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Very young red blood cells, namely reticulocytes, can be quite easily recognized and
labeled by cluster of differentiation antibodies (CD71, transferrin receptor) or by staining
remnant RNA with thiazol orange. In contrast, age specific erythrocyte labeling is
more difficult in later periods of their life time. While erythrocytes contain band 4.1
protein, a molecular clock, so far it has not been possible to read this clock on
individual cells. One concept to track erythrocytes during their life time is to mark
them when they are young, either directly in vivo or ex vivo followed by a transfusion.
Several methods like biotinylation, use of isotopes or fluorescent labeling have proved
to be useful experimental approaches but also have several inherent disadvantages.
Genetic engineering of mice provides additional options to express fluorescent proteins
in erythrocytes. To allow co-staining with popular green fluorescent dyes like Fluo-
4 or other fluorescein-based dyes, we bred a mouse line expressing a tandem red
fluorescent protein (tdRFP). Within this Brief Research Report, we provide the initial
characterisation of this mouse line and show application examples ranging from
transfusion experiments and intravital microscopy to multicolour flow cytometry and
confocal imaging. We provide a versatile new tool for erythrocyte research and discuss
a range of experimental opportunities to study membrane processes and other aspects
of erythrocyte development and aging with help of these animals.

Keywords: mouse model, transfusion, fluorescent protein, intravital microscopy, imaging

INTRODUCTION

We face many scenarios in erythrocyte research where we need to label erythrocytes. This
might be in the context of determining a particular cell shape (Quint et al., 2017), transfusion
experiments (Dholakia et al., 2015) or following cell age (Wang et al., 2013). There are numerous
strategies available to label erythrocytes based on small molecular dyes (Haugland, 2002), antibodies
(Pepe, 1968) or fluorescent proteins (Jung, 2011). Especially the latter one has particular advantages
such as high biocompatibility due to cell internal translation, permanent expression and specific
subcellular localization (Kaestner et al., 2014). Fluorescent proteins have proved to be useful
tools to label cells (Stearns, 1995), to follow protein function (Lipp et al., 2014) or to construct
biosensors (Kaestner et al., 2018). Most transgenic approaches in mammals were performed in
mice making them the currently most widely used animal model. Considering the wide range of
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colors of fluorescent proteins (Shaner et al., 2004) and the great
variety of available promoters (Chen et al., 2011), little attention
has been paid to erythrocytes. Several attempts have been made
to generate mice with ubiquitous expression of fluorescent
proteins, e.g., Fink et al. (2010) but to our best knowledge,
this has not yet led to efficient fluorescent erythrocyte labeling.
However, there are several studies of primitive erythroid cells
with a green fluorescent protein (GFP) fused to the e-globin,
e.g., Lucitti and Dickinson (2006), Isern et al. (2008). The use
of GFP has, especially in comparison to red fluorescent proteins,
numerous disadvantages, such as spectral overlap of excitation
and emission with the absorption spectrum of hemoglobin
(Kaestner et al., 2006), decreased penetration depth for in vivo
investigations (Bozhanova et al., 2018) or spectral overlap with
some of the most popular fluorescent biosensors, such as Ca**
indicators (Lipp and Kaestner, 2014). Therefore, we set out to
genetically label erythrocytes with red fluorescence in mice.

MATERIALS AND METHODS

Mice

Permissions

All animal experiments were performed according to the Guide
for the Care and Use of Laboratory Animals published by the
U.S. National Institutes of Health and approved by the local
governmental animal protection committee (approval numbers
02/2015, 06/2015 and 27/2018).

Breeding

Mice were kept under a standard light/dark cycle with food
and water ad libitum in a specific pathogen-free animal facility.
Rosa26-tdRFP mice were previously described (Luche et al., 2007)
and kindly provided by Hans Jorg Fehling (Ulm University,
Germany). Animals with an activated Rosa26-tdRFP allele
(R26-tdRFP-CMV) were generated by crossing homozygous
Ros5a26-NEO-STOP-tdRFP mice with a heterozygous ubiquitous
CMV-Cre deleter strain carrying a huCMV-Cre transgene
on the X-chromosome (Schwenk et al,, 1995). The resulting
heterozygous R26-tdRFP-CMV offspring was then crossed
inter se to obtain homozygous R26-tdRFP-CMV mice for
analysis. Homozygous R26-tdRFP-CMV animals were obtained
at expected Mendelian frequencies and did not show any
obvious phenotypic abnormalities. The homozygous R26-tdRFP-
CMYV mice were fertile and exhibited robust red fluorescence

in erythrocytes.

Erythrocyte Mass Parameters and Indices

Analysis of the erythrocyte mass parameters and indices
was performed using a fully automated hematology analyzer
(VetScan HMS5, Abaxis, Union City, CA, United States).
Blood was collected from R26-tdRFP-CMV mice with
homozygous RFP expression (REPT/*) and RFP~/~ siblings.

Transfusions
For transfusion experiments blood was collected from wild type
(C57BL/6 mice, Charles River Laboratories, Saint-Constant, QC,

Canada) and R26-tdRFP-CMV mice by puncture of the heart
(final bleeding after 1.5% isoflurane inhalation anesthesia). Wild
type erythrocytes were stained using the membrane dye PKH67
(Sigma-Aldrich, St. Louis, MO, United States). Cells were washed
three times in 0.9% NaCl solution and incubated for 5 min at
room temperature under rotation with PKH67 (1:200 dilution).
Quenching of remaining dye was done by addition of 2% bovine
serum albumin (BSA) in phosphate buffered solution (PBS) and
the cells were washed again three times in 0.9% NaCl solution.
Stained wild type erythrocytes and erythrocytes from
R26-tdRFP-CMYV mice were mixed and a volume of 200 nl was
retro-orbitally injected into wild type C57BL/6 mice (Charles
River Laboratories, Saint-Constant, QC, Canada). The survival
rate of transfused erythrocytes was analyzed by flow cytometry
for 1 month. For this purpose, 10 pl blood samples of transfused
mice were collected by puncture of the tail vein. The first sample
was taken within 5 min after transfusion and the measured value
used for normalization of the data. Analysis of the data was done
using GraphPad Prism (GraphPad, La Jolla, CA, United States).

In vivo Imaging Experiments

Animals

In vivo experiments were performed in 12- to 14-week old
male C57BL/6 mice with a body weight of 24-26 g. The
animals were bred and housed in open cages in the conventional
animal husbandry of the Institute for Clinical and Experimental
Surgery (Saarland University, Germany) in a temperature-
controlled environment under a 12 h/12 h light-dark cycle and
had free access to drinking water and standard pellet food
(Altromin, Lage, Germany).

Dorsal Skinfold Chamber Model

Red blood cell passage of small capillaries was analyzed in
the dorsal skinfold chamber model, as previously described
(Danielczok et al., 2017). For chamber implantation, mice
were anaesthetized by ip. injection of ketamine (75 mg/kg
body weight; Ursotamin®; Serumwerk Bernburg, Bernburg,
Germany) and xylazine (15 mg/kg body weight; Rompun®;
Bayer, Leverkusen, Germany). Subsequently, two symmetrical
titanium frames (Irola Industriekomponenten GmbH & Co. KG,
Schonach, Germany) were implanted on the extended dorsal
skinfold of the animals in a stepwise procedure, as previously
described (Laschke and Menger, 2016). Within the area of the
observation window, one layer of skin was completely removed
in a circular area of ~15 mm in diameter. The remaining layers
(striated skin muscle, subcutaneous tissue and skin) were finally
covered with a removable cover glass. To exclude alterations of
the microcirculation due to the surgical intervention, the mice
were allowed to recover for 48 h after implantation.

In vivo Microscopy

In vivo microscopic analyses were performed as previously
described (Brust et al, 2014). In detail, the mice were
anaesthetized and a fine polyethylene catheter (PE10, 0.28 mm
internal diameter) was inserted into the carotid artery to apply
RFP-labeled erythrocytes. Then, the animals were put in lateral
decubital position on a Plexiglas pad and the dorsal skinfold
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chamber was attached to the microscopic stage of an upright
microscope (ECLIPSE Ci-L; Nikon, Tokyo, Japan) equipped
with a 40x, NA 0.8, water immersion objective and a LED
array (pE300ultra, CoolLED, Andover, United Kingdom)
attached to a fluorescein isothiocyanate (FITC) filterset
(excitation 465-495 nm, emission 515-555 nm). Up to 0.5 ml of
RFP-expressing erythrocytes were transfused immediately before
the imaging experiments. The microscopic images were recorded
using a CMOS video camera (Prime 95B, Photometrics, Tucson,
AZ, United States) connected to a PC at an acquisition speed of
415 images per second.

Trajectory Analysis

The recorded video sequence was analyzed using a single
particle tracking algorithm, as previously described (Bicher
et al., 2018). Hereby, the intensity profile of each frame was
adjusted to have both the top and bottom 1% of all pixels
saturated, correcting for changes in illumination and exposure
time. With the aid of a tailored MATLAB script, all spherical
(round) objects were detected and interconnected among all
frames by cross-correlating consecutive images. We derived
the respective trajectories by combining the coordinates of all
classified erythrocytes over the whole video sequence.

Single Cell Analysis

Bone Marrow Preparation

For the isolation of bone marrow, two mice were sacrificed by
an overdose of anesthetics. The femurs and tibias were carefully
excised and bone marrow cells were obtained by flushing the
bones with cold Tyrode solution containing (in mM): 35 NaCl,
54 KCl, 10 glucose, 1 MgCl,, 1.8 CaCl, and 10 HEPES,
pH 7.4. Cells were stained with Hoechst 33258 solution (Sigma-
Aldrich, St. Louis, MO, United States) at a final concentration of
10 pg/ml and a TER-119 antibody (Biolegend, San Diego, CA,
United States) at 2 ug/ml in PBS at room temperature for 20 min.
Cells were washed once before imaging (see below).

Blood Sample Preparation

Blood samples of wild type and R26-tdRFP-CMV mice were
collected by puncture of the tail vein. Ten pl of blood were diluted
in 1 ml Tyrode solution. Erythrocytes were washed three times
via centrifugation at 2,500 x g for 3 min. The supernatant was
discarded each time and the cells resuspended in Tyrode solution.

Confocal Imaging

Bone marrow cells or erythrocytes were suspended in PBS,
0.1% BSA and placed between two glass slides spaced by
20 pwm polystyrene beads for imaging on top of a 100x
objective of an inverted microscope (Nikon ECLIPSE Ti,
Tokyo, Japan). A diode or solid state laser (405, 488, and
561 nm, Nikon LU-NV Laser Unit) was used as a light
source for imaging. Z-stack scanning was realized with 300 nm
step of piezo motor of a confocal spinning disk (CSU-WI,
Yokogawa Electric Corporation, Tokyo, Japan), scanning from
top to bottom for a 20 wm z-range. Image sequence was
acquired by recording with a digital camera (Orca-Flash4.0
Hamamatsu Photonics, Hamamatsu City, Japan). Confocal

slices were processed using Image] (Wayne Rasband, NIH,
United States). 3D-rendering was performed with Vision4D
(Arivis, Rostock, Germany).

Flow Cytometry

Fluo-4 (Thermo Fisher Scientific, Waltham, MA, United States)
loading of blood samples was done for 1 h at 37°C at a
concentration of 5 WM followed by one more washing step. Flow
cytometer experiments were performed using a FACSAria III
(Becton Dickinson, Franklin Lakes, NJ, United States). Analysis
of the data was done using FlowJo 10.4.2 (FlowJo LLC, Ashland,
OR, United States).

Statistics

For all statistical analyses the Gaussian distribution of the dataset
was checked by the Kolmogorov-Smirnov test. For data with
Gaussian distribution the mean value + the standard deviation
was plotted. Testing for significant differences was performed
with a paired t-test. All graph presentations and statistical
tests were performed in GraphPad Prism (GraphPad Software,
La Jolla, CA, United States).

RESULTS AND DISCUSSION

Generating Mice With Red Fluorescent
Erythrocytes

To generate a mouse model with fluorescently labeled
erythrocytes, we aimed for three major properties: (i) the
fluorescent protein should emit in the red spectral range
for reasons already outlined in the introduction; (ii) the
fluorescent protein should be strongly expressed as mature
erythrocytes are lacking a transcriptional and translational
machinery; and (iii) the fluorescent protein should be
cytosolic in order to leave the cell membrane undisturbed.
R26-tdRFP mice encode the untargeted (and therefore
cytosolic) red fluorescent protein (RFP) tandem construct
tdimer2(12) (Campbell etal., 2002) under control of the
ROSA26 locus and therefore seems to fulfil all defined
criteria. To activate RFP expression in erythrocytes, R26-
tdRFP mice were crossed with a CMV-Cre line (Schwenk
et al,, 1995), leading to ubiquitous Cre recombinase — and
thus RFP - expression. The breeding scheme is depicted in
Figure 1A. Heterozygous mice from the F1 generation were
crossed inter se to generate R26-tdRFP-CMV mice with a
homozygous expression of RFP. While homozygous R26-
tdRFP-CMV pups showed 100% red fluorescent erythrocytes,
heterozygous R26-tdRFP-CMV mice expressed a rather
inhomogeneous pattern (Figure 1B) and were therefore
not used for further investigations. RFP-negative control mice
did not display red fluorescence. The tdRFP is ubiquiously
expressed in all organs as exemplified in Supplementary
Figure S1. Compared to (Luche et al., 2007), which describes
the initial generation and characterization of the Rosa26-
tdRFP mouse, our results revealed bright fluorescence in
erythrocytes isolated from homozygous R26-tdRFP-CMV
mice (Figure 1C).
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FIGURE 1 | Mice with RFP erythrocytes. (A) Genetic strategy to generate R26-tdRFP-CMV-Cre mice. Mice expressing Cre recombinase under control of the
cytomegalovirus (CMV) promoter were bred to R26-tdRFP mice carrying a loxP-flanked tdRFP gene in the ROSA26 locus. R26-tdRFP-CM\V-Cre mice ubiquitously
express tdRFP controlled by the ROSA26 promoter. (B) Percentage of red fluorescent erythrocytes in RFP*/+ (homozygous), RFP+/~ (heterozygous) and RFP~/~
(negative) mice. Each point represents an individual mouse. (C) Confocal images of cells from the bone marrow of R26-tdRFP-CM\V-Cre mice. Beside the RFP
fluorescence, the nuclei were stained with Hoechst dye (depicted in blue). Additionally a Ter119-FITC antibody was used to visualize the erythropoietic cells,

(Ca) proerythroblast, (Cb) erythroblast, and (Cc) reticulocyte. For comparison we display a non-erythropoietic cell, and (Cd) from the bone marrow. (D) Images of
RFP erythrocytes, (Da) epi-fluorescence microscopy of a population of erythrocytes, and (Db) 3D-rendered individual erythrocytes out of a z-stack of confocal
images. (E) Erythrocyte mass parameters and indices. Displayed are the parameters erythrocyte count (RBC), haematocrit (HCT), haemoglobin (HGB), mean cellular
volume (MCV), mean cellular haemoglobin (MCH), and mean cellular haemoglobin concentration (MCHC). The columns depict mean values and error bars represent

Santos et al. (2016).

the standard deviation out of 5 RFP*/+ and 5 RFP~/~ mice. The reference values are taken from Danneman et al. (2000), Bollinger and Everds (2012), and

Properties of Mice With Red Fluorescent
Erythrocytes

We did not detect any obvious phenotypic differences in
R26-tdRFP-CMV mice, except for the red fluorescence, when
compared to wild type C57BL/6 mice. We imaged erythropoietic
precursor cells from the bone marrow as outlined in Figure 1C.

The translational more active cells that still contain a nucleus
(Figures 1Ca,b) show a stronger expression of tdRFP compared
to reticulocytes (Figure 1Cc). However, the erythrocytes showed
a homogeneous red fluorescence as exemplified in Figure 1Da
and the fluorescent protein was expressed at levels high enough
to allow for confocal imaging of z-stacks and consecutive
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FIGURE 2 | Measurements based on RFP erythrocytes. (A) Survival of transfused erythrocytes, (Aa) flow cytometric sample measurement immediately after
transfusion showing 6.3% of RFP cells and 4.8% of PKH67 stained cells, and (Ab) statistical analysis of four transfusions over a time period of 1 month, RFP and
PKHG7 stained erythrocytes were simultaneously transfused in the same mouse to face identical conditions. (B) Intravital imaging of transfused RBCs, (Ba) maximal
intensity projection of a time series of images, and (Bb) trajectories of individual erythrocytes from the same image stack as shown in Ba. (C) Flow cytometry of
Fluo-4 loaded erythrocytes from RFP*/+ and RFP~/~ mice, (Ca) histograms of red fluorescence of RFP~/~ and RFP*/+ erythrocytes and of a mixed population
(simulating transfusion), (Cb) dot plot for red vs. green fluorescence of Fluo-4 stained and unstained RFP*/+ and RFP~/~ erythrocytes, and (Cc) dot plot for red vs.
green fluorescence of a Fluo-4 stained mixed population of RFP and wild type erythrocytes (simulating transfusion).
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3D-redering as shown in Figure 1Db (see also Supplementary
Video 1), demonstrating that RFP expression is sufficient for
fluorescence-based cell shape analysis.

Since we designed the mouse line for erythrocyte research,
we next analyzed erythrocyte mass parameters and indices
and plotted them in Figure 1E in comparison with text book
values for laboratory mice in general (Danneman et al., 2000;
Bollinger and Everds, 2012) as well as for a particular
investigation on C57BL/6 mice (Santos et al., 2016). Except for
MCHC all values were within the reference range. However,
since MCV is on the lower end of the range and haemoglobin
concentration (HGB) rather high, it is not surprising that MCHC
is at the upper range or slightly above. The reason is that
in the used device (VetScan HM5) the MCHC is calculated
out of the MCV and the HGB using the following formula:
MCHC = HGB/n x MCV (VetScan HM5, 2018), with n being the
number of RBCs per volume. HGB is measured photometrically
at 540 nm and MCV is the average volume of RBCs derived
from the RBC histogram. Considering the differences even in
the ranges in-between textbooks, we conclude that erythrocytes
of R26-tdRFP-CMV mice are within the physiological variation.

Importantly, erythrocytes from REP*/* mice were not different
when compared to those of RFP~/~ mice demonstrating the
RFP itself does not influence the integrity of the parameters’
measurement procedure/principle.

Transfusion Experiments With Red

Fluorescent Erythrocytes

To test the transfusion ability of erythrocytes isolated from
R26-tdRFP-CMV mice we wanted to compare the survival
of these cells after transfusion with cells fluorescently labeled
with the PKH67 dye (green fluorescence), a marker that
proved to be successful in previous transfusion experiments
in mice (Wang et al., 2013). To enable a direct comparison
under identical conditions both RFP erythrocytes and PKH67
labeled erythrocytes were simultaneously transfused into the
same mouse. Figure 2Aa depicts a flow cytometric analysis
measurement of a blood sample after transfusion. Figures 2Ab
shows the time course of 1 month of the erythrocyte survival after
transfusion. There was no difference between RFP erythrocytes
and PKH67 labeled ones. The half life of the transfused
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erythrocytes was 17.63 = 0.49 days for RFP and 17.87 4 0.58 days
for PKH67 labeled cells. Considering that the mean erythrocyte
life span varies between different mouse strains in the range of
38-42.5 days and also taking into consideration that the random
destruction can vary between 0.6 and 1.3% of erythrocytes per day
(Horky et al., 1978), our results are in the same range as reported
in previous studies where, e.g., for the popular biotinylation a half
life of 20.5 £ 2.1 days was determined (Dholakia et al., 2015).

Taken together, these data demonstrate that the RFP mice
are suited as erythrocyte donors for transfusion experiments.
If reticulocytosis is induced in these donor mice, the reticulocytes
can easily reach counts of 30% (Wang et al., 2013). If then
reticulocytes are enriched, for example by using CD71-coated
magnetic beads, a pure reticulocyte preparation can be transfused
and such, membrane processes or other aspects of erythrocyte
development and aging can be investigated, either directly in vivo
(see below) or by blood sampling at defined time points.

In vivo Measurements of Transfused Red

Fluorescent Erythrocytes

Erythrocyte properties in flow and in particular in the circulation
differ from erythrocytes in stasis. This starts with cell shape
(Kihm et al., 2018) but also applies to Ca>* handling (Danielczok
et al,, 2017) and other parameters. To investigate erythrocytes
in vivo, the model of the dorsal skinfold chamber has
proven to be a useful tool (Menger et al, 2002). Figure 2B
provides a proof of principle experiment demonstrating that
the fluorescence intensity of the RFP cells is sufficient for this
kind of investigations. A single particle tracking algorithm was
applied to extract the trajectories of individual cells, which
can be used to investigate flow properties of erythrocytes
(Béacher et al,, 2018). In addition to Figure 2B we provide
Supplementary Video 2 at a different magnification to illustrate
the experimental opportunities.

Flow Cytometry With Additional
Fluorescent Labeled Red Fluorescent
Erythrocytes

Fluorescein-based dyes are very popular for antibody labeling
as well as for functional biosensors. For the special but
very important purpose of measuring Ca’t homeostasis in
erythrocytes, the fluorescein-based Ca?* indicator Fluo-4 is
the only serious option (Kaestner et al, 2006). Therefore
we took Fluo-4 as an example to demonstrate that RFP
and Fluo-4 together work well in erythrocytes. Figure 2C
shows flow cytometric measurements of wild type and RFP
erythrocytes loaded with Fluo-4, in separate measurements
as well as in a mixed population, demonstrating a clear
differentiation of the two populations and the lack of crosstalk
between Fluo-4 and RFP.

SUMMARY

We generated a novel mouse strain to robustly label
erythrocytes with red fluorescence. We demonstrate that the RFP

fluorescence intensity in erythrocytes is sufficient for a range of
applications in erythrocyte research such as 3D-shape analysis
(Figure 1Db and Supplementary Video 1), transfusion
experiments (Figures 2A,Ba), intravital microscopy (Figure 2B
and Supplementary Video 2) and fluorescence multiplexing
(Figures 2Aa,C).
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