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complex experimental and computational models. Herein, we introduce a multiscale
three-dimensional (3D) organo- and pathotypic experimental assay that approximates,
to an unprecedented extent, the histopathological complexity of a tumor disseminating
into its surrounding stromal milieu via both bulk and solitary motility dynamics. End point
and time-lapse microscopic observations of this assay allow us to study the earliest
steps of cancer invasion as well as the dynamical interactions between the epithelial
and stromal compartments. We then simulate our experimental observations using the
modeling environment Compucell3D that is based on the GlazieGraner—Hogeweg
model. The computational model, which comprises adhesion between cancer cells
and the matrices, cell proliferation and apoptosis, and matrix remodeling through
reaction—diffusion-based morphogen dynamics, is first trained to phenocopy controls
run with the experimental model, wherein one or the other matrices have been removed.
The trained computational model successfully predicts phenotypes of the experimental
counterparts that are subjected to pharmacological treatments (inhibition of N-linked
glycosylation and matrix metalloproteinase activity) and scaffold modulation (alteration
of collagen density). Further parametric exploration-based simulations suggest that
specific permissive regimes of cell-cell and cell-matrix adhesions, operating in the
context of a reaction—diffusion—-regulated ECM dynamics, promote multiscale invasion
of breast cancer cells and determine the extent to which the latter migrate through their
surrounding stroma.
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INTRODUCTION

Within physiologically functioning tissues and organs, cells
constantly interact with their surrounding extracellular matrix
(ECM). This complex and continual interaction is essential
for organ development and homeostasis (Bhat and Bissell,
2014; Bhat and Pally, 2017). Alterations that affect cell-ECM
interactions aid in the progression of pathologies like cancer
(Nelson and Bissell, 2005; Simi et al, 2018). In normal
mammary glands and breasts, luminal epithelial cells are
surrounded by a layer of myoepithelial cells that secrete basement
membrane (BM): a sheet-like ECM rich in laminin and non-
fibrillar collagens. Such mammary epithelial architectures are
surrounded by stromal ECM that is rich in fibrillar matrix
proteins such as collagen I (Figure 1A) and connective tissue
cells such as fibroblasts, macrophages, and adipocytes. In
breast cancer, this architecture is lost: the lumen is filled
with proliferating apolar transformed epithelia, myoepithelia
are absent, and the BM is ultimately breached by invading
cells (Polyak and Kalluri, 2010). The stroma shows degradation
of ECM, fibrosis, leucocytic infiltration, neoangiogenesis, and
lymphangiogenesis (Wiseman and Werb, 2002; Orimo et al,
2005; Dumont et al., 2013). Malignant transformation results in a
recalibration of existent interactions with novel constituents and
interactions comprising the tumor microenvironment. Studying
and quantifying the contribution of a given interaction to
the progression phenotype of cancer spatiotemporally are a
challenge, as our histo- and biochemical analyses are limited
to distinct stages of breast cancer from various patients. Three-
dimensional (3D) organotypic and pathotypic cultures of cancer
cell lines and primary patient cells have helped extend our
understanding of the molecular mechanisms underlying cancer
(Torras et al., 2018; Weinhart et al., 2019). The 3D cultures are
approximations of the histopathological complexity of in vivo
tumor microenvironments. Current models involve embedding
cancer epithelia within natural or tunable synthetic matrix
scaffolds (Balachander et al., 2015; Bhat et al., 2016; Furuta
et al., 2018). More complicated versions comprise efforts to
mimic the perivascular and endothelial metastatic niches (Ghajar
et al.,, 2013; Carlson et al., 2019) as well as efforts to engineer
platforms consisting of multiple organs-on-a-chip reviewed by
Zhao et al. (2019).

Noncancerous and malignant breast cell lines, when cultured
in reconstituted BM (rBM) matrix, cluster into discrete
morphologies that have been described as “round,” “mass,’
“grape; and “stellate” in increasing order of aggressiveness
(Kenny et al, 2007). The round phenotype is characteristic
of untransformed cells that form growth-arrested acinar-like
multicellular clusters with basoapical polarity, and a lumen.
Mass and grape phenotypes are characteristic of malignantly
transformed epithelia which mimic carcinoma in situ or
indolently progressive cancers with cells that have completely
lost their polarity. The stellate phenotype is typical of highly
metastatic cancer cells that actively migrate, although in a
collective manner, into and through rBM matrices. Using such
3D assays of cells embedded in rBM, it is possible to study the role
of specific expressed proteins in regulating the adhesion between

cancer cells or with ECM proteins such as laminins. However,
such culture frameworks are inadequate for investigations into
the spatial dynamics of cellular transitions between two matrix
microenvironments that have distinct rheological properties,
such as the non-fibrillar BM-like microenvironment and its
fibrillar collagen-like types (Figures S1A,B shows scanning
electron micrographs of nonfibrillar rBM and fibrillar type
1 collagen matrices; see Supplementary File1 for legends of
all Supplementary Figures). In addition, it is infeasible to
design experiments to observe the phenotypic consequences
of an exhaustive exploration of interaction space within a
multicomponent biological system.

The second limitation can especially be mitigated by adopting
a computational approach and simulating the progression
of cancer-like phenotypes for a diverse range of interactive
parameter combinations. Computational models, particularly the
Cellular Potts model (CPM), have been shown to be useful
for such efforts (Zhang et al, 2011; Swat et al., 2012). For
example, the deployment of proteolytic and non-proteolytic
mode of cancer migration through collagenous scaffolds, or
between solitary and collective cell invasion, has been well
elucidated using in silico approaches (Kumar et al, 2016).
However, to the best of our knowledge, no theoretical model
has explicitly explored the transitioning dynamics, and the
consequences thereof, of cancer cells moving between dissimilar
matrix microenvironments. Moreover, while the dynamical role
of individual mesoscale physicochemical processes has been
well studied in cancer and development (Grant et al., 2004;
Zhang et al., 2011; Pantziarka, 2016), whether their combined
deployment constrains or widens the phenotypic reaction norm,
the spectrum of discrete and distinct phenotypes achievable by
cancer cells has not been investigated.

In this paper, we present a unified experimental-
computational framework to investigate the interactions
between cancer epithelia and spatially compartmentalized ECM
microenvironments. The experimental model allows us to break
down the phenomenon of cancer cell migration into cellular
interactions with the BM, their remodeling of the same, their
transition from BM to type 1 collagen, and the subsequent
remodeling of, and migration within, type 1 collagen. We
closely train the computational model on experimental results.
The computational model successfully predicts results of the
cancer epithelia upon pharmacological perturbations or scaffold
modification. The trained theoretical model also predicts that
emergent interplay between reaction-diffusion (R-D) and
cell-matrix adhesion can explain the diversity in the extent and
mode of invasion of breast cancer cells.

MATERIALS AND METHODS

Cell Culture

MDA-MB-231 cells were maintained in DMEM:F12 (1:1)
(HiMedia, AT140) supplemented with 10% fetal bovine serum
(Gibco, 10270). MCEF-7 cells were grown in Dulbecco’s Modified
Eagle Medium (DMEM) (HiMedia, AT007F) supplemented
with 10% fetal bovine serum. Immortalized Human Mammary
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FIGURE 1 | Schematic depiction of experimental system and computational model. (A) Early stages of breast cancer progression: Top left denotes the normal
glandular (ductal/luminal) architecture of human breast. Top right denotes the pattern of breast epithelia undergoing ductal carcinoma in situ where normal epithelia are
malignantly transformed, lose polarity, and proliferate, resulting in filling up of ductal lumen. Bottom right shows the architecture of invasive ductal/luminal carcinoma
where transformed cells breach the basement membrane (BM) and invade into collagen-rich breast stroma. Bottom left shows how invasive breast cancer cells,
having traversed through stroma intravasate into blood/lymph vessels and metastasize to secondary organs. (B) Schematic workflow of 3D invasion assay used
throughout the paper: Cells are first cultured on top of nonadhesive substrata in medium containing 4% reconstituted BM (rBM). Once cells assembled into clusters,
the latter is embedded within type 1 collagen scaffolds and cultured in serum-free conditions. (C) Governing equations used for setting up the computational model.
The first equation calculates H, which is Hamiltonian of the simulation: H determines the probability P associated with index-copy attempts, movements by
generalized cells to minimize local effective energy through the default dynamical algorithm known as modified Metropolis dynamics. The equation for calculating
growth rate shows it to be dependent on [GF], the growth factor concentration, and g, which denotes nutrient availability. Extracellular matrix (ECM) remodeling
follows the kinetics of reaction-diffusion (please refer to the appropriate sections in Material and Methods for a more detailed description of model construction).

(D) Quantification of invasiveness of cancer cells in the computational model is performed using the minimal enclosing circle algorithm developed using MATLAB.
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D Quantification of invasion:

Epithelial Cells (HMLE) cells were a gift from Dr. Robert
Weinberg, Harvard Medical School, and Dr. Annapoorni
Rangarajan, Indian Institute of Science, and were cultured in
DMEM:F12 (1:1) supplemented with 1% fetal bovine serum,
0.5pg/ml hydrocortisone (Sigma, H0888), 10 ug/ml insulin
(Sigma, 16634), and 10ng/ml recombinant human epidermal
growth factor (hEGF) (HiMedia, TC228). All the cells were
cultured in a 37°C humidified incubator with 5% carbon dioxide.

Preparation of Cancer Cell Clusters
Normal/cancer cells were trypsinized using 1:5 diluted 0.25%
trypsin and 0.02% EDTA (HiMedia, TCL007). A total of 30,000
cells per 200 pl of defined medium (Blaschke et al., 1994)
supplemented with 4% rBM (Corning, 354230) were cultured on
3% polyHEMA (Sigma, P3932)-coated 96-well plate for 48h in a
37°C humidified incubator with 5% carbon dioxide.

3D Invasion Assay

rBM-coated clusters were collected into 1.5-ml tubes, centrifuged
briefly, and then the supernatant is removed (Figure 1B). Acid-
extracted rat tail collagen (Gibco, A1048301) was neutralized on
ice in the presence of 10X DMEM with 0.1 N NaOH such that the
final concentration of the collagen is 1 mg/ml. Pellet of clusters

was resuspended in 50 pl of neutralized collagen and seeded in
eight-well chambered cover glass (Eppendorf 0030742036) and
supplemented with defined medium. 3D cultures were grown in
a 37°C humidified incubator with 5% carbon dioxide.

Processing of 3D Invasive Clusters

3D invasion cultures were washed with phosphate-buffered saline
(PBS) (pH 7.4) once after removing medium and fixed with
4% neutral buffered formaldehyde (Merck, 1.94989.0521) for
30 min. Glycine (2%) in PBS was used to neutralize traces of
formaldehyde and was blocked for 1h at room temperature
with 5% bovine serum albumin (BSA) (HiMedia, MB083) in
PBS +0.1% Triton X-100 (HiMedia, MBO031). After blocking,
clusters were stained with 4,6-diamidino-2-phenylindole (DAPI)
(Invitrogen, D1306) and Alexa Flour 633-conjugated phalloidin
(Invitrogen, A22284) overnight at 4°C. The next day, cultures
were washed with PBS +0.1% Triton X-100 for 10 min each
three times.

Laser Scanning Confocal Microscopy and
Time-Lapse Imaging

Processed clusters were imaged using laser scanning confocal
microscope (Zeiss LSM 880) with system-optimized Z
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intervals. Images were analyzed using the Zen Lite software.
Brightfield time-lapse imaging was done using Olympus IX81
equipped with stage top incubator and 5% carbon dioxide
(see Video 1). Imaging was done at 10 min interval over 24 h.
Images acquired were analyzed using the Image] software
(Schindelin et al., 2012).

Computational Model

Modeling Environment

A multiscale modeling environment is required to simulate the
spatiotemporal dynamics within a biological milieu wherein
cellular growth, proliferation, invasion and morphogenesis occur
simultaneously. The software package CompuCell3D (Swat et al.,
2012) fulfills this purpose. Compucell3D is based on the CPM,
also known as the Glazier-Graner-Hogeweg model, which was
designed to model the collective behavior of active matter (Sanyal
and Glazier, 2006; Chen et al., 2007). This is done by calculating
an energy function called Hamiltonian at each step of the
simulation. Each cell (we italicize this term to distinguish CC3D
cells from biological cells in this paper) is represented by the set
of all lattice sites or pixels sharing same cell ID. A rectangular
lattice has been used in all our simulations. The evolution of
the model happens at each Monte Carlo step (MCS), which
consists of index copy attempts of each pixel in the cell lattice.
Output of each MCS depends on the Hamiltonian calculation
denoted by H (Figure 1C). The Hamiltonian in our model has
two contributors which are affected by different properties sum
of the cells and chemicals. The first contributor is the sum over all
neighboring pairs of lattice sites i and j with associated contact
energies (J) between the pair of cells indexed at those i and j.
In this term, i, j denotes index of pixel, o denotes cell index
or ID, and 7 denotes cell type. The 8 function in this term will
ensure that only the o; # oj terms are calculated and also
contact energies are symmetric. The contact energy between two
cells can be considered to be inversely proportional to adhesion
between those two cells. The second contributor is a function
of the volume constraint on the cell, where for cell o, Ayo(0)
denotes the inverse compressibility of the cell, v(o) is the number
of pixels in the cell (volume), and V(o) is the cell’s target volume.
For each cell, this term is governed by its growth equation.
If any change in the Hamiltonian is negative at a given MCS
for any configuration with respect to its previous one [AH =
(Hf - Hj) < 0], then index copy attempts of pixels resulting
in that configuration will be successful. Otherwise, the attempt
will be accepted with probability P = exp (—AH/Ty,). A default
dynamical algorithm known as modified Metropolis dynamics
with Boltzmann acceptance function is used at each MCS to
move the system toward a low-energy configuration as MCS
increases. The term Ty, can be considered as temperature or
magnitude of effective membrane fluctuations. In the model, the
membrane fluctuation is kept high for cancer cells compared with
matrix elements in order to strike a distinction between living and
dead elements. Random movements of pixels leading to different
transition probabilities at each MCS mimic the stochasticity
present in biological systems. We have modeled the movement
of cells in metastasis as guided by differential adhesion and R-D-
regulated degradation of ECM surrounding the cells. The MCS

can be considered to be the natural unit of time in the model. In
biological contexts, MCS and experimental time are considered
to be proportional with respect to each other (Alber et al., 2004;
Cickovski et al., 2007; Swat et al., 2012).

Model Components

Cell and matrix orientation

Using a 2D computational model, several aspects of cancer
invasiveness and tumor-associated 3D phenomena have been
studied where the property of spherical symmetry of tumor
morphologies was used to obtain the minimalistic setup (Jiao
and Torquato, 2011). Our 2D simulations mimic experiments
in which biological cells may require 3D space to allow certain
interactions, but in the computational model, only the properties
associated with cells will play a role in determining the output
irrespective of 2D or 3D. 2D simulations are computationally
more efficient as it carries out an exponentially smaller number
of calculations for the whole system. Our model space is 100 x
100 x 1 pixel in size where a group of cancer cells is initially
located at the center grid surrounded by ECM. Any element of
the model that is required to actively participate through MCS
pixel copy attempts must be assigned a cell type, as instructed, the
laminin (“BM”) and type 1 collagen (“C1”) are assigned different
cell types along with cancer cells (“CELL’). In the setup, clusters
of cancer cells are surrounded by blob-like two-cell layer of BM.
The BM, in turn, is surrounded by fibrillar collagen. To mimic
in vivo ECM architecture, BM is modeled as dense adhesive blob-
like “cells” similar to the lamina densa of basal lamina, whereas C1
is modeled as the interconnected fibers similar to type 1 collagen.
All components of the system have a depth of 1 pixel in the z
direction, so there is no overlapping of objects. A cell cannot cross
another cell if it does not degrade it, and without degradation,
the cell will be trapped in a zone due to steric hindrance by
its surrounding environment or find ways to squeeze through
small spaces in its vicinity, which become accessible by random
movement of that cell. In an initial configuration, cancer cells
start as a rectangular objects of 16-unit volume (4 x 4 pixels)
spanning 14 x 14 x 1 unit volume at the center (x, y = 43:57)
of the simulation grid without any intercellular space. Tightly
packed BM cells of 9 unit volume (3 x 3 pixels) is then created
around the cancer mass (x, y = 37:63) having two layers of
laminin cells separating it from C1. C1 is formulated around the
cancer and BM structure throughout the whole grid with initial
configuration of 4 unit volume cells (2 x 2 x 1 pixels) with two
pixel gaps in between them. In order to make the C1 fibrillar, a
plugin is applied on the cells which elongate them in the axis,
random with respect to each other at 0.8-unit volume increment
at each MCS until 5. The length scale of the components of ECM
(BM and C1) is kept relatively smaller than the cancer cells (Das
et al., 2017). The lattices with no assigned cell type or, in other
words, the gaps or the free spaces are assigned cell type “medium”
as a default of the Compucell3D syntax.

Contact energies (differential adhesion)

Compucell3D requires setting interactions between all cell types
in terms of contact energies. Higher contact energy values
between two cell types signifies lower adhesion or higher
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TABLE 1 | Contact energies for simulations of discrete cancer morphologies.

Morphology-wise contact energies Cell-cell Collagen-cell Laminin-cell

Carcinoma-in-situ phenotype 3 24 20
Apolar clusters 30 24 30
Multiscale invasive 35 24 45

mechanical hindrance between them. This is denoted by the
term J in the Hamiltonian (H). The contact energies are
set in our simulation by qualitatively considering interactions
between pairs of components of the experimental setup in terms
of adhesion or repulsion. After running simulations with a
range of values of each contact energy, from all the resultant
combinations, an appropriate set of contact energies is taken.
The contact energies that were established for model simulations
included CELL-CELL, CELL-BM, CELL-CI1, CELL-medium.
Values of these contact energies can be found in Table 1. The
CELL-medium contact energy can be thought in terms of CELL-
CELL adhesion of cancer with proportional correlation. Higher
cancer CELL-CELL adhesion will give higher CELL-medium
contact energy value. Across simulations, contact energies were
established qualitatively motivated by transcriptomic findings
including in, but not limited to (Kenny et al., 2007). For example,
to mimic the decreased expression of E-cadherin in highly
invasive cells, CELL-CELL contact energy was increased and the
CELL-medium contact energy reduced.

MMP-tissue inhibitors of metalloproteinase (TIMP) reaction
diffusion system

Auxiliary equations in Compucell 3D are used to model chemical
fields. These fields store the concentration information of a
certain chemical at every location in the simulation grid. Two
chemical fields, A and I, are created which are governed by partial
differential equations (PDEs) based on R-D dynamics of an
activator and its inhibitor. These fields are incorporated with the
GGH algorithm to allow interaction between other simulation
components and the fields. The governing equations for these
two fields are:

0 [A]

— =DaV?[A] +a— 8,a] (1)
88—[t” =DyV2 I+ b — &I 2)
b=a=K—(c*[I] - d*[A]) 3)

Where, [A], [I]: concentration values for fields A and I.

Dy, Dy: diffusion constants of A and I

84, 81: degradation rates of A and I

a, b: secretion rate of A and I

t = MCS

Default parameterizations, D4 = 0.01, D; = 0.8, 54 = §; = 0.003,
K=20,c=4.0,d=2.0.

Here, A is considered as the activated form of matrix
metalloproteinases (MMPs). Its activation (or secretion of
the activated form, ie., “4”) is assumed to be dependent
on its inhibitors (inversely) and on its own concentration

(autocatalysis) in the form of equation 3 (the inhibitor TIMP
is known to bind to, and inhibit, the membrane-bound
matrix metalloproteinase (MT1-MMP), which in turn activates
secretory diffusible metalloproteinases) (Bourboulia and Stetler-
Stevenson, 2010; Brew and Nagase, 2010). There are numerous
variants of MMPs and TIMPs present in biological tissues (Brew
and Nagase, 2010). Their production rates and interdependencies
are still not known entirely for cancer cells, so a generalized
form of MMP-TIMP interaction (A-I interaction of the model)
is assumed in the light of R-D dynamics (Equations 1 and 2).
The diffusion rate of MMP is set in the same range that is
used by previous literature (Kumar et al,, 2016) [that model
has D = 1.0 x 1072 cm?s™! = 0.025 pixel> s~!, as 1 mm
= 500 pixels]. The difference in diffusion rates between the
models (0.01 instead of 0.025) is due to different scaling of
MCS with respect to time (s). All other parameters have been
set based on previous literature and by optimization of the
model. The diffusion rate of I is set higher than A to generate
localized “activator” field and delocalized “inhibitor” field of the
R-D system.

As all proteins have a lifetime, the degradation rate or decay
constant associated with A and I in the model limits the spread of
fields. The decay constant is assumed to be similar for A and I due
to paucity of rigorous experimental analyses. In the model, the A
and I fields are secreted at the boundaries of all “CELL’s, which
come in contact with ECM. To initialize the A-I axis, random
value of “a” (range is from 0 to 4) is assigned to each cell, which
is in contact with ECM at MCS < 5. The CC3D package has a
forward Euler method-based PDE solver, which was used to solve
the PDEs (Swat et al., 2012).

Matrix degradation and regeneration

Investigations into cancer invasion focus primarily on the
degradation of matrix by migrating cells that secrete high levels
of MMPs. However, cancer cells, while degrading matrices,
also secrete their own matrix, which is known as the cancer
matrisome. The mechanical properties of the cancer matrisome,
the forces it exerts on cells, and its chemical composition are
under intense investigation (Naba et al., 2014, 2016; Socovich and
Naba, 2018). Degradation of matrix is assumed to be dependent
on the ratio of [A] over [I]. For each MCS, ECM cells access the
concentration values of the A and I fields at each of its pixels, and
depending on the ratio, those pixels are either degraded or remain
unchanged. This degradation is threshold based. Only pixels with
the ratio [A]/[I] > 2.0 will be converted to the “lysed” form, which
is either C_Lysed (C1) or L_Lysed (BM) cell type. Motivated
by the elegant demonstration by Diambra and colleagues of
the regulation of Turing space by cooperativity between the
activator-inhibitor reaction dynamics (Diambra et al., 2015), we
investigated and observed an appropriate regulatory influence of
metalloproteinase degradation dynamics on the relative diffusion
between MMP and TIMP (see Supplementary File 2). The
degraded matrix is assigned different cell types by assuming
different properties of the degraded form of BM and C1 as the
nondegraded BM and C1 also have different properties. As a
cost of degradation, [A] and [I] are reduced at a maximum
of 1.5 unit/MCS in pixels belonging to the “lysed” cell types.
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Matrix regeneration is incorporated into the model by conversion
of C_Lysed and L_Lysed into Cl (given that cancer cells
secrete predominantly fibrillar collagen-rich matrices) after 20
MCS from the degradation event associated with that “lysed”
pixel (Socovich and Naba, 2018; Yuzhalin et al., 2018). The
regeneration of matrix is essential to eliminate unnecessary
free spaces formed as an artifact of matrix degradation, which
takes the computational model closer to its experimental
counterpart. All the “lysed” cell types are subjected to 0.1 volume
decrease at each MCS to mimic dissipation of degraded matrix
materials in vivo.

Cellular growth and proliferation

Growth rate of “CELL” is assumed be a linear combination of
nutrient availability at cell boundaries and degradation of matrix.
The growth equation is given by,

dv

Pt * p+[GF]* q

Where V = volume of “CELL’

¢ = measure of nutrient availability

[GF] = concentration of GF at center of mass of “CELL’
P> g = constants.

Two quantities, the common surface area of a cell with its
neighboring cells (k) and the total cell surface area (s) is accessed
to calculate g in this equation as ¢ = (s-k)/40. The denominator
in the calculation of g is due to the 2D nature of the simulation
as a cell can be surrounded by other cells only in the xy plane
and not in the z axis. The scaling of that extra cell surface area
without any neighboring cells in the z axis is provided by the
denominator. Another contributor of the growth function is
[GF], which mimics the ECM degradation dependence of growth
and proliferation (Olivares et al., 2017). The “lysed” cell types are
programmed to secrete GF at each of its pixel location where the
diffusion constant is kept low (0.02) to localize this growth signal
to areas of matrix degradation. p (=1/3) and g (=1/21) constant
values are set according to the assumed weightage of the two
variables in growth equation.

Cell division is incorporated into the cancer cells by a
CC3D steppable called “MitosisSteppable” with base function
“MitosisSteppableBase.” If any “CELL’ reaches a threshold
volume of 30 units, then those cells will be divided in random
orientation. The resultant two cells will have volumes half of its
predecessor with all other properties kept same as the parent cell.
In this model, growth rate is directly correlated to proliferation
as it determines the volume of the cell to reach threshold for
cell division.

Quantification: invasion of morphology

The quantification for the spread or invasiveness of morphologies
has been done in MATLAB using minimal enclosing circle
algorithm (Figure 1D). Screenshots captured at different MCS
from a simulation are used to track invasion of that model.
A program was written where for a screenshot, the image is
binarized with respect to “CELL,” which is represented by red
color. From that binarized image, centroids of all cells are
accessed by the function “regionprops.” In order to find the

smallest possible enclosing circle, two bits of information are
required, which are position of center and radius of a circle which
will encompass all the centroid positions. An arbitrary center for
the circle can be selected from which distances are measured
to all the centroids. In the smallest possible enclosing circle,
center-to-centroid distance will be maximum for the furthest
centroid that it needs to cover, and this distance will be the radius
of the circle. The function “fminsearch” was used with input
of assumed centers and radii (maximum of center-to-centroid
distance), which yields a center with minimized radius. Circle
formed with this center and radius from “fminsearch” will enclose
all the centroids and will be the smallest possible circle to do
so. All simulations have “CELL” at the center of the grid as the
initial configuration, so the center of smallest enclosing circle
can be assumed at the center of that grid to start with, which
is also the center of screenshot; this optimizes the programme.
Running this program will yield the smallest possible enclosing
circle for screenshots at each specified MCS, and the area
of this circle is considered as the measure of invasiveness of
that phenotype (Figure 1D). In our studies, we have explored
whether assigning a microenvironment-autonomous motility to
cells enhances their invasiveness. To address this, we assigned
a random motility direction for the “CELL’ cell type of the
model. All of these cells are assigned a different direction
and a value of the force acting on its center of mass. This
assignment of force is randomized but follows a uniform
distribution. In Compucell3D, this active motility is incorporated
by using “ExternalPotential” plugin and “cellMotility” steppable.
The additional contributing term for calculating change in the
Hamiltonian (AH) is:

—
AHpy = — F 54). 7 j

where for at any MCS step, for a pixel copy attempt from i to j of
cell o (i), the force vector is ?g(,-) and the distance vector between
those pixels is 7ij. So, their dot product with correct alignment
in direction will satisfy the condition to minimize H and the cell
will move along that direction.

We observe that simulating multiscale invasion with active
motility does not significantly change invasion compared to the
model, where active motility is not implemented (Figure S2).

Statistics

All the biological experiments were repeated three times
independently. All the simulations were repeated at least 10
times and the data are represented as mean + SEM. Parametric
Students’ t-test was performed with Welchs correction to
estimate statistical significance.

RESULTS

Breast Cancer Cells Invade From rBM-Like
Matrix to Collagen-Rich Matrix
Concurrently Across Multiple Spatial
Scales

In order to mimic the invasion of breast cancer cells in vivo,
we designed a culture model wherein MDA-MB-231 cells were
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allowed to form rBM-coated suspended clusters (see Materials
and Methods; Figure 83 showing rBM is spatially limited to
the surface of clusters). When such clusters were embedded
in type 1 collagen (Figure 2Ai) and the cultures were imaged
in time lapse, the cancer cells rapidly migrated past the rBM
barrier into collagen (Figure2Aii). We observed spatially
distinct but temporally concurrent modes of invasion, ranging
from bulk motion, where the cells moved centrifugally in an
expansive and collective manner (Figure 2Aiii), to mesenchymal
migration of solitary cells with a slender cytoplasmic front and a
nucleus-containing lagging end (Figure 2Aiv). We here forward
refer to this simultaneous deployment of distinct motility
modes as multiscale invasion. Studies concerned with cancer
cell migration investigate mechanisms underlying transitions
between the modes; however, the studies also note that these
modes temporally coexist within histopathological sections of
human tumors (Friedl and Alexander, 2011; Friedl et al., 2012;
Krakhmal et al., 2015). Our experimental model successfully
recapitulates the multimodal and multiscale 3D cancer
cell invasion.

We then sought to codify the minimal set of interactive
cellular and ECM behaviors that could give rise to such
multiscale migratory behaviors of invading cancer cells. Using
CC3D, we constructed a computational model wherein for
constrained set of values of cell-cell and cell-BM-like ECM
adhesion, as well as upon invoking a R-D-based remodeling
kinetics of ECM, we observed multiscale invasion of cancer
epithelia from a nonfibrillar to a fibrillar in silico ECM
microenvironment (Figure 2Bi represents the in silico cluster
at MCS = 10; Figure 2Bii represents the same cluster at
MCS = 440; emergence of expansive collective invasion seen
in Figure 2Biii, emergence of single cell invasion within
the same culture seen in Figure 2Biv; see also appropriate
sections in Materials and Methods for details of model
construction). The use of an R-D-based modulation of
ECM steady state was motivated by the morphology of the
invasion phenotypes in our experimental assay, wherein
invading cell populations exhibited a discernibly iterative
spatial pattern in which invading cells were surrounded
by lateral zones of inhibition (activator and inhibitor
concentration fields in the simulation shown in Figure S4).
In addition, the use of R-D based microenvironmental
regulation has strong precedence in the literature on cancer
progression (Chaplain, 1995; Gatenby and Gawlinski, 1996;
Roque et al, 2018; Zhang et al., 2018). Time series of both
bulk and single cell invasion were tracked and found to
increase in a similar fashion in culture and in simulations
(See Supplementary File 2).

Nature of the “Stromal” ECM May

Determine Mode of Cancer Cell Invasion

We sought to know whether the multiscale invasion of cancer
cells was a function of the prototypical outwardly radial
arrangement of cancer cells inside a thin intervening layer of
rBM and an outer presence of type 1 collagen. To verify if
the initial rfBM coating was required for cluster shape and
integrity, MDA-MB-231 cells were clustered in the absence of

rBM. The cell clusters that formed had an irregular shape with
ill-defined contours and were inherently unstable (Figures S5A,B
showing irregular and regularly shaped clusters in the absence
or presence of rBM coat, respectively). When rBM-coated MDA-
MB-231 clusters were cultured entirely in rBM; clusters exhibited
collective motility dynamics with most cells still attached to
the kernel of the cluster (control multiscale invasion shown
in Figure 3Ai; rBM-exclusive control shown in Figure 3Aii).
Solitary invading cells were scarcely seen in the periphery. On
the contrary, rBM-uncoated clusters upon embedding in type 1
collagen gels rapidly disintegrated into a small kernel and mostly
single cells that exhibited mesenchymal single cell migration
(Figure 3Aiii).

We used the phenotypic observations to further train our
computational model and chose parametric combinations
for (i) contact energies of cell-cell, cell-rBM, and cell-type 1
collagen interactions; (ii) R-D-based remodeling of ECM; and
(iii) proliferation and death of the cancer cells. We were able to
successfully narrow down parametric combinations for which
simulations mimicking “only rBM” and “only collagen” controls
predicted predominantly collective and single cell migration,
respectively (Figure 3Bi represents control, Figure 3Bii shows
emergence of collective invasion in an exclusive rBM-like
nonfibrillar ECM environment, and Figure 3Biii shows
emergence of single cell invasion in an exclusive collagen-like
fibrillar ECM environment). Since the parameter combinations
were kept identical in the controls, the divergent phenotypes
suggest that the identity of the stromal ECM and its spatial
arrangement may determine the mode of outward migration of
cancer epithelia.

Metalloproteinase Activity and N-Linked

Glycosylation Regulate Multiscale Invasion
We next sought to test our assumption that a locally auto-
active regulation of ECM remodeling is essential for multiscale
invasion. For MMPs with their cognate lateral inhibitors,
TIMPs are putative activator-inhibitor couples, given their
diffusivity and the nature of interactions. Treatment of cultures
with a broad-spectrum MMP inhibitor Batimastat resulted
in an abrogation in transition of cells into the stroma,
although the leading cytoplasmic head of cancer cells in the
periphery of the cluster could still be visually discerned in the
surrounding collagen (Figure 4Ai represents vehicle control;
Figure 4Aii represents treatment with 10 uM Batimastat). This
suggested that the transition of cancer cell nuclei across the
rBM-collagen interface is dependent on protease-dependent
remodeling of the stromal ECM. Interestingly, for amoeboid
migration (which we have not investigated in our paper, see
Discussion), nuclear softening has been proposed to be crucial
for protease-independent migration (Das et al., 2019). Decreasing
the activator levels within our computational model brought
about a decrease in in silico migration of cells with sparse
transitions into the fibrillar matrix environment (Figure 4Bi
represents control; Figure 4Bii represents simulation that
shows inhibition of invasion upon downregulating levels
of activator A).
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FIGURE 2 | Multiscale multicellular invasion of breast cancer cells in culture. (A) Representative phase contrast micrographs from time-lapse imaging of MDA-MB-231
cells showing multiscale invasion into fibrillar matrix. rBM-coated MDA-MB-231 clusters embedded within type 1 collagen (Ai) invade into the latter within 24 h (Aii).
Cells show expansive migration [(Aiii); double-headed blue arrow shows the extent of collective migration between initial boundary (0 h) and final boundary (24 h) of
the cluster (boundaries shown in pink)]. Single mesenchymal cells are also observed in type 1 collagen [(Aiv) right inset; blue arrowheads]. Scale bar: 200 um.

(B) Multiscale invasion exhibited by computational model. Initial pattern [(Bi); MCS10; cancer cells (red) packed within a BM-like nonfibrillar matrix (blue) and further
outward by fibrillar collagen-like matrix (green; inter-fibrillar gap = 3 unit pixels)], and final pattern [(Bii); MCS 440] showing invasion of cells. In silico cells show
expansive migration [(Biii) left inset; bulk movement visible through the spatial gap between two black lines denoting boundary at initial MCS and final MCS]. Single

cells are also observed in non-fibrillar ECM [(Biv) right inset].

Second, we tested the role of cell-cell and cell-matrix
interactions by treating our cultures with an inhibitor of
N-linked glycosylation: tunicamycin. Tunicamycin affects the
glycosylation and trafficking of cell surface proteins (Elbein,
1991). Molecules involved in cell adhesion such as cadherins and
cell adhesion molecules (CAMs) are N-glycosylated. Moreover,
while E-cadherin expression is epigenetically silenced in invasive
MDA-MB-231 cells, N-cadherin is expressed and promotes their
motility (Nieman et al, 1999). Treatment with tunicamycin
does not alter the trafficking of N-cadherin but affects its
function by interfering with its binding to catenin (Youn
et al, 2006). Tunicamycin is also known to abrogate the
matrix binding functions of integrins (Chammas et al., 1991).
The effect of tunicamycin on metalloproteinases is context-
dependent (Kim et al, 2010; Lee et al, 2019). Treatment
with tunicamycin may increase the expression of MMPs,
but due to associated endoplasmic reticulum (ER) stress and
unfolded protein response, their secretion is inhibited (Duellman
et al., 2015). Treatment of our complex experimental system
with tunicamycin completely abrogated stromal transition of
cancer epithelia (Figure 4Aiii). The cytoplasmic leading-edge
extensions, likely mediated through outside-in integrin signaling,
which were observed upon MMP inhibition, were also absent
upon tunicamycin exposure.

In our computational model, the phenomenological
equivalent of tunicamycin treatment would be to increase

contact energies and, hence, downmodulate adhesion between
cells and matrices. Additionally, secretion of MMP and TIMP
was also downregulated as part of the initial conditions for
simulation. Upon doing so, we found impaired invasion of cells
into the fibrillar in silico environment compared to control
conditions (Figure 4Biii). We could also observe inhibition of
invasion despite retaining the secretion of MMPs and TIMP but
only under parametric combinations when the secretion rate of
TIMPs exceeded that of MMPs (Figure S6). Our experimental
and computational results suggest that adhesive interactions and
local auto-active ECM remodeling dynamics operative within
the invading milieu are necessary for stromal migration of
cancer cells, and inhibiting them significantly downregulates the
latter (Figure 4B).

Collagen Density Alters Multiscale Invasion
We next sought to test whether the arrangement of type 1
collagen fibers surrounding rBM-coated clusters could regulate
the nature of cancer cell migration. rBM-coated clusters of
MDA-MB-231 cells were embedded within a higher density
of type 1 collagen (2.5 mg/ml) scaffolds compared with
control (1 mg/ml) (Figure5Ai). The transition of cancer
epithelia into high-density collagen was found to be attenuated
(Figure 5Aii). Dense collagen may impede nonproteolytic
migration of cancer cells allowing movement only upon
mounting a protease-based degradation of ECM. In keeping
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FIGURE 3 | Single-matrix controls of models show simpler modes of invasion. (A) Maximum intensity projections of laser confocal micrographs of MDA-MB-231 cell
clusters cultured within specific matrix milieu, fixed and stained for F-actin (using phalloidin; red; top row), DNA (using DAPI; white; middle row), and with both signals
merged (bottom row). (i) rBM-coated clusters embedded in type 1 collagen show multiscale invasion (left column). (ii) rBM-coated clusters embedded in rBM show
collective or streaming migration of cells, (iii) Uncoated MDA-MB-231 clusters in type 1 collagen show predominantly single cell invasion. Scale bar: 100 wm.

(B) Representative images from simulations of invasion of cancer cells at early (top row), intermediate (middle row), and late MCS steps (bottom row). Simulations
mimicking cells encapsulated within nonfibrillar and then fibrillar ECM exhibit multiscale invasion (left column). Simulations of cells cultured exclusively in nonfibrillar and
fibrillar ECM show collective and single cell migration (Bii and Biii). Interfibrillar gap of C1 = 3 unit pixels.
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FIGURE 4 | Inhibition of matrix metalloproteinase activity and N-linked glycosylation inhibit multiscale invasion. (A) Maximum intensity projections of laser confocal
micrographs of MDA-MB-231 cell clusters cultured within specific matrix milieu, fixed and stained for F-actin (using phalloidin; red; top row), DNA (using DAPI; white;
middle row), and with both signals merged (bottom row). (i) rBM-coated clusters embedded in type 1 collagen treated with vehicle control DMSO show multiscale
invasion (left column). (i) Treatment with 10 WM Batimastat leads to inhibition of transition of cells to type 1 collagen although cytoplasmic projections of cells in the
periphery of the cluster are visible in the fibrillar matrix. (iii) Treatment with 10 uM Tunicamycin results in complete abrogation of multiscale invasion. (B) Simulations of
control conditions (i), parametric variations analogous with inhibition of R-D (ii), and parametric variations analogous with inhibition of cell-cell, cell-fibrilar ECM, and
R-D (iii) at MCS590. Graph represents invasiveness of cells in simulations associated with (Bi-iii). Each bar represents mean 4+ SEM. ***p < 0.0001.
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FIGURE 5 | Increased collagen density impairs multiscale invasion. (A) Maximum intensity projections of laser confocal micrographs of MDA-MB-231 cell clusters
cultured within specific matrix milieu, fixed and stained for F-actin (using phalloidin; red; top row), DNA (using DAPI; white; middle row), and with both signals merged
(bottom row). (i) rBM-coated clusters embedded in 1 mg/ml type 1 collagen show multiscale invasion. (ii) rBM-coated clusters embedded in 2.5 mg/ml type 1
collagen show impaired invasion of cells into surrounding high-density type 1 collagen. (B) Simulations of control conditions (i) and high-density arrangement of fibrillar
ECM showing impaired migration of cells at MCS 540. Graph represents invasiveness of cells in simulations associated with (Bi,ii). Each bar represents mean + SEM.
***p < 0.0001.

with our experimental findings, in our computational model,  (Spencer et al., 2011), we were able to achieve growth-
we observe that all other parameters being kept constant, restricted lumen-containing acini-like structures that resemble
crowding the fibrillar ECM space with a higher density of the structures formed by the non-malignant cell line HMLE
collagen-like fibers decreased the migration of cells (Figure 5Bi  in 3D (Figure S7A). In silico phenotypes similar to the pre-
represents control multiscale invasion; Figure 5Bii represents  cancerous carcinoma in situ-like condition, which comprises
simulation in high-density fibrillar ECM; Figure 5B shows filled multicellular masses of cells (similar to the mass
statistically significant impairment of cellular invasion in the = morphology) (Kenny et al., 2007) (Figure S7B shows MCF7
computational environment). cells forming similar architectures within our 3D assay) could

be observed by increasing intercellular and cell-rBM adhesion

. - . (Figure 6C). A more subinvasive morphology, which resembles
Diversity in Morphological Phenotype Can the precancerous phenotype, but within which cells have lost

be Explained by Variation in Interplay their polarity and could give rise to indolently progressive
Between Cell Adhesion and R-D tumors, has been referred to as “grape” (Kenny et al., 2007).
Our computational model, trained on controls, successfully =~ We simulated outcomes resembling this phenotype upon further
predicted the consequences on the phenotype of various relaxing the intercellular and cell-matrix adhesion (Figure 6D).
perturbations. We asked whether it could also accommodate, It is crucial to note for simulating both the precancerous
with suitable changes in its formalism, the possibility of and indolent progression phenotypes, the R-D-based ECM
formation of homeostatic nonmalignant phenotypes as well as  remodeling network was not deployed. Invoking the same
precancerous and subinvasive phenotypes? If so, what changes  and decreasing intercellular and cell-rBM adhesion brought
in the underlying coarse-grained physical mechanism could be  about multiscale invasion in simulation (Figure 6E). Comparison
responsible for those? of invasiveness between the simulations of three cancerous

We obtained a non-invasive homeostatic lumen-containing ~ morphologies (Figure 6F) reveals that multiscale migration
phenotype (Figure 6A represents phenotype at MCS = 10;  exhibits the highest invasiveness followed by the indolently

Figure 6B represents emergence of the phenotype at MCS =  growing cluster phenotype and, in turn, by the precancerous
580) by assigning the cells within our in silico framework, = morphological phenotype.
certain properties similar to noncancerous ductal epithelial cells: Finally, we asked whether a decreasing gradient of cell-cell

BM-regulated survival of the cells. By simply implementing and cell-rBM adhesion was required for increased invasion as
the rules that (1) cells that are not anchored to the BM-  predicted by our simulations. Could merely deploying the R-
like nonfibrillar ECM die (Frisch and Francis, 1994) and  D-based ECM remodeling at higher adhesion regimes bring
(2) cells anchored to the fibrillar ECM remain quiescent about greater invasion? Simulating diffusion-driven instability
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FIGURE 6 | Parameter variation in the computational model can simulate homeostatic, precancerous, and indolently cancerous phenotypes. (A) Initial configuration of
all components of the computational model at MCS 0. (B) Simulation of a homeostatic growth-arrested phenotype with a central lumen obtained upon imposing a
nonfibrillar ECM-based rules for regulation of cellular quiescence and death of anchored and detached cells, respectively. (C) Simulation of a carcinoma in situ-like
phenotype obtained by maintaining high values of cell-cell and cell-nonfibrillar ECM adhesion. (D) Decreasing cell-cell and cel-ECM adhesion in simulation leads to a
phenotype that shows further loss of polarity (as evidenced by a roughness in the outer contour of the clusters) and occasional subinvasive single cell phenotypes.
(E) Further decreasing cell-cell and cell-matrix adhesion and deployment of an R-D-based kinetics of ECM remodeling leads to multiscale invasion. (F) Quantification
(bottom right) of the invasiveness of cells from simulations of homeostasis, carcinoma in situ, apolar clusters, and multiscale invasion. Scale bar: 100 um. Each bar

in ECM degradation in the context of the precancerous
adhesion parameter values resulted in increased invasion that
was exclusively collective and expansive (Figure 7A represents
multiscale invasion; Figure 7B represents exclusively collective
invasion upon simulating R-D in the context of precancerous
adhesion parameter values), and phenocopies the only rBM-
like in silico morphology (see Figure 3Aii). On the other hand,
simulating the same in the context of the adhesion regimes
cognate to subinvasive clustered morphologies did result in
multiscale invasion (Figure 7C). It is to be noted, however, that
the invasion seen in Figures 7B,C was significantly lesser than
that of Figure 7A but more than when in such same phenotypes
and R-D-based ECM modulation was off (Figure 7D) Our
results implicate a threshold that lies between the precancerous
and clustered adhesion regimes; the lower the cell and matrix
adhesion, the greater the invasion.

DISCUSSION

In this paper, we adopt a coarse-grained systems-theoretical
approach toward the exploration of the mechanisms of stromal
invasion of breast cancer epithelia. We designed an experimental
organo- and pathotypic culture setup wherein not just the

3D behavior of cancer cells could be studied, but also their
transition from non-fibrillar (BM-like) to fibrillar (collagenous)
ECM environments, as occurs in vivo could also be investigated.
Using this assay, we observed epithelial transition both as
multicellular collectives and as single mesenchymal cells. In
contrast, embedding cells in either (but not both) rBM or collagen
(as controls) resulted in predominantly discrete collective and
single cell migration, respectively. Our observations imply that
the complex multimatrix nature of the assay presented here
emulates in vivo invasive behavior to a better extent than existent
single matrix assays.

Our experimental framework led to the construction, in
parallel, of a computational model, whose parameters were
trained on the phenotypic outcomes of various experimental
controls. The design of the computational model takes
inspiration from the concept of dynamical patterning modules
(DPMs), autonomous heuristic agents that connote discrete
physicochemical phenomena, such as adhesion, differential
sorting, R-D, polarity, etc. (Newman and Bhat, 2008, 2009).
DPMs, when deployed singly or in combination, are useful
for understanding the transformation of cellular patterns in
distinct ways. DPMs have been used to investigate mechanisms
of developmental morphogenesis in plants and animals
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FIGURE 7 | Simulations of the deployment of R-D-based kinetics in carcinoma in situ and subinvasive cluster phenotypes. (A) Simulation of a control multiscale
invasion. (B) Simulation, within which regulation of the ECM was modeled using R-D kinetics in parameter regimes of adhesion cognate to carcinoma in situ
phenotypes, predicts collective but not single-cell invasion. (C) Simulations, within which regulation of the ECM was modeled using R-D kinetics in parameter regimes
of adhesion cognate to subinvasive apolar cluster phenotypes, predict multiscale invasion. (D) Quantification of the invasiveness of cells from the above simulations in
comparison with control multiscale invasion. Each bar represents mean + SEM. ****p < 0.0001.
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(Hernéandez-Herndndez et al., 2012; Niklas and Newman, 2013;
Benitez et al., 2018). In addition, a DPM-based understanding
of the evolution of development provides an explanation of
how body plans of animals showed an accelerated period of
origination (known as the Cambrian explosion) followed by a
relative stasis (Newman et al., 2009).

In the specific context of breast cancer invasion, using
DPMs, we have been able to treat much of the intracellular
genetic repertoire and its associated dynamics (mutation and
epigenetic regulations) as a black box. Instead, we concentrate
on phenotypic traits that manifest at the spatial scales of cells
and multicellular populations (Supplementary File 3). We then
asked whether specific combinations of parameters pertaining
to these traits are permissive to the diversity of morphologies
and cellular patterns seen in breast cancer progression. Given
discrete assumptions that are confirmed by experiments, the
same framework could give rise to phenotypes exhibited by
non-malignant, malignant but non-invasive, subinvasive, and
aggressively invasive malignant cells. In the case of noncancerous
cells, their quiescent and lumen-containing architecture was
dependent on adhesion to BM matrix; inability to do so resulted
in anoikis (Frisch and Francis, 1994; Schwartz, 1997; Bissell et al.,
2002; Furuta et al., 2018). The model predicts that the transition
from homeostatic to a precancerous carcinoma in situ-like
(DCIS) structures involves anchorage-independent survival and

division. The transition from DCIS-like states to subinvasive
phenotypes that are characterized by complete loss of cell polarity
involves a decrease in adhesion, both intercellular and between
cells and BM-like matrices. On the other hand, the transition
from subinvasive phenotype to a full-blown invasive multiscale
phenotype is predicted to be achieved through specific interplay
between decreased cell-cell and -matrix adhesion and R-D-based
cross-modulation between regulators of ECM remodeling, with
neither physical process being sufficient by itself to bring about
the phenotype. The computational model upon being asked to
deploy R-D in the presence of high cell-cell and cell-matrix
adhesion predicted an exclusively collective invasion phenotype.
The latter resembles morphologies obtained when cancer cell
clusters are cultured in rBM scaffolds in the absence of type 1
collagen. This suggests that the progression between two given
morphologies can be achieved through distinct and dissimilar
trajectories in parameter space.

R-D-based mechanisms have been proposed to regulate the
spatial patterning of iterative structures in development such
as hairs, feathers, and digits (Sick et al.,, 2006; Glimm et al,
2014; Raspopovic et al., 2014). This occurs through interaction
between an autocatalytic mediator of a morphogenetic step
and its inhibitor (Gierer and Meinhardt, 1972; Meinhardt and
Gierer, 2000). Both the mediator and its inhibitor are, as
per the R-D formalism, expected to be diffusible in nature
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(Turing, 1952). Their interaction would lead to spatial foci of
morphogenesis separated by lateral zones of inhibition. It is
reasonable to hypothesize the mediator to be a negative regulator
of a morphological trait and its inhibitor to therefore antagonize
the mediator’s inhibition of morphogenesis. MMPs and TIMPs
are exemplars of such processes. They have been shown to play
significant roles in mammary gland branch patterning (Wiseman
and Werb, 2002). Their interaction dynamics in the context of
mammary morphogenesis and elsewhere has been proposed to
act through R-D (Grant et al., 2004; Hoshino et al., 2012; Skaalure
et al., 2016; Kumar et al., 2018).

A brief survey of expression patterns of genes across multiple
cell lines grown on top of rBM matrices provides support for our
predictions (Kenny et al., 2007). Cell lines exhibiting subinvasive
and invasive morphologies exhibit a progressive decrease in E-
cadherin expression for which experimental support is available
(Hiraguri et al., 1998). Cell lines with subinvasive morphologies
showed decreased levels of B1 integrin, which participates in
multiple integrin heterodimers that bind to laminin. Invasive
cells specifically expressed an aberrantly glycosylated levels
of a Pl integrin (the consequences of glycosylation of P1
integrin have been reviewed in Bellis, 2004). Invasive cancer
epithelia are known to express matrix metalloproteinases to
a greater extent than untransformed cells: MDA-MB-231, for
example, shows high levels of multiple MMPs as well as TIMP,
relative to poorly invasive MCF7 cells (Balduyck et al., 2000;
Bachmeier et al., 2001).

The modeling approach we have wused successfully
distinguishes between collective and single-cell growth
dynamics. However, it is not able to parse mesenchymal vs.
amoeboid motilities. This is because we have modeled cells
as bounded units that show little change in shape as they
move. We aim to overcome this limitation in the future by
constructing multicompartment cells wherein intracellular
cytoskeletal dynamics will be incorporated and will also be
allowed to respond to inhomogeneities in ECM patterns. Our
black-box approach also assumes a direct intracellular linkage
between the various extracellular phenomena that mediate
invasion. The introduction of interprocess linkages with added
feedbacks, delays, and cooperativities as a means of linking
adhesion, proliferation, motility, and ECM remodeling, and the
(non)linear dynamics associated with the links would further
enrich our understanding of the coordination between the
diverse cellular phenomena and will be taken up in future efforts.
In our computational model, cells proliferate copiously. On
the other hand, our culture assays are grown for 24-36 h; cell
proliferation can at best be construed to play a mild role in the
overall invasion. These two observations are not inconsistent
with each other though; proliferation is also observed in cultures
grown for longer time periods but does not alter the pattern
of invasion that has been initially set by cell migration. The
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