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Parameters describing dynamic cerebral autoregulation (DCA) have limited
reproducibility. In an international, multi-center study, we evaluated the influence
of multiple analytical methods on the reproducibility of DCA. Fourteen participating
centers analyzed repeated measurements from 75 healthy subjects, consisting of
5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity
signals, based on their usual methods of analysis. DCA methods were grouped into
three broad categories, depending on output types: (1) transfer function analysis (TFA);
(2) autoregulation index (ARI); and (3) correlation coefficient. Only TFA gain in the low
frequency (LF) band showed good reproducibility in approximately half of the estimates
of gain, defined as an intraclass correlation coefficient (ICC) of >0.6. None of the other
DCA metrics had good reproducibility. For TFA-like and ARI-like methods, ICCs were
lower than values obtained with surrogate data (p < 0.05). For TFA-like methods, ICCs
were lower for the very LF band (gain 0.38 + 0.057, phase 0.17 + 0.13) than for LF
band (gain 0.59 + 0.078, phase 0.39 + 0.11, p < 0.001 for both gain and phase).
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For ARI-like methods, the mean ICC was 0.30 £ 0.12 and for the correlation methods
0.24 £ 0.23. Based on comparisons with ICC estimates obtained from surrogate data,
we conclude that physiological variability or non-stationarity is likely to be the main
reason for the poor reproducibility of DCA parameters.

Keywords: ARI index, cerebral blood flow, cerebral hemodynamics, transcranial Doppler, transfer function

analysis

INTRODUCTION

The importance of cerebral autoregulation (CA) has been clearly
established, as a cerebro-protective mechanism to alterations
in blood pressure (BP) by keeping cerebral blood flow (CBF)
relatively constant (van Beek et al., 2008). Dynamic CA (DCA)
is the transient cerebrovascular response to rapid changes
in BP (Aaslid et al, 1989). Compared to the more classical
modality of “static” autoregulation, that often requires the
use of pharmacological agents to induce steady-state changes
in BP (Tiecks et al., 1995), DCA has benefitted from recent
developments in non-invasive techniques to record CBF and BP,
and it is now the preferred approach for assessment of CA in
physiological and clinical studies.

Despite its many advantages, protocols to reliably assess
DCA remain the object of considerable debate (Simpson
and Claassen, 2018a,b; Tzeng and Panerai, 2018a,b). On the
one hand, maneuvers that induce relatively large and rapid
changes in BP, such as the sudden release of compressed
thigh cuffs (Aaslid et al., 1989), lead to recordings with
better signal-to-noise ratio and the possibility of visualizing
and quantifying the DCA response with measurements as
short as 30 s. On the other hand, using the spontaneous
fluctuations in BP and CBE that can be observed in most
individuals, allows estimation of DCA parameters at rest,
without the need for a physiological disturbance or challenge.
This can lead to better acceptance and feasibility in most
clinical conditions.

Which road to take? The answer to this fundamental question
is not straightforward as it is unlikely that a single protocol
will be suitable for all different scenarios of patient care and
physiological intervention (Simpson and Claassen, 2018a,b;
Tzeng and Panerai, 2018a,b).

A definition of an optimal protocol could be one which,
combined with robust modeling techniques (Panerai, 2008),
leads to the best sensitivity and specificity performance for
detection of CA disturbances, as well as predictive accuracy for
patient prognosis.

Before reaching this stage though, it is essential that
measurement reproducibility is demonstrated as a key
property of any method of assessment. This target is at the
forefront of the collaborative initiatives promulgated by the
International Cerebral Autoregulation Network (CARNet) as
part of the effort to identify potential sources of methodological
disparity (Meel-van den Abeelen et al., 2014) and encourage
technical standardization (Claassen et al., 2016). The most
recent stage of this pathway is described in this article and
involves an international, multi-center assessment of the

reproducibility of the main parameters that are currently
available to assess DCA based on spontaneous fluctuations
of BP and CBF.

Examining the reproducibility of DCA parameters, obtained
from spontaneous fluctuations at rest, is important due to the
widespread use of this approach for both physiological and
clinical studies. Early assessments of the reproducibility of the
spontaneous fluctuations approach were not encouraging (Brodie
et al., 2009; Gommer et al., 2010; Smirl et al., 2015), but were not
regarded as the definitive answer, only as indicative of a single
method, handled by a single center. This limitation was addressed
in the current multi-center study. An initial report (Sanders
et al, 2018) described the influence of different methods of
analysis on the reproducibility of synthetic data, where surrogate
time-series of CBF velocity (CBFv) were generated based on
real measurements of BP, coupled with a realistic signal-to-
noise ratio. These generated CBFv data were based on a linear
model. Thus, compared to real CBFv data, these generated
data are free of any physiological influences on the BP-CBFv
relationship. Such physiological influences could include non-
stationary behavior of autoregulatory function (i.e., variations
in function over time), and factors known to influence CBFv
(e.g., PaCO;, cognitive activity, autonomic nervous activity,
temperature, breathing pattern).

The present communication therefore had as aim to provide
a much broader description of the reproducibility of “real”
estimates of DCA from 14 leading international centers, using a
diversity of analytical methods. In particular, this study addressed
two main objectives: (1) to compare the reproducibility of
DCA parameters from these real physiological measurements
to that of surrogate data and (2) to establish the influence of
different analytical methods used by a variety of research centers
worldwide on the reproducibility of DCA metrics.

MATERIALS AND METHODS
Subjects

A database was created from available datasets of cerebral
hemodynamic measurements from participating centers
(Supplementary Table S1). Included were healthy adults
>18 years of age. Exclusion criteria were uncontrolled
hypertension, smoking, cardiovascular disease, diabetes,
irregular heart rhythm, TIA/stroke, or significant pulmonary
disease. The study has been carried out in accordance with
the Code of Ethics of the World Medical Association
(Declaration of Helsinki). Written informed consent was
obtained from all subjects.
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Description of Datasets

Six of a total of 14 centers (Supplementary Table S1) provided
datasets that consisted of two measurements from 10 to 15
healthy volunteers in each center, resulting in a total of 75
healthy subjects. Time between the two measurements varied
between centers, from minutes to a maximum of 4 months. Data
sets consisted of 5 min of beat-to-beat artifact free mean CBFv
(transcranial Doppler ultrasound, TCD), mean BP (digital artery
volume clamping), and end-tidal CO, (EtCO,, capnography)
measurements at rest. Beat-to-beat parameters were re-sampled
at 10 Hz. In 22 subjects, the TCD data were unilateral. The dataset
was as follows: N = 55 left side signals, N = 71 right side signals.

DCA Analysis

Data analyses were performed by 14 participating centers. The
following DCA analysis methods were used: transfer function
analysis (TFA) (Panerai et al., 1998a; Zhang et al., 1998; Mitsis
et al., 2002; Muller et al., 2003; Reinhard et al., 2003; Liu et al.,
2005; Gommer et al., 2010; van Beek et al., 2010; Meel-van
den Abeelen et al., 2014; Muller and Osterreich, 2014; Panerai,
2014), Laguerre expansion of first-order Volterra kernels or
finite impulse response models (Marmarelis, 2004; Mitsis et al.,
2004, 2009; Marmarelis et al., 2013, 2014a,b), wavelet analysis
(Torrence and Webster, 1999; Grinsted et al., 2004; Peng et al.,
2010), parametric finite-impulse response filter-based methods
(Panerai et al., 2000; Simpson et al., 2001), autoregulation index
(ARI) analysis (Panerai et al., 1998b), autoregressive moving
average (ARMA)-based ARI methods and variant ARI methods
(Panerai et al., 2003), autoregressive with exogenous input (ARX)
methods (Liu and Allen, 2002; Liu et al., 2003; Panerai et al.,
2003), and correlation coefficient-like indices (Heskamp et al.,
2013; Caicedo et al., 2016). A summary of the methods and
corresponding references are given in Table 1.

Reproducibility of DCA Metrics

For the reproducibility and variability analysis of the DCA
parameters, DCA methods were grouped into three broad
categories: (1) TFA-like output, (2) ARI-like output; and (3)
correlation coefficient-like outputs. These categories were created
from the perspective of similar output parameters, not because of
similarity on mathematical grounds. In general, all centers were
free to use their own settings to cover the standard frequency
range between 0 and 0.5 Hz. In the majority of cases though, for
the TFA-like output methods, the settings for TFA were similar to
what was later proposed in the CARNet White Paper (Claassen
et al.,, 2016). In summary, this involved spectral estimates using
the Welch method with multiple segments of data of at least 100's,
50% superposition, and cosine windowing to reduce spectral
leakage. Individual method settings are listed in Supplementary
Table S4. Estimates of gain and phase were averaged for different
frequency bands, very low frequency (VLF), and LF bands
(Supplementary Table S4; Claassen et al., 2016).

The ARI-like output methods consisted of time domain
estimates of the impulse or step response, using the inverse
Fourier transform of gain and phase, or ARMA models (Panerai
et al., 1998b, 2003; Liu and Allen, 2002; Liu et al., 2003).

Finally, the correlation coeflicient-like outputs consisted of
a single parameter, obtained by linear regression or similar
methods (Heskamp et al., 2013; Caicedo et al., 2016).

Statistical Analysis

We assessed reproducibility as follows: To quantify the level of
agreement between first and second measurement, we applied
the Bland-Altman method to obtain mean difference (or bias)
and to determine limits of agreement (LOA). This was done
for the methods in the TFA-like, ARI-like, and correlation-like
category. A non-parametric Wilcoxon signed rank test was used
to check if there were significant differences between left and
right side results. Left and right output results were averaged
for further analyses. To correct for abnormal data distributions,
Box-Cox transformations were performed, which is a power
transformation with different power levels (Box and Cox,
1964). Within one analysis method, the same transformation
was applied to both the first and second measurement, but
different transformations may be used for different methods and
different variables.

Further quantification of agreement between the repeated
measurements for all DCA analysis methods was determined
by one-way intraclass correlation coefficient (ICC) analysis.
ICC results of TFA-like methods combined for the parameters
gain and phase were compared for VLF and LF. Furthermore,
the differences between the ICC results of previously obtained
surrogate data (Sanders et al., 2018) and physiological data were
analyzed for the methods combined in parameters gain VLEF, gain
LE, phase VLE phase LF, AR], and correlation. These differences
between ICC parameter values were tested with the paired
Wilcoxon signed rank test, considering that most parameters,
such as TFA estimates, are not normally distributed. SPSS 22 was
used for all analyses; a value of p < 0.05 was adopted to indicate
statistical significance.

Interpretation of the absolute and maximal values of ICC
were based on often quoted guidelines: poor (ICC < 0.40);
fair (0.40-0.59; good (0.60-0.74); and excellent (0.75-1.00)
(Cicchetti, 1994).

RESULTS

Subject characteristics are listed in Table 2. No significant
differences were found for MAP, CBFv, and EtCO, for the two
measurements (T1 and T2).

The scatterplots of Figure 1A show examples of TFA-like
metrics of the estimated LF gain and Figure 1B of the ARI-
like results of the repeated measurements for both physiological
and surrogate data. The figures show a difference in distribution
of the data between Figures 1A,B, with a higher correlation
between the repeated measurements for lower gain values only
in the TFA-like results. Despite the lower number of cases in the
surrogate results, it is clearly shown that there is less variability
in the surrogate data (bottom) compared to physiological data
(top) for all TFA-like methods (Figure 1A) and the ARI an IR-
filter methods (Figure 1B). Physiological data are presented in
Supplementary Tables S2a k.
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TABLE 1 | Methods with corresponding output variables per center.

Center number Method Output variables Category Method References
group
1. 1.1 TFA Coherence, Gain (cm/s/mmHg), and 1 1 Zhang et al., 1998 Panerai
1.2 ARl Phase (rad) in VLF, LF ARI 2 6 etal., 1998b
2. 2.1 Laguerre expansion of first-order Volterra Gain (cm/s/mmHg) and Phase (rad) in 1 2 Marmarelis, 2004;
kernels, single input (BP) VLF, LF Gain (cm/s/mmHg) and Phase 1 2 Marmarelis et al., 2013,
2.2 Laguerre expansion of first-order Volterra (rad) in VLF, LF 2014a,b
kernels, dual input (BP, CO»)
3. 3.1 TFA Coherence, Gain (cm/s/mmHg), Phase 1 1 Zhang et al., 1998
3.2 TFA (rad) in VLF, LF Coherence, Gain (%/%) 1 1
in VLF, LF
4, 4.1 ARI (FFT) ARI ARI ARI 2 6 Panerai et al., 1998b, 2003
4.2 ARI (moving average 1) 4.3 ARI (moving 2 7
average 2) 2 7
5. 5.1 TFA Coherence, Gain (cm/s/mmHg), Phase 1 1 Zhang et al., 1998 Caicedo
5.2 Oblique and orthogonal subspace (rad) in VLF, LF Subspace ratio’s 3 10 etal., 2016
projections
6. 6.1 TFA Coherence, Gain (cm/s/mmHg), Phase 1 1 Muller et al., 2003; Muller
(rad) in VLF, LF and Osterreich, 2014
7 7.2 TFA Coherence, Gain (cm/s/mmHg), Phase 1 1 Gommer et al., 2010
(rad) in VLF, LF
8 8.1 ARX ARX coefficient (third) Synchronization 2 7 Liu and Allen, 2002; Liu
8.2 Wavelet analysis index, Phase (rad) in VLF, LF 1 3 et al., 20083; Panerai et al.,
2003 Peng et al., 2010
9. 9.1 TFA Coherence, Gain (cm/s/mmHg), Phase 1 1 van Beek et al., 2010, 2012
9.2 Convergent cross mapping (rad) in VLF, LF CCM correlation 3 10 Heskamp et al., 2013
coefficient
11. 11.1TFA Coherence, Gain (cm/s/mmHg), Phase 11 1 Panerai et al., 2000;
11.2TFA (rad) in VLF, LF Coherence, Gain 1 1 Simpson et al., 2001
11.3TFA (%/mmHg), Phase (rad) in VLF, LF 1 1
11.4 Univariate TFA (parametric method) 11.5 Coherence, Gain (%/%) in VLF, LF 2 4
Univariate impulse response (parametric Coherence, Gain (%/%), Phase (rad) in 1 9
method) LF The second filter coefficient (h1) of 4
11.6 Multivariate TFA (parametric method) the estimated FIR Gain (%/%) and
Phase (rad) for LF band
12. 12.1 TFA Coherence, Gain (cm/s/mmHg), Phase 1 1 Zhang et al., 1998 Panerai
12.2 ARI (rad) in VLF, LF ARI Gain (cm/s/mmHg) 2 6 et al., 1998b Torrence and
12.3 Wavelet coherence analysis and Phase (rad) in VLF, LF 1 3 Webster, 1999; Grinsted
et al., 2004
13. 13.1 TFA Coherence, Gain (cm/s/mmHg), Phase 1 1 Panerai et al., 1998a
(rad) in VLF, LF
14. 14.1 ARX models: 1 input Gain (cm/s/mmHg), Phase (rad) in VLF, 1 5 Mitsis et al., 2002, 2009
14.2 ARX models: 2 inputs LF Gain (cm/s/mmHg), Phase (rad) in 1 5 Mitsis et al., 2004;
14.3 Laguerre expansion FIR models, single VLF, LF Gain (cm/s/mmHg), Phase (rad) 1 2 Kostoglou et al., 2014
input (BP) 14.4 Laguerre expansion FIR models, in VLF, LF Gain (cm/s/mmHg), Phase 1 2 Meel-van den Abeelen
dual input (BP, CO») (rad) in VLF, LF Coherence, Gain 1 1 etal., 2014

14.5 TFA

(cm/s/mmHg), Phase (rad) in VLF, LF

Category: 1, TFA-like methods; 2, ARl-like methods; 3, correlation-like methods. Method group: 1, TFA; 2, Laguerre expansions; 3, Wavelets; 4, IR-filter; 5, ARX;
6, ARI; 7, ARMA-ARI/ARX; 9, IR-filter; 10, correlation coefficient; VLF, very low frequency; LF, low frequency; BF blood pressure; FFT, fast Fourier transform; ARI,
autoregulation index; ARX, autoregressive model with exogenous input. Center names are listed in Supplementary Table S1, individual method settings are listed in

Supplementary Table S4.

Comparing different autoregulation metrics with Bland-
Altman analysis, we see a difference between gain variables and
all the other variables (Figure 2). Both gain VLF and LF show
a strong increase in the difference between two measurements
on the y-axis for higher values of mean gain on the x-axis.
For the smallest values of gain, where the DCA is considered
most effective, the agreement is the strongest. Results for T1, T2,
bias (T1—T2), and the LOA of the different method categories
per method group are listed in Table 3. Each method group

corresponds to results of several methods combined (Table 1 and
Supplementary Tables S3a—-c).

Left and right ICC results were not different. ICC analysis
of physiological data is shown in Figure 3. Despite minor
differences in ICC values between methods, 12 methods qualified
as having good reproducibility (ICC > 0.6). TFA-like and ARI-
like methods scored significantly higher ICC for surrogate data
compared to physiological data, combined for centers using the
same methods, for gain VLF (p < 0.001), gain LF (p < 0.001),
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FIGURE 1 | (A) Gain LF results of TFA-like methods for repeated measurements. Top row: physiological data, bottom row: surrogate data. For each method group
(TFA, Laguerre, Wavelet, IR-filter, and ARX) the results of similar methods are combined (Table 1). TFA: black dots are 10 methods (cm/s/mmHg), gray dots are 3
methods (%/% or %/mmHg); Laguerre: 4 methods (cm/s/mmHg); Wavelet: 1 method (cm/s/mmHg); IR-filter: 2 methods (%/%); ARX: 2 methods (cm/s/mmHg). See
Supplementary Figures S1-83 for Phase VLF/LF and Gain VLF. (B) ARI-like results of different methods for repeated measurements. Top row: physiological data,
bottom row: surrogate data. For each method group (ARI/ARMA, ARX, IR-filter, and correlation) the results of similar methods are combined (Table 1). ARI: black
dots are three methods (ARI 0-9 arbitrary units); gray dots are two methods (ARMA-ARI 0-9 arbitrary units); ARX: one method (ARX coefficient); IR-filter: one method
(arbitrary units); correlation: two methods.
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TABLE 2 | Subject characteristics and hemodynamic parameters.

N 75
Age (years) 47.8 £18.6
Female [n (%)] 33 (44)
Use of AHD [n (%)] 5(6.7)
Use of NSAID [n (%)) 4 (5.3)
MCl [n (%] 4(6.3)

T1 T2
MAP (mmHg) 90.1 £14.9 87.6 £14.8
MCBFv (cm/s) 56.3 £ 13.4 56.2 +£12.5
EtCO» (kPA) 50+05 5.0+ 05

Values are presented as mean + SD or n (%). AHD, antihypertensive drugs;
NSAID, nonsteroidal anti-inflammatory drug; MCI, mild cognitive impairment; MAR,
mean arterial pressure; MCBFv, mean blood flow velocity; EtCO., end-tidal CO» of
measurement 1 (T1) and measurement 2 (T2).

L o TFA |._||. TFA
> m  Laguerre - Laguerre
% v Wavelet ‘@ Wavelet
o o ARX V) IRfilter
@ 3 ARX
8 =
2 E
3 £
£ ]
T
+ TFA * TFA
m  Laguerre = Laguerre
v Wavelet v Wavelet
® ARX +  IR-fiter
® ARX

difference Phase VLF
difference Phase LF

difference ARI

difference correlation

mean ARI mean correlation

FIGURE 2 | Bland-Altman plot of TFA-like parameters: gain VLF (top left), gain
LF (top right), phase VLF (middle left), and phase LF (middle right); ARI-like
parameters (bottom left); correlation-like parameters (bottom right). Units are
similar to Figures 1A,B.

phase VLF (p < 0.001), phase LF (p < 0.001), and ARI (p = 0.018)
(Sanders et al., 2018). Only the correlation-like methods did
not score higher ICC values for surrogate data compared to
physiological data (p = 0.18). ICC results of the surrogate data
are presented in Supplementary Tables S5a,b.

For the TFA-like methods, ICC gain VLF [mean (SD)] was
lower than ICC gain LE respectively, 0.38 (0.057) and 0.59
(0.078), p < 0.001. Also for phase, the corresponding ICC values
were lower for VLF than for LE 0.17 (0.13) and 0.39 (0.11),

respectively, p = 0.001. For ARI-like methods the mean (SD) ICC
results were 0.30 (0.12) and for the correlation-like 0.24 (0.21).

DISCUSSION

With this multi-center, multi-method study, we aimed to provide
an internationally representative and broader evaluation of the
reproducibility of many DCA assessment methods. By comparing
real physiological measurements with those where physiological
variability was reduced by use of surrogate data, we have been
able to assess the contribution of physiological non-stationary to
the reproducibility of DCA parameters. For surrogate data, with
realistic CBFv signals generated from measured BP data, we had
demonstrated good to excellent reproducibility for most DCA
methods. We now hypothesized that in real recordings of BP and
CBE non-stationarity in the BP-CBF relationship would reduce
reproducibility for these DCA methods.

We asked researchers from various centers with expertise
in DCA to apply their DCA method(s) to a common dataset
with repeated physiological measurements of BP and CBFv.
Participating centers, and respective analytical methods, are
representative of the literature on DCA assessment (Panerai
et al, 1998ab, 2000, 2003; Zhang et al, 1998; Torrence
and Webster, 1999; Simpson et al., 2001; Liu and Allen,
2002; Mitsis et al, 2002, 2004, 2009; Liu et al., 2003,
2005; Muller et al., 2003; Reinhard et al, 2003; Grinsted
et al., 2004; Marmarelis, 2004; Gommer et al, 2010; Peng
et al., 2010; van Beek et al., 2010; Heskamp et al., 2013;
Marmarelis et al., 2013, 2014a,b; Meel-van den Abeelen
et al, 2014; Muller and Osterreich, 2014; Panerai, 2014;
Caicedo et al., 2016).

Main Findings

Two main outstanding findings came out of the study: (i)
the reproducibility of most DCA metrics, independently of the
analytical approach adopted, should be regarded as “poor,” given
the prevailing values of ICC < 0.4 (Cicchetti, 1994) and (ii)
physiological variability is likely to be the main reason for
the degradation in reproducibility, when compared to results
obtained from surrogate data (Sanders et al., 2018).

Strictly speaking, these results indicate that, at this moment,
most DCA metrics do not meet criteria for individual and clinical
use for diagnostic and/or monitoring purposes. Despite the high
variability across DCA parameters, only TFA and ARX scored
ICC results that could be categorized as “good” (ICC > 0.6,
Figure 3) for approximately half of the gain metrics in the LF
band (Cicchetti, 1994). As discussed in more detail below though,
these findings need to be placed into perspective, taking into
account methodological issues and current knowledge of the
wider application of DCA assessment metrics.

Methodological Considerations

Although indicative of the deterioration of DCA metrics, from
what was obtained with surrogate data, to the case of “real”
physiological measurements, the ICC can be misleading when
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TABLE 3 | Bland-Altman results for each method subcategory and variable.

Left Right
Method groups Variable T T2 Bias INT LLOA ULOA ™ T2 Bias INT LLOA ULOA
TFA-like
TFA Gain VLF 0.68+0.43 0.59+0.30 0.09+0.40 0.78 —0.69 0.87 0.68+0.46 0.60+0.31 0.07+0.42 0.82 -0.75 0.88
Gain LF 1.02+0.58 0.9440.46 0.08+0.45 0.89 —0.81 0.97 1.02+0.66 0.92+0.46 0.10+0.50 0.98 -0.88 1.08
Phase VLF 0.87+0.44 0.86+0.50 0.01+0.58 1.14 —-1.13 1.15 0.87+0.46 0.89+0.52 —0.02+0.65 1.27 -1.29 1.25
Phase LF 0.68+0.25 0.69+0.23 —0.01+0.24 0.46 —0.47 0.45 0.69+0.27 0.69+0.24 0.014+0.26 0.52 —0.51 0.52
Laguerre Gain VLF 0.504+0.29 0.434+0.18 0.074+0.29 0.57 —0.50 0.65 0.49+0.29 0.43+0.19 0.06+0.27 0.54 -0.48 0.60
Gain LF 0.86+0.44 0.77+0.31 0.09+0.40 0.78 —0.69 0.88 0.86+0.51 0.774+0.30 0.10+0.42 0.83 -0.74 0.93
Phase VLF 0.81+0.51 0.89+0.51 —0.08+0.70 1.37 —1.45 1.29 0.814+0.52 0.944+0.52 —0.13+0.72 1.42 -1.55 1.29
Phase LF 0.65+0.30 0.65+0.31 0.004+0.39 0.77 -0.77 0.77 0.64+0.32 0.69+0.34 —0.05+0.41 0.79 -0.84 0.75
Wavelet Gain VLF 0.91+0.47 0.79+0.36 0.11+£0.54 1.05 —0.94 1.16 0.89+0.49 0.83+0.36 0.05+0.53 1.04 —1.00 1.09
Gain LF 1.0440.51 0.97+0.37 0.08+0.47 0.93 -0.85 1.00 1.06+0.63 0.954+0.37 0.114+0.55 1.08 -0.97 1.19
Phase VLF 0.89+0.62 1.05+0.55 —0.12+0.70 1.38 —1.49 1.26 0.96+0.49 1.06+0.66 —0.10+0.70 1.36 —1.46 1.27
Phase LF 0.91+0.32 0.95+0.30 —0.05+0.30 0.58 —0.63 0.54 0.944+0.31 0.97+0.32 —0.03+0.30 0.58 —0.61 0.55
IR-filter Gain LF 1.46+0.55 1.28+0.40 0.18+0.18 0.35 -0.17 0.52 1.40+0.55 1.27+0.40 0.12+0.46 0.90 -0.77 1.02
Phase LF 0.59+0.20 0.63+0.18 —0.04+ —0.04 —0.08 0.04 -0.12 0.61+0.21 0.63+0.23 —0.02+0.25 0.50 -0.52 0.47
ARX Gain VLF 0.48+0.29 0.42+0.17 0.06+0.29 0.58 —0.52 0.64 0.48+0.36 0.42+0.18 0.06+0.34 0.67 —0.61 0.74
Gain LF 0.81+0.39 0.74+0.27 0.07+0.30 0.58 —0.51 0.66 0.814+0.50 0.73+0.27 0.08+0.38 0.74 —0.65 0.82
Phase VLF 1.05+0.47 1.07+0.43 —0.02+0.50 0.99 —1.01 0.97 1.07+£0.47 1.05+0.50 0.01+0.58 1.14 -1.13 1.16
Phase LF 0.73+0.30 0.74+0.25 —0.01+0.32 0.62 —0.63 0.61 0.73+0.32 0.73+0.26 0.00+0.32 0.62 —0.62 0.62
ARI-like
ARI 5.484+1.92 5.744+1.62 —-0.264+2.12 415 —4.40 3.89 5.72+1.89 5.74+1.58 —0.03+2.36 4.63 —4.66 4.60
ARMA-ARI/ARX 8.38+5.32 8.38+5.30 0.00+4.74 9.30 —9.30 9.30 8.27+5.91 9.15+5.92 —0.88+4.49 8.80 —9.68 7.92
IR-filter —1.07+0.56 —1.02+0.47 —0.06+0.56 1.10 -1.15 1.04 —1.06+0.53 —0.99+0.42 —0.07+0.50 0.98 -1.05 0.92
Correlation-like
Correlation 0.45+0.14 0.42+0.15 0.08+0.19 0.37 —0.33 0.40 0.444+0.14 0.42+0.15 0.02+0.19 0.38 -0.35 0.40

For each method group the results of similar methods are combined. Methods and units are listed in Table 1. T1, measurement 1, T2, measurement 2; bias, T1—T2; INT, interval (=1.96 * SDyjas); LLOA, upper
limit of agreement (=meanypias—interval); ULOA, lower limit of agreement (=meanpiqs+interval); TFA, transfer function analysis; IR-filter, impulse response filter; ARX, autoregressive model with exogenous input; ARI,
autoregulation index; VILF, very low frequency; LF, low frequency.
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estimated using only healthy subjects. Differently from the intra-
subject standard error, the ICC takes into account both intra-
and inter-subject variability. Given that healthy subjects would
be expected to cluster around values indicative of a good working
DCA, this would reduce inter-subject variability, in comparison
with intra-subject variance, thus putting a bias toward reduced
values of ICC. However, as can be observed in Figure 1, there was
wide inter-subject variability, indicating that this alone cannot
explain the low ICC results. Nonetheless, despite the indication
that most DCA metrics have limited reproducibility, it would
be premature to use our findings to put a halt on their use
in physiological and clinical studies, before further research is
conducted, ideally assessing the ICC for much larger cohorts of
both patients and healthy individuals.

The analysis of physiological data presents large within
and between subject variability, similar to what has been
reported before in patient data (Gommer et al, 2010; van
Beek et al., 2010; Elting et al., 2014; Smirl et al, 2015).
Non-Gaussian distributions were corrected by the Box-
Cox transformations (Box and Cox, 1964). The ICC values
were much lower than what was found when these same
methods were applied to analyze surrogate data (Sanders
et al, 2018). In that study, physiological variability was
reduced to only the BP signal, because the CBF signal
was software-generated using the repeated BP signals as
input. Even though realistic levels of noise were added to
the generated CBF signal, all DCA methods demonstrated
good to excellent reproducibility (ICC 0.6-1.00) on those
surrogate data, whereas the majority of these same methods
had poor reproducibility (ICC < 0.4) for the current dataset
where both BP and CBF signals represented physiological
data. One interpretation of these results is that the poor
reproducibility of DCA is not solely explained because the
methods provide poor accuracy or poor precision. With
surrogate data, all methods showed accuracy and precision,
leading to good reproducibility.

Comparable with results of Smirl et al. (2015), the highest
ICC results were obtained with gain LF parameters, although
Figure 2 shows that reproducibility differs for different gain
values, with highest reproducibility for lower gain values. This
is a proportional increase in variability, recognizable by the
arrowhead shape in Figure 2. ICC for gain and phase parameters
is decreased in VLF compared to LE, and may be explained by
the lower coherence between BP and CBFv in VLF oscillations,
resulting in wider confidence limits for VLF and lower ICC
values. Comparing gain ICC results with phase, one can see
decreased reproducibility in the phase results over both frequency
bands. This does not immediately favor gain parameters as more
suitable DCA metrics, since a lower ICC value for phase can be
expected purely based on the definition and dependence between
the two parameters (Bendat and Piersol, 1986). This explains that
confidence limits will automatically be wider for phase compared
to gain. We recommend to routinely plot confidence limits when
creating TFA results.

To improve reproducibility, it may be beneficial to use
measurement conditions where the DCA regulatory system is
maximally activated, for example in sit-to-stand measurements
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FIGURE 3 | ICC values for methods using TFA or similar approaches with gain
VLF and LF (top), phase VLF or LF (middle), and ARI or correlation-like
methods (bottom). Results are shown per method (Table 1). ICC values
<0.40: poor, between 0.40 and 0.59: fair, between 0.60 and 0.74: good, and
between 0.75 and 1.00: excellent (Cicchetti, 1994).

(Simpson and Claassen, 2018a,b) or squat-stand measurements
(Smirl et al,, 2015). This may result in minimal gain values in
the LF band and improve reproducibility. However, it remains
an ongoing debate whether TFA gain is the most suitable
parameter to reflect state of DCA, or if phase may be more
physiologically relevant.
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Clinical Implications

Given the limited reproducibility shown by most indices of
DCA, to what extent should we trust their use in clinical
studies? This is a crucial question given the stage of research
on DCA, with many centers advocating the use of DCA
metrics in clinical decision-making and patient management.
In this context, the results of this study might be a watershed.
Until recently, the prevailing view has been that, among a
plethora of DCA metrics, there could be one that could
become a “gold standard” based on its reproducibility, as
well as its sensitivity and specificity, to detect changes in
DCA, either due to disease or physiological status. What this
study is showing though, is that none of the methods in
use could fulfill this role, at least not as reproducibility is
concerned. Furthermore, the comparison between physiological
and surrogate data also suggests that it is unlikely that
other current or future methods will have an outstanding
reproducibility either. The reason for this somber perspective
lies with the growing awareness that regulation of CBE, not
only in response to BP changes, but also due to changes
in CO, or neural stimulation, is a highly non-stationary
phenomenon, thus requiring an entirely different conceptual
paradigm to ascertain their clinical usefulness (Panerai, 2014).
On the other hand, it is not all gloom and doom. Looking
back into a vast literature, too extensive to be enumerated
here, reporting on clinical applications of most of the DCA
metrics included in this study, there is plenty of evidence to
suggest their sensitivity to detect worsening DCA in a range
of cerebrovascular and, increasingly, also systemic conditions.
To study reproducibility in the presence of disease is a major
challenge though, as patient conditions are either worsening
or improving on a daily basis. Nevertheless, several follow
up studies have been able to use diverse indices of DCA to
describe the natural history of conditions like severe head
injury (Czosnyka et al., 1997), ischemic stroke (Salinet et al.,
2014), or intracerebral hemorrhage (Ma et al., 2016) which
is also reassuring. Certainly much more research is needed,
mainly to understand the nature of DCA non-stationarity and
how this is affected by, and manifested in, clinical conditions,
to improve the reliability and usefulness of DCA assessment
for patient care.

Limitations and Future Directions

Only methods that could be applied to short data segments
(5 min) were evaluated; therefore, the correlation-like methods
were underrepresented. The correlation-like methods clearly
showed reduced reproducibility compared to the other categories
(Figure 3) under these conditions.

It is difficult to select a suitable method to assess
reproducibility of DCA analysis parameters. We selected
ICC, although this method being sensitive to outliers. This
has probably affected phase VLF results the strongest in a
negative way, since high variability and outliers were most
present in phase VLF.

The time interval differences between repeated measurements
were not considered in the analysis. A dataset consisting of rest

measurements was used, with limited BP fluctuations, resulting
in a low power of BP and CBFv oscillations. At rest, cerebral
perfusion is usually well maintained and DCA may not be
activated, while during a physical challenge, when sufficient DCA
functioning is crucial, will give more meaningful results (Simpson
and Claassen, 2018a,b; Tzeng and Panerai, 2018a,b). Moreover, it
will be relevant to add clinical data to the healthy controls to have
a greater spread of inter-subject variability.

It could not yet be answered what the precise reason is for
low reproducibility of DCA assessment in physiological data. It
is necessary to study physiological variation in DCA function
within individuals in repeated measurements. From a theoretical
perspective, the variability in DCA results can be reduced in two
ways: Increase the coherence or increase the number of averages
(Bendat and Piersol, 1986; Halliday et al., 1995). To increase
the coherence, oscillations could be induced and included in
the measurement protocol. Increased coherence could also be
achieved by selection of the data used for DCA analysis based
on the power of BP oscillations. This line of investigation will be
pursued as part of this wider project. To increase the number
of averages, more or longer measurement protocols should be
used, although duration of recordings is usually limited in most
clinical settings.

Selecting the most promising DCA parameter is complex,
since the most reproducible parameter is not necessarily
the best parameter to reflect DCA status. Although there
was not a single method that outperformed others both
linear and non-linear, there are inter-method differences that
are worth investigating. In particular, future studies could
look to the influence of measurement length or increased
oscillations in the measurement protocol or data selection
(Simpson and Claassen, 2018a,b).

Furthermore, the question to answer is to what extent
does reproducibility depend on autoregulation status. Are DCA
parameters less reproducible in case of worse DCA status and
functioning? One interesting and relatively easy next step could
be to perform repeated measurements in hypercapnic data
(Katsogridakis et al., 2013), as a model for impaired DCA, and
compare these with repeated measurements in normocapnia to
assess differences in reproducibility.

CONCLUSION

The physiological nature of these measurements strongly reduced
reproducibility of DCA when assessed in short data recordings
in healthy subjects. This conclusion is not affected by the choice
of analytical method used to derive different DCA metrics,
or by local procedures in multiple international centers which
participated in this study. Further investigation is needed to
improve our understanding of how physiological variability
affects DCA reproducibility in health and disease.
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