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Coronary artery disease (CAD) is a life-threatening condition that, unless treated at an
early stage, can lead to congestive heart failure, ischemic heart disease, and myocardial
infarction. Early detection of diagnostic features underlying electrocardiography signals
is crucial for the identification and treatment of CAD. In the present work, we proposed
novel entropy called Renyi Distribution Entropy (RdisEn) for the analysis of short-term
heart rate variability (HRV) signals and the detection of CAD. Our simulation experiment
with synthetic, physiological, and pathological signals demonstrated that RdisEn could
distinguish effectively among different subject groups. Compared to the values of sample
entropy or approximation entropy, the RdisEn value was less affected by the parameter
choice, and it remained stable even in short-term HRV. We have developed a combined
CAD detection scheme with RdisEn and wavelet packet decomposition (WPD): (1)
Normal and CAD HRV beats obtained were divided into two equal parts. (2) Feature
acquisition: RdisEn and WPD-based statistical features were calculated from one part
of HRV beats, and student’s t-test was performed to select clinically significant features.
(3) Classification: selected features were computed from the remaining part of HRV
beats and fed into K-nearest neighbor and support vector machine, to separate CAD
from normal subjects. The proposed scheme automatically detected CAD with 97.5%
accuracy, 100% sensitivity and 95% specificity and performed better than most of the
existing schemes.

Keywords: coronary artery disease, heart rate variability, renyi distribution entropy, wavelet packet
decomposition, classifier

INTRODUCTION

Plaque accumulation (fatty and cholesterol substances) in the inner wall of the coronary arteries
causes a blockage in the coronary circulation and the reduction of blood supply to the heart muscles,
leading to coronary artery diseases (CAD) (Steinberg and Gotto, 1999). Unless treated early, CAD
can result in congestive heart failure, ischemic heart disease, myocardial infarction, ischemia,
arrhythmias, angina and sudden death (Grech, 2011). In 2012, 7.4 million CAD-related deaths were
reported, which accounted for 10% of total fatalities among female population and 16% among male
population that year, respectively (World Health Organization, 2015). By 2030, an estimated 37%
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increase in CAD-related death is expected in emerging nations
(Acharya et al., 2017c). Early CAD detection is therefore the key
to prevent further heart function damage and save lives.

The exercise stress test (EST), which monitors various heart
status features, is often used for CAD diagnosis. However, not
all CAD subjects can achieve the expected heart rate, and many
patients may suffer cardiac arrest during EST (Román et al.,
1998). Alternatively, measurement of resting ECG signals can
be applied as a non-invasive and preferred method for CAD
diagnosis. Since no obvious change in the resting ECG signals
is detected among ∼70% of CAD subjects, the manual CAD
diagnosis is time-consuming and ineffective (Antanavicius et al.,
2008). In recent years, computer-aided diagnostic technologies
(CADT) for CAD detection have garnered increasing attentions
for their ease of operation without the excessive reliance on the
personal experience of a doctor, as well as their cost-effectiveness.

Heart rate variability (HRV) extracted from the ECG depicts
the variation in time interval between adjacent heartbeats and is
vital for autonomic modulation of the heart. CADT-based HRV
analyses have been proposed in recent years for CAD diagnosis.
Reduced values in the frequency-domain feature of HRV signals
is closely related to the severity of CAD (Hayano et al., 1990).
For instance, compared to normal subjects, CAD patients exhibit
lower circadian rhythms (Huikuri et al., 1994). Power spectral
analysis also reveals that the low/high frequency ratio of HRV
signals is significantly lower in CAD-affected subjects with panic
disorder than in normal subjects (Lavoie et al., 2004). Moreover,
CAD patients exhibit lower values in the time domain features of
HRV signals, such as NN50 (number of adjacent NNs, which are
greater than 50 ms) and pNN50 (NN50 divided by total number
of NNs, which is expressed as a percentage), than normal subjects
(Acharya et al., 2014). Due to its non-linear and non-stationary
nature, the non-linear methods perform better at decoding the
invisible complexities and extracting valuable information from
HRV signals, compared to the frequency- and time-domain
analyses of HRV signals. Applying non-linear methods can also
minimize variation and background noise problems that are often
associated with the frequency- and time- domain analyses. Many
non-linear parameters, including the fractal dimension (Rajendra
et al., 2005), the Lyapunov exponents (Acharya et al., 2004),
the detrended fluctuation analysis (Peng et al., 1995), and the
recurrence quantification analysis (RQA) (Acharya et al., 2014),
are calculated from HRV signals in order to separate CAD from
normal subjects.

Entropy, the main method of non-linear analysis that
measures randomness and complexity of signals, is widely
used for HRV signal analyses to detect cardiac abnormalities
(Acharya et al., 2014, 2015b; Elias et al., 2014; Rajendra
Acharya et al., 2015). Acharya et al. (2014) showed that
Approximate Entropy (ApEn) and Sample Entropy (SamEn)
are higher in normal subjects than in CAD subjects. Entropy
evaluations are highly reliant upon the selection of parameters,
including N (data length), r (distance tolerance), and m
(embedding dimension) (Pincus, 1991; Mayer et al., 2014).
Among these parameters, r has the largest impact on results,
as even a small change in its value significantly alters the
complexity measurement of a given data set, potentially causing

mis-diagnosis (Castiglioni and Rienzo, 2008; Lu et al., 2008;
Liu et al., 2011). Li et al. (2015) proposed a new entropy
named the Distribution Entropy (DisEn) to measure the
distribution property existing in data sets by computing Shannon
entropy of the empirical probability density of inter-vector
distances. Compared to the effect of r on ApEn and SamEn
computations, the parameters M (the number of bins) and
m (embedding dimension) have less impact on the stability
and consistency of DisEn’s performance (Udhayakumar et al.,
2016). DisEn excels in analyzing HRV signals with a shorter
length (Karmakar et al., 2017). In contrast to the computation
of ApEn and SamEn, which requires reconstruction of two
adjacent dimension vector spaces, the computation of DisEn
only requires reconstruction of the m-dimension vector space.
As a result, the amount of DisEn computation is only half that
of ApEn or SamEn. Renyi entropy (RenEn) is a generalization
and reduction of Shannon entropy as the order parameter q
closes to 1. RenEn, highlighting characteristics of multifractality
or long-range interactions occurring in biomedical systems, is
more sensitive to frequent occurrences when q increases (Liang
et al., 2015). RenEn calculated from HRV signals is often used
as an important clinical indicator of early cardiac autonomic
neuropathy (Cornforth et al., 2013, 2014). Recently, RenEn has
also been combined with non-linear decompositions, such as
discrete wavelet transform (DWT) (Acharya et al., 2016), wavelet
packet decomposition (WPD) (Li and Zhou, 2016), empirical
mode decomposition (EMD) (Acharya et al., 2017b; Sridhar et al.,
2017) for automated diagnosis of CAD, myocardial infarction,
and congestive heart failure.

In our current studies, we propose a new entropy named Renyi
Distribution Entropy (RdisEn), which integrates Renyi entropy
and distribution entropy. In addition, we have developed an
automatic CAD detection scheme (Figure 1): CAD and normal
HRV beats are each divided into two parts. One part of HRV beats
is used to extract features with important clinical information,
while the other is used to evaluate classification performance
of the CAD detection scheme. The feature extraction consists
three steps: (1) CAD and normal HRV beats are subjected to
three levels of WPD (2) Statistical features (mean, maximum, and
minimum values) are computed from the obtained coefficients
of the third decomposition levels, and RdisEn is computed
from the HRV beats (3) The resulting WPD-based statistical
features and RdisEn are then ranked to extract features
with significant information for distinguishing those subjects
with CAD from those without. Finally, the extracted features
computed from the remaining part of HRV beats are fed into
K-nearest neighbor (KNN) and support vector machine (SVM)
for automatic CAD detection.

MATERIALS AND METHODS

Data Acquisition
In this study, normal and CAD ECG recordings were
downloaded from Fantasia open-access database1 and St.

1https://physionet.org/physiobank/database/fantasia/

Frontiers in Physiology | www.frontiersin.org 2 June 2019 | Volume 10 | Article 809

https://physionet.org/physiobank/database/fantasia/
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00809 June 24, 2019 Time: 15:16 # 3

Shi et al. RdisEn for CAD Detection

FIGURE 1 | Block diagram of the scheme for CAD detection.

Petersburg Institute of Cardiological Technics 12-lead
Arrhythmia Database2, respectively. Only the lead-II ECG
recordings were used for this study. We employed a total of 57
ECG recordings, among which 40 were from normal subjects
(20 old: 68 to 85 years, 20 young: 21 to 34 years) and 17 were
from 7 CAD patients.

Renyi Distribution Entropy
For a discrete time series {x (i) , i = 1, 2, · · · , N}, B and m denote
bin number and embedding dimension, the RdisEn is computed
as follows:

(1) Reconstruction of state space: (N −m)vectors U (i)
byU (i) = {x (i) , x (i+ 1) , · · · , x (i+m− 1)} , 1 ≤ i ≤ N-m.

(2) Construction of the distance matrix: M =
{

di,j
}

between
vectors U (i) and U

(
j
)

for 1 ≤ i, j ≤ N-m, where

di,j = max
{∣∣x (i+ k

)
− x

(
j+ k

)∣∣ , 0 ≤ k ≤ m− 1
}

. (3) Estimation of probability density: the distances in the
matrix M are divided into B bins with equal space, and thus the
probability of each bin (t) of the histogram is calculated as

pt =
number of elements in the t bin
total number of elements in M

, t = 1, 2, · · · , B.

(4) Calculation: the normalized RdisEn of x (i) is defined as

RdisEn
(
B, m, q

)
=

1(
1− q

)
log(B)

2

log2

( B∑
t=1

pq
t

)

From the algorithm of RdisEn, it is not difficult to
conclude that RdisEn will degenerate to DisEn when
q→ 1 (Cornforth et al., 2014).

2https://www.physionet.org/physiobank/database/incartdb/

Proposed CAD Detection Scheme
In our present study, we developed a combination scheme to
separate CAD patients and normal subjects. It consisted of three
steps: (1) HRV beats acquisition, (2) RdisEn and WPD-based
feature acquisition (3) classification through K-NN and SVM.

HRV Beats Acquisition
The downloaded ECG signals were sampled at 250 HZ for normal
group and 257 HZ for CAD group. The normal ECG signals
were up-sampled to 257 HZ to maintain uniformity between the
two groups. Daubechies wavelet 6 (db6) was used to eliminate
unwanted noise (Martis et al., 2013). The ECG signals were
subjected to Pan-Tompkin to detect R-peaks (Pan and Tompkins,
2007), and then HRV signals were obtained by calculating the
time duration of two consecutive R-peaks (Constant et al., 1999).
Finally, each CAD HRV signal was divided into beats (each beat is
a segment containing 500 samples), and as a result, 80 HRV beats
were acquired from 17 normal ECG signals. In order to keep the
dataset balance between the two groups, two normal HRV beats
were extracted from each normal HRV signals, and consequently
a total of 80 beats were acquired from 40 normal ECG signals.

Feature Acquisition
One hunderd and sixty HRV beats obtained from normal and
CAD HRV signals were randomly divided into two parts before
feature acquisition, with each part consisting of equal number of
beats from the two classes. One part of beats (40 beats for each
type of signals) was used for feature acquisition, while the other
was utilized to evaluate classification performance.

Feature extraction
As shown in Figure 1, RdisEn and WPD-based statistical features
were extracted from the HRV beats of the two classes. RdisEn was
computed based on the distribution characteristics of inter-vector
distances, and parameters on RdisEn evaluation were fixed at
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B = 512, m = 2, q = 0.4 for CAD detection in our proposed
scheme (the rationale for the chosen combined parameter is
detailed in section “Performance on CAD Detection”). RdisEn
was used to extract significant features from each HRV beat to
distinguish CAD patients from normal subjects, and WPD-based
statistical features were also computed. Briefly, a 3-level WPD was
performed on every segmented HRV beat with 500 samples to
divide it into a set of sub-bands. WPD, a popular methodology
of multiresolution analysis for non-stationary and non-linear
signals (Acharya et al., 2015a), can exploit properties of the
studied signals in frequency and time domains simultaneously.
WPD provides better frequency resolution for the sub-bands
than DWT, and it possesses more wavelet sub-bands on the
3rd level WPD of each HRV beat than DWT (8 for WPD
and 4 for DWT). Since the obtained wavelet coefficients in
each sub-band are related to the wavelet basis selected (Zhang
et al., 2018), Daubechies (orders 1–5), Harr, Coiflets (orders 1–
3) wavelet function with 3-level decomposition were considered
to capture significantly discriminable features for the best
classification accuracy for CAD detection. Subsequently, three
statistical features, namely mean [M(k)], minimum [Mi(k)], and
maximum [Ma(k)] (k = 1, 2 · · · 8,) were evaluated from the
wavelet coefficients of the 3rd level wavelet sub-bands.

Feature selection
Not all of the features obtained from the HRV beats exhibited
great separation between the two groups, redundant and
insignificant features would raise computation cost and impede
classification performance. To maximize classification accuracy,
feature selection was applied to the original features from
extraction, with the least number of features. Student’s t-test was
used as a method of feature selection in our current study (Box,
1987), and features with a p-value less than 0.05 were deemed
to have significant differences. RdisEn and the top four ranked
statistical features were selected.

Classification
Top four ranked statistical features were computed from the
remaining part of HRV beats using RdisEN, and fed into
classifiers one by one to obtain the highest accuracy with
minimum number of features. The two classifiers used in our
work are described below.

K-nearest neighbor (KNN)
K-nearest neighbor is a supervised machine learning method
widely used in classification, and the class of a testing data is
determined by the majority of votes for k training samples with
the closest Euclidean distance (González et al., 2016). In this
work, k = 10 was used.

Support vector machine (SVM)
The SVM classifier divides the training set into two parts by
constructing a hyper-plane in the feature space. Features in
non-linear separation may be change into linear separation, using
kernel functions to map the original data to a feature space with
higher dimension (Duda et al., 2012). In this work, an order 1
function kernel was used.

Three evaluation indicators, Accuracy (Acc), Sensitivity
(Sen), and Specificity (Spe) were calculated to evaluate the
classifiers performance. To ensure unbiasedness and credibility
of the classification results, 10 × 10-fold cross validation
methodology was implemented, and overall evaluation indicators
were calculated.

Feature Assessment
Three statistics methods were used to test the CAD detection
performance of these features. The open source R package was
used for all the analysis and calculation. First, univariate binary
logistic regression method was used to access the statistically
significant correlations between CAD and each feature
(p-value < 0.05). Second, the correlation between the extracted
features was evaluated by using Pearson test (p-value < 0.05,
correlation coefficient >0.5). Finally, multivariate binary logistic
regression model without redundant features was established to
determine statistically significant feature associated with CAD
detection (p-value < 0.05).

RESULTS

Performance of RdisEn on Various
Signals
To test the consistency and stability of the RdisEn measurement,
we studied the impact of the changing parameter combinations
on the RdisEn measurement, using synthetic, physiologic
and pathological signals. DisEn was originally introduced to
eliminate ApEn and SamEn’s excessive dependence on tolerance
r. RdisEn proposed in this work was based on DisEn. We
therefore compared the performance of RdisEn to that of ApEn,
SamEn and DisEn.

Performance of RdisEn on Synthetic Signals by
Varying Parameters
The synthetic signals were generated by the Logistic attractor
xn+1 = wxn (1− xn). The constant w was set at 3.5 and 3.8 to
obtain periodic and chaotic signals (Pincus, 1991) respectively,
which has been widely applied to describe variations of entropy
level (Xie et al., 2008; Chen et al., 2009; Karmakar et al.,
2017). Twenty realizations were generated from 1000 samples
of both signal types, and initial values of the realizations were
selected randomly between 0.1 and 0.2 to eliminate the random
factors. The mean values of RdisEn with the changing parameter
combinations of N (N = 50, 200, 350, 500, 650, 800, 1000), B
(B = 100,250,350,500,650,1000,1300,2000) and m (m = 2,3,4,5)
for chaotic and periodic signals, as well as the fixed parameter q
(q = 0.5), are shown in Figure 2. A significant separation between
the two signal types was observed, while the traits of the RdisEn
values were similar for m = 2, 3, 4, 5 (Figure 2).

Performance of RdisEn on Physiologic Signals by
Varying Parameters
Next, physiological features were extrapolated from the HRV
signals of 20 elderly and 20 young healthy subjects as described in
section “HRV Beats Acquisition.” For each subject, a HRV signal
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FIGURE 2 | Variation of mean RdisEn values chaotic and periodic signals of with varying parameter combinations N and B for (A) m = 2, (B) m = 3, (C) m = 4, and
(D) m = 5.

was selected with varying length (50, 200, 350, 500, 650, 800,
and 1000) for RdisEn calculation using the following parameters:
N = 50, 200, 350, 500, 650, 800, and 1,000; B = 100, 250, 350,
500, 650, 1,000, 1,300, and 2,000; m = 2, 3, 4, and 5; q = 0.5.
As comparison, ApEn and SamEn were also calculated with the
following parameters: N = 50, 200, 350, 500, 650, 800, and 1,000;
r = 0.1∗SD, 0.2∗SD,· · · ,1∗SD; m = 2, 3, 4, and 5. The results are
shown in Figures 3–5. The values of ApEn fluctuated widely
with different combinations of N, r, and m, especially for a small
data length (Figure 3). There was a crossover in ApEn meshes
between the HRV signals from the elderly and young subjects,
suggesting that ApEn failed to effectively separate the two age
groups. The SamEn mesh was sparse in comparison with the
ApEn and RdisEn mesh (Figure 4), most likely due to the fact
that SamEn was not defined for smaller data length, resulting in
invalid values. As shown in Figure 5, RdisEn could effectively
differentiate HRV signals between the two age groups, even for
smaller data lengths. In addition, the variation of RdisEn values
was small with diverse parameter m. The effects of different
parameters N and B or r on entropy measurements (ApEn and
RdisEn) for embedding dimension m ∈ [2, 5] were quantified
by the means of the standard deviation across N and B or r
(Table 1). It was not difficult to find that the change of ApEn
measurement with a variation of N was less than that with the
change of r. The variation of RdiEn measurement with varying

B was higher than that with varying of N for old vs. young
subjects. More importantly, compared to ApEn, the variations of
RdisEn values with changing parameters B and M were relatively
small (Table 1).

Performance of RdisEn on Pathological Signals by
Varying Parameters
In this work, CAD signals and arrhythmia short-term HRV
signals were compared to healthy signals. 40 healthy and
17 CAD short-term HRV signals were acquired from 40
normal and 7 CAD subjects, as described in section “HRV
Beats Acquisition.” Using the Pan-Tompkin algorithm, 48
arrhythmia short-term HRV signals were obtained from
MIT-BIH Arrhythmia Database3, which contains 48 ECG signals
from 47 subjects (25 men: 32 to 89 years, 22 women: 23 to
89 years) (Pan and Tompkins, 2007).

The HRV signals of varying lengths (50, 200, 350, 500, 650,
800, and 1,000) were selected to test ability of RdisEn to separate
the two types of pathological signals with changing parameters.
ApEn and SampEn were also calculated as references, and the
parameters corresponding to the three entropies (RdisEn, ApEn,
and SamEn) were set as described in section “Performance of
RdisEn on Physiologic Signals by Varying Parameters.”

3https://physionet.org/physiobank/database/mitdb/
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FIGURE 3 | Variation of the mean ApEn value for HRV signals of old and young subjects with varying parameter combinations N and r for (A) m = 2, (B) m = 3,
(C) m = 4, and (D) m = 5.

FIGURE 4 | Variation of the mean value for HRV signals of old and young subjects with varying parameter combinations N and r for (A) m = 2, (B) m = 3, (C) m = 4,
and (D) m = 5.
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FIGURE 5 | Variation of the mean RdisEn value for HRV signals of old and young subjects with varying parameter combinations N and B for (A) m = 2, (B) m = 3,
(C) m = 4, and (D) m = 5.

TABLE 1 | Mean of the standard deviation across data length N and bin number B for RdisEn or tolerance r for ApEn.

Entropy Embedding
dimension m

Young Old Healthy CAD Healthy Arrhythmia

σN σB/r σN σr/B σN σr/B σN σr/B σN σr/B σN σr/B

RdisEn 2 0.0043 0.0242 0.0043 0.0217 0.0043 0.0217 0.0067 0.0226 0.004 0.0192 0.0074 0.0196

3 0.0048 0.0244 0.0049 0.0219 0.0049 0.0219 0.0079 0.0229 0.0051 0.0195 0.0084 0.0199

4 0.0054 0.0245 0.0054 0.0220 0.0054 0.0220 0.0087 0.0231 0.0057 0.0196 0.0093 0.0200

5 0.0060 0.0245 0.0060 0.0221 0.0060 0.0221 0.0096 0.0221 0.0062 0.0197 0.0101 0.0201

ApEn 2 0.1302 0.2641 0.0982 0.2527 0.0982 0.2527 0.0404 0.1225 0.0829 0.2481 0.1063 0.2322

3 0.1114 0.1893 0.0859 0.1599 0.0859 0.1599 0.0401 0.0698 0.0741 0.1487 0.0995 0.1357

4 0.0983 0.1687 0.0770 0.1314 0.0770 0.1314 0.0447 0.0419 0.0657 0.1122 0.0867 0.11104

5 0.0875 0.1545 0.0707 0.1172 0.0707 0.1172 0.0447 0.0316 0.0578 0.0941 0.0748 0.0995

Figures 6–8 show the change of mean ApEn, SamEn and
RdisEn values with varying parameter combinations for normal
and CAD HRV signals. In contrast to ApEn and SamEn, the mean
value of RdisEn for CAD HRV signals was higher than that for
normal HRV signals, demonstrating the superiority of RdisEn
in differentiating CAD and normal subjects. Quantification
results on the effect of parameter selections for entropy values
(ApEn and RdisEn) for embedding dimension m ∈ [2, 5], in
terms of the means of standard deviation across N and B
or r, are shown in Table 1. Our results demonstrated that
RdisEn measurement remained relatively stable to parameter
selection for very short lengths of HRV signals (Figures 3–
8 and Table 1), most likely due to its inherited merits from

DisEn (Karmakar et al., 2017). In contrast, a large amount of
invalid values was generated in ApEn and SamEn calculation
(Figures 6, 7). Moreover, remarkable separation between normal
and CAD RdisEn meshes was observed (Figure 8). Taken
together, these results demonstrated that the RdisEn analysis is
the best method to generate stable values with clear separation
between normal and CAD groups.

The change of mean RdisEn values with varying parameter
combinations for normal and arrhythmia HRV signals was
shown in Figure 9. The parameter combinations of RdisEn
were the same as that described in section “Performance
of RdisEn on Physiologic Signals by Varying Parameters.”
Significant separation between normal and arrhythmia RdisEn
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FIGURE 6 | Variation of the mean ApEn value for HRV signals of normal and CAD subjects with varying parameter combinations N and r for (A) m = 2, (B) m = 3,
(C) m = 4, and (D) m = 5.

FIGURE 7 | Variation of the mean SamEn value for HRV signals of normal and CAD subjects with varying parameter combinations N and r for (A) m = 2, (B) m = 3,
(C) m = 4, and (D) m = 5.
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FIGURE 8 | Variation of the mean RdisEn value for HRV signals of normal and CAD subjects with varying parameter combinations N and B for (A) m = 2, (B) m = 3,
(C) m = 4, and (D) m = 5.

FIGURE 9 | Variation of the mean RdisEn value for HRV signals of normal and arrhythmia subjects with varying parameter combinations N and B for (A) m = 2,
(B) m = 3, (C) m = 4, and (D) m = 5.
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TABLE 2 | AUC values of the fiveentropy measurements with varying lengths for
separating healthy from arrhythmia HRV signals.

Entropy 500 800 1000 Mean SD

ApEn 0.4427 0.4552 0.4583 0.4521 0.0083

SampEn 0.5833 0.5729 0.551 0.5691 0.0165

DisEn 0.7719 0.7677 0.7604 0.7667 0.0058

RenEn 0.5208 0.5104 0.45 0.4937 0.0382

RdisEn 0.7698 0.7698 0.7656 0.7684 0.0024

meshes can be observed (Figure 9). In addition, area under
the ROC curve (AUC) was used to examine the performance
of RdisEn (B = 512, m = 2, q = 0.9) with varying length
(500, 800, and 1000) to separate healthy from arrhythmia short-
term HRV signals. ApEn (r = 0.2 × SD, m = 2), SamEn
(r = 0.2 × SD, m = 2), DisEn (B = 512, m = 2), and RenEn
(q = 0.9) were used as references. When AUC equals to 1, the
feature distributions belonging to the two classes are completely
separated; when AUC equals to 0.5, the feature distributions
are similar, suggesting that the closer to 1 the AUC value,
the better the discriminatory power of RdisEn (Hanley and
McNeil, 1982). RisEn out-performed ApEn, SamEn, DisEn, and
RenEn in distinguishing healthy from arrhythmia short-term
HRV signals (Table 2 and Figure 9). RdiEn also exhibited good
computing stability with varying length, as shown by the SD
values (Table 2).

Performance on CAD Detection
We repeated the RdisEn analyses using HRV beats obtained via
the automated CAD detection scheme from normal and CAD
subjects. B = 512 was frequently employed in the analysis of HRV
signals with respect to DisEn (Li et al., 2015; Yang et al., 2015), and
the selection of m had little effect upon the RdisEn evaluation on
the basis of the aforementioned study. Consequently, the related
parameters on the RdisEn evaluation were fixed to B = 512 and
m = 2 for CAD detection. In addition to the parameter B and m
on the DisEn evaluation, another parameter q, which enhances
differentiation between normal and CAD HRV beats, requires to
be fixed for the RdisEn measurement. To optimize q, we adopted
the Student’s t-test to assess the performance of RdisEn calculated
from one part of normal and CAD HRV beats with varying
parameter q (q ∈ [0.1, 2]). As shown in Table 3, the two groups
exhibited significantly different RdisEn values, regardless of the
q parameter variations. The p-value was lowest when q = 0.4,
indicative of the optimal condition to differentiate the two groups
(RdisEn degenerated into DisEn, as mentioned in section “Renyi
Distribution Entropy”). As a result, we computed RdisEn with
parameters N = 500, B = 512, m = 2, and q = 0.4. Table 4 shows

the means and SD of RdisEn, as well as the top four statistical
features based on WPD with the db1, computed from one part
of normal and CAD HRV beats, and their p-values generated by
Student’s t-test, significant differences were observed between the
two groups (Table 4).

Five selected features were calculated from the remaining part
of normal and CAD HRV beats and then fed into classifiers
KNN or SVM one by one to maximize the accuracy with
minimal features. As shown in Table 5, the proposed scheme for
CAD detection achieved the highest mean accuracy of 96.34%
with five features (RdisEn and four WPD with db1 d statistical
features) in 10 × 10-fold cross validation using KNN. We
repeated the CAD detection scheme (Figure 1) using RdisEn
and WPD with other wavelet-based statistical features, and the
results were shown in Table 5. We computed the p-values
for the correlations between CAD detection with five features,
i.e., RdisEn and the top ranked four WPD with coif2 based
statistical features [Mi(1), M(1), Ma(1), and Mi(6)] by univariate
binary logistic regression method, the corresponding p-values
for the five features are 2.5e-6, 0.01, 3.3e-6, 4.6e-6, and 0.02,
respectively, which demonstrated that these features statistically
significant correlated with CAD detection. As presented in
Table 5, when the fifth feature was added into the KNN
classifier, the CAD detection performed with 97.5% accuracy,
100% sensitivity, 95% specificity, respectively, with no significant
improvement compared with the performance of the 4-feature
based model (97.37 ± 0.41% accuracy, 99.75 ± 0.79% sensitivity,
95% specificity). This indicated that the fifth feature [Mi(6)] is
correlated with the other four features [RdisEn, Mi(1), M(1),
and Ma(1)] and therefore includes redundant information.
A Pearson test was performed to calculate the correlations
between the fifth feature and other four, the correlation
coefficient for Mi(6) and RdisEn, fMi(1), M(1), and Ma(1)
are −0.26 (p-value = 0.020), −0.073 (p-value = 0.518), 0.218
(p-value = 0.052), and 0.953 (p-value = 4.3e-42), respectively,
indicating a significant correlation between the fifth feature
[Mi(6)] and Ma(1). At last, the multivariate binary logistic
regression model was used to test the relationship between the
features and the CAD detection, in which RdisEn and the other
three features were entered and their p-values are 0.033, 0.563,
0.089, and 0.501, respectively; it is obvious that RdisEn improved
the CAD detection statistically significant.

DISCUSSION

The CAD diagnostic signals can be divided into three major
categories: heart sound signals (HSS), ECG signals, and HRV
signals. The detailed methods of CAD detection are described in

TABLE 3 | p-Values of RdisEn computed from normal and CAD HRV beats with varying parameter q.

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p-Value 9.68E-5 5.08E-5 3.55E-5 3.15E-5 3.32E-5 3.85E-5 4.68E-5 5.60E-5 7.1E-5 8.86E-5

q 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

p-Value 1.08E-4 1.30E-4 1.54E-4 1.81E-4 2.09E-4 2.39E-4 2.71E-4 3.05E-4 3.39E-4 3.74E-4
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TABLE 4 | Mean and SD values of RdisEn and the top five WPD (db1 basis)
based statistical features for normal and CAD HRV beats.

Feature CAD Normal p-value

Mean SD Mean SD

RdisEn 0.2690 0.0363 0.2345 0.0316 3.15E-5

Mi(1) 1.6203 0.3024 2.4613 0.4826 2.37E-14

M(1) 1.9249 0.3958 2.8147 0.5110 3.55E-13

Mi(5) 2.2415 0.4469 3.0369 0.5778 1.29E-9

Ma(6) 0.3315 0.2148 0.0992 0.0995 2.45E-8

Table 6. HRV signals are essential tools widely used for cardiac
abnormality detection and CAD diagnosis (Lee et al., 2007, 2008;
Dua et al., 2012; Giri et al., 2013; Patidar et al., 2015; Kumar et al.,
2016). Lee et al. (2007, 2008) employed linear and non-linear
features extracted from HRV signals as indices to distinguish
normal subjects from CAD patients, and they achieved a
∼90% accuracy using the SVM classifier. The automatic CAD

detection algorithm was proposed by Dua et al. (2012), based
on non-linear features (recurrence plots, detrended fluctuation,
and three types of entropy) and a principal component analysis
method, and achieved an accuracy of 89.5% using multilayer
perceptron (MLP) methodology. Giri et al. (2013) used DWT to
divide HRV signals into frequency sub-bands. They also applied
dimensionality reduction methods such as PCA, independent
component analysis (ICA), and linear discriminant analysis
(LDA) to the coefficients from the obtained sub-bands to lower
the data dimension. With the additional combined method of
ICA and Gaussian mixture model (GMM), Giri et al. (2013)
reported the highest accuracy for automatically identifying
CAD of 96.8%. Patidar et al. (2015) applied a combination of
tunable-Q wavelet transform (TQWT), centered correntropy,
and the PCA method to achieved an accuracy of 99.72% with
HRV signals from the automated diagnosis of CAD. Kumar et al.
(2016) developed a CAD detection technique, which consists
of the flexible analytic wavelet transform (FAWT) and ranking
methods, including receiver operating characteristics (ROC),

TABLE 5 | Classification performance of RdisEn and WPD (various basis) based statistical features by using KNN and SVM classifiers.

Wavelet basis NoF KNN SVM

Acc(%) Sen(%) Spe(%) Acc(%) Sen(%) Spec(%)

db1 3 96.08 ± 0.38 97.5 94.75 ± 0.79 96.08 ± 0.38 97.25 ± 0.79 95

4 96.08 ± 0.38 97.5 94.75 ± 0.79 96.06 ± 0.59 97.5 ± 1.79 95.24 ± 0.77

5 96.34 ± 0.72 97.5 95.25 ± 1.42 95.6 ± 0.85 97.25 ± 0.79 94 ± 1.29

db2 3 96.08 ± 0.38 97.5 94.75 ± 0.79 97.12 ± 0.84 99.25 ± 1.69 95

4 97.25 ± 0.79 100 94.5 ± 1.58 97.37 ± 0.41 99.75 ± 0.79 95

5 96.48 ± 0.99 98 ± 1.97 95 96.6 ± 0.86 98.25 ± 1.69 95

db3 3 96.33 ± 0.41 97.75 ± 0.79 95 95.6 ± 0.85 96.5 ± 1.75 94.75 ± 0.79

4 97.37 ± 0.41 99.75 ± 0.79 95 96.6 ± 0.86 98.5 ± 1.75 94.75 ± 0.79

5 95.72 ± 0.62 96.5 ± 1.29 95 96.46 ± 0.54 98 ± 1.05 95

db4 3 95.96 ± 0.51 97 ± 1.05 95 95.38 ± 1.31 95.75 ± 2.65 95

4 97.37 ± 0.41 99.75 ± 0.79 95 96.23 ± 1.17 97.5 ± 2.36 95

5 97.37 ± 0.41 99.75 ± 0.79 95 95.24 ± 0.95 95.5 ± 1.97 95

db5 3 95.84 ± 0.58 97 ± 1.05 94.75 ± 0.79 95 ± 1.26 95 ± 2.63 95

4 96.23 ± 1.02 97.75 ± 0.79 94.75 ± 1.84 95.85 ± 0.83 97 ± 1.05 94.75 ± 1.42

5 96.74 ± 1.22 98.75 ± 1.32 94.75 ± 1.84 95.60 ± 1.34 96.75 ± 1.69 94.50 ± 1.58

db6 3 95.96 ± 0.51 97.50 94.50 ± 1.05 95.97 ± 0.78 97 ± 1.58 95

4 97.24 ± 0.55 100 94.5 ± 1.05 96.73 ± 0.89 98.50 ± 1.75 95

5 95.85 ± 0.83 97.50 ± 1.18 94.25 ± 1.21 95.48 ± 0.84 96.50 ± 1.75 94.50 ± 1.05

harr 3 96.08 ± 0.38 97.50 94.75 ± 0.79 96.08 ± 0.38 97.25 ± 0.79 95

4 96.08 ± 0.38 97.50 94.75 ± 0.79 96.21 ± 0.59 97.50 ± 1.18 95.24 ± 0.77

5 96.34 ± 0.71 97.50 95.25 ± 1.42 95.60 ± 0.85 97.25 ± 0.79 94 ± 1.23

coif1 3 96.08 ± 0.38 97.50 94.75 ± 0.79 95.84 ± 0.81 97 ± 1.05 94.75 ± 0.79

4 95.96 ± 0.51 97.50 94.50 ± 1.05 95.85 ± 1.01 97.25 ± 1.42 94.50 ± 1.05

5 97.24 ± 0.55 99.75 ± 0.79 94.75 ± 0.79 96.24 ± 1.31 98 ± 1.97 94.50 ± 1.05

coif2 3 96.33 ± 0.41 97.75 ± 0.79 95 97.11 ± 0.63 99.25 ± 1.21 95

4 97.37 ± 0.41 99.75 ± 0.79 95 97.24 ± 0.55 99.5 ± 1.05 95

5 97.50 100 95 97.24 ± 0.55 100 94.50 ± 1.05

coif3 3 95.96 ± 0.51 97.25 ± 0.79 94.75 ± 0.79 96.98 ± 0.98 97 ± 1.97 95

4 96.98 ± 0.67 99.25 ± 1.21 94.75 ± 0.79 96.99 ± 0.88 99 ± 1.75 95

5 95.84 ± 0.58 96.75 ± 1.21 95 95.36 ± 0.58 95.75 ± 1.21 95

NoF, number of features.
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TABLE 6 | Studies conducted to distinguish normal from CAD subjects using various signals.

Author Data used Method/features Classifiers Cross validation Accuracy

using HSS signals

Karimi et al., 2005 5 CAD and 5 normal DWT, WPD (some statistical features) ANN No 90%

Zhao and Ma, 2008 40 CAD and 40 normal EMD, TEO (some statistical features) BPNN No 85%

using ECG signals

Lewenstein, 2001 479 CAD and 297 normal (slope of an ST segment, blood
pressure, load during the test)

Radial basis function
neural networks

No 97%

Babaoǧlu et al., 2010a 480 CAD principle component analysis SVM 5-fold 79.1%

Babaoglu et al., 2010b 480 CAD binary particle swarm optimization and
genetic algorithm

SVM 5-fold 81.46%

Acharya et al., 2017c 7 CAD and 40 normal Higher-Order Statistics and Spectra
(HOS)

KNN,DT 10-fold 98.99%

Kumar et al., 2017 7 CAD and 40 normal Flexible analytic wavelet transform
(cross information potential)

LS-SVM 10-fold 99.6%

Normal and CAD using HRV signals

Lee et al., 2007 99 CAD, 94 Normal Linear (time domain, frequency domain)
and non-linear methods (Poincare plot,
approximation entropy)

Support vector
machine (SVM)

10-fold 90%

Lee et al., 2008 99 CAD, 94 Normal Linear (time domain, frequency domain)
and non-linear methods (Poincare plot,
the hurst exponent, Detrended
fluctuation analysis)

CPAR & SVM: 10-fold 85–90%

Dua et al., 2012 10 CAD and 10 normal subjects Non-linear methods (recurrence plots,
Shannon entropy) and principal
component analysis (PCA)

multilayer perceptron
(MLP)

5-fold 89.5%

Giri et al., 2013 10 CAD and 15 normal subjects DWT and Independent Component
Analysis (ICA)

Gaussian Mixture
Model (GMM)

3-fold 96.8%

Patidar et al., 2015 10 CAD and 10 normal subjects TQWT and PCA (correntropy) LS-SVM 3-fold 99.72%

Kumar et al., 2016 10 CAD and 10 normal subjects FAWT and entropy LS-SVM 10-fold 100%

In this work 40 normal and 7 CAD subjects RdisEn and WPD (statistical features) KNN and SVM 10 times 10-fold 97.5%

entropy and Bhattacharya space algorithm, with a classification
accuracy of 100%.

In the current study, we proposed a new entropy called
RdisEn based on DisEn. Our simulation experiments with three
types of signals showed that RdisEn, as an indicator of the
randomness and complexities occurring in the signals, was not
overly reliant on parameter selection and remained stable for
even very short sequences (Figures 5, 8). It out-performed ApEn
and SamEn in separating physiological (old from young) and
pathological (healthy from CAD and healthy from arrhythmia)
signals (Figures 3–8). The results indicate that RdisEn is a
promising measure to characterize physiological and pathological
condition of subjects with short-term HRV signals.

We developed an automatic CAD detection scheme
combining RdisEn and WPD-based statistical features to
analyze short-term HRV signals. Since the HRV signals used in
this work were extracted from standard ECG signals obtained
during the rest period instead of exercise, the ECG signal
acquisition were harmless to the test subjects. Using only five
features with KNN and the 10 × 10-fold cross validation
method, the proposed scheme can differentiate normal and
CAD affected HRV with 97.5% accuracy, demonstrating that
our scheme outperformed other algorithms in automatic CAD
detection (Table 5). It was worth mentioning that, in feature
acquisition, features were extracted from a data set, which was

independent of that used for the subsequent evaluation of the
classifier in our work. Compared with other CAD detection
schemes shown in Table 6, our scheme using RdisEn and
WPD-based statistical features is more stable, rigorous and
efficient. The classification accuracy achieved was significantly
higher than that using WPD-based statistical features alone
(97.5% vs. 90%) (Karimi et al., 2005). The p-values of 2.5e-6
and 0.033 for RdisEn by univariate and multivariable binary
logistic regression method, respectively, were obtained in the
process of testing the ability of RdisEn as a feature for CAD
detection in this work. These indicated that RdisEn made a great
contribution in distinguishing normal and CAD affected HRV
signals. In the future, RdisEn can be utilized as a quantification
index of irregularity within non-linear signals for the diagnosis
of other diseases such as fibrillation, myocardial infarction
and congestive heart failure (Acharya et al., 2017a, 2018a,b;
Fujita and Cimr, 2019).

CONCLUSION AND FUTURE WORK

Coronary artery disease is a serious cardiac abnormality, leading
to high fatality. Early diagnosis and treatment of CAD can
prevent progression. In this work, we proposed a new important
entropy named RdisEn. It can effectively reveal the irregularity
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and randomness in HRV beats. A scheme for the automated
differentiation between HRV signals from normal and
CAD affected people has been developed, using WPD- and
RdisEn-based computation, Student’s t-test selection, and
classifiers to yield a classification accuracy of 97.5%, sensitivity
of 100% and specificity of 95%. This novel scheme for CAD
detection is reproducible, cost-effective, non-invasive, and
more accessible than physical examinations such as coronary
angiography and cardiac catheterization. In future works, we will
apply the proposed scheme for the diagnosis of CAD and test this
model in big population samples for future application.
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Babaoǧlu, I., Fındık, O., and Bayrak, M. (2010a). Effects of principle component
analysis on assessment of coronary artery diseases using support vector
machine. Expert Syst. Appl. 37, 2182–2185. doi: 10.1016/j.eswa.2009.07.055
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