to exist. In order to
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FIGURE 5 | Representative example of Poincaré plot in the first (A), second (B), third (C), and fourth (D) cluster of heart failure patients with PP for one healthy
subject. Patient from the first cluster had SD1 = 10.10 ms, SD2 = 12.80 ms, Cup = 62.72% and Cdown = 37.28%. Patient from the second cluster had
SD1 = 7.50 ms, SD2 = 22.30 ms, Cup = 47.42% and Cdown = 52.58%. Patient from the third cluster had SD1 = 4.90 ms, SD2 = 35.30 ms, Cup = 53.8% and
Cdown = 46.2%. Patient from the fourth cluster had SD1 = 3.1 ms, SD2 = 17.7 ms, Cup = 42.63% and Cdown = 57.37%. Control subject had SD1 = 13 ms,
SD2 = 32 ms, Cup = 57.42% and Cdown = 42.76%.

FIGURE 6 | Guzik’s variables of asymmetry in clusters of heart failure patients.
Data are presented as mean values plus standard errors. ∗∗p < 0.01,
∗p < 0.05 (Cup vs. Cdown). There is no significant difference between control
group and each of clusters with heart failure patients.

clarify all these findings, future studies with longer recordings
and/or pharmacological recognition need to be done.

We also noticed that even younger control subjects had
higher heart rate than HF patients. If it is known that the main
pathophysiological feature of HF is the imbalance of ANS with
increased sympathetic activity, then it is expected that patients
with HF will have faster resting rate than control subjects (Hori
and Okamoto, 2012). However, all patients with HF in this study
were receiving β-blockers, and some of them were treated with
additional antiarrhythmics, such as amiodarone or digoxin. Thus,
in all these patients there was iatrogenic decrease of heart rate.
Also, in previous study we found that HF patients with sinus
rhythm and without ventricular extrasystoles have a significantly
lower heart rate compared to HF patients with arrhythmias,
either ventricular or supraventricular (Radovanović et al., 2018).
Finally, it should be added that some researchers suggest
the existence of selectivity of effects of aging on autonomic
function in healthy subjects; more precisely, they believe that
sympathetic function remains unchanged with increasing age
(Parashar et al., 2016).

Results of multiple regression analysis showed that the ratio of
the scaling exponents was significantly predicted with the small
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TABLE 7 | Multiple regression analysis with predictors for the ratio of short-term to
long-term scaling exponents.

b S.E. b β t p

Constant 1.493 0.259 5.772 0.000

rHF (%) −2.518 0.272 −1.318 −9.245 0.000

rVLF (%) −1.468 0.245 −0.863 −6.004 0.000

LVEF (%) 0.014 0.005 0.273 3.023 0.004

ln[TP (ms2)] 0.064 0.024 0.230 2.632 0.012

BF (Hz) 0.932 0.459 0.177 2.031 0.049

rHF, relative spectral component of high frequency domain; rVLF, relative
spectral component of very low frequency domain; LVEF, left ventricular ejection
fraction; ln TP, natural logarithm of total power; BF, breathing frequency. b,
unstandardized regression coefficient; S.E.b, standard error of b; β, standardized
regression coefficient.

alterations in five independent measures which determined four
clusters of HF patients. Comparison of standardized regression
coefficient β values showed that relative spectral components,
rHF and rVLF, had strong negative relationship with the ratio
of the scaling exponents. Relative strength of relationships of
LVEF and lnTP with this ratio was much weaker, while with BF it
was the weakest.

Recognized heterogeneity in HF patients points to the
necessity of introducing new approaches in the analysis of cardiac
dynamics which will comprise the interactions with the other
coupled physiological systems (Ivanov et al., 2017; Kuhnhold
et al., 2017). In this pathological condition, analyses of the
heart–brain interactions are of special importance because of
recognition and quantification of neuroplasticity changes in the
dynamics of the brain stem integrators.

Limitations
The significant limitation of this study is a statistically
significant age difference between healthy controls and HF
patients. It is known that aging, as well as diseases, is
accompanied by significant cardiovascular modifications, both
structural and functional, although there are studies that
indicate that fractal temporal organization of cardiac dynamics
does not break down with healthy aging (Ferrari, 2002;
Schmitt et al., 2009). What is sure is that with aging the
sympathetic activity increases, the renin-angiotensin-aldosterone
system activity decreases, respiratory sinus arrhythmia and
HRV are reduced, as well as effectiveness of cardiovascular
and cardiopulmonary reflexes (Ferrari, 2002; Voss et al., 2015).
Some of these changes are also a characteristic of HF and,
therefore, a large problem is separating truly HF dependent
alterations from those arising from aging. However, we could
not age-match our HF patients and healthy controls, because
it was not feasible to select subjects without any medical
history, even without any risk factor for cardiovascular disease
development, among those who were closer in age to the
HF patients. In our study, patients were treated with a
combination of medications from groups of drugs recommended
for the treatment of HF. The differences among patients
in doses of given drugs remain an inevitable limitation of

this research, since the prescribed dose of the drug was
determined by the patient’s comorbidities, which were numerous
in our patients.

After this study it is necessary to examine the clinical
potential of the ratio of short- and long-term scaling exponents,
which was the basis for separating of HF patients. We want
to determine whether patients of one of these clusters have
greater benefit from the cardiac resynchronization therapy.
Results of a multiple regression analysis, more precisely, the
fact that the examined ratio is at the center of neural, cardiac
and respiratory influences, encourages us that this parameter
could contribute to a better selection of candidates for this
therapy and also be the parameter on which we will rely
on in the course of device programming optimization during
follow-up period. In the future, this ratio could potentially
be used by a device algorithm that would automatically
optimize its function. This will surely be the topic of
our next research.

CONCLUSION

Our findings showed that in the integral cardiac control
quantified by the ratio of short-term and long-term scaling
exponents, beside neural cardiac control, mechanical properties
of the heart and the modulatory effect of the breathing
frequency are significantly involved. This ratio is able of
differentiating four clusters of HF patients in sinus rhythm
which do not differ in cardiac autonomic control, age,
LVEF and NYHA class.
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(2007). Interactions between short-term and long-term cardiovascular control
mechanisms. Chaos 17:015110.

Huikuri, H. V., Mäkikallio, T. H., Peng, C. K., Goldberger, A. L., Hintze, U., and
Moller, M. (2000). Fractal correlation properties of R-R interval dynamics and
mortality in patients with depressed left ventricular function after an acute
myocardial infaction. Circulation 101, 47–53.

Ivanov, P. C., Amaral, L. A. N., Goldberger, A. L., Havlin, S., Rosenblum, M. G.,
Struzik, Z., et al. (1999). Multifractality in human heartbeat dynamics. Nature
6, 461–465.

Ivanov, P. C., Liu, K. K. L., Lin, A., and Bartsch, R. P. (2017). “Network physiology:
From neural plasticity to organ network interactions,” in Emergent Complexity
from Nonlinearity, in Physics, Engineering and the Life Sciences, eds G. Mantica,
R. Stoop, and S. Stramaglia (Cham: Springer), 145–165.

Ivanov, P. C., Ma, Q. D. Y., Bartsch, R. P., Hausdorff, J. M., Amaral, L. A. N.,
Schulte-Frohlinde, V., et al. (2009). Levels of complexity in scale invariant
neural signals. Phys. Rev. E 79:041920.

Iyengar, N., Peng, C.-K., Morin, R., Goldberger, A. L., and Lipsitz, L. A. (1996). Age-
related alteraions in the fractal scaling of cardiac interbeat interval dynamics.
Am. J. Physiol. 271, R1078–R1084.
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