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In this paper, we apply novel techniques for characterizing leg muscle activation patterns

via electromyograms (EMGs) and for relating them to changes in electroencephalogram

(EEG) activity during gait experiments. Specifically, we investigate changes of leg-muscle

EMG amplitudes and EMG frequencies during walking, intentional stops, and unintended

freezing-of-gait (FOG) episodes. FOG is a frequent paroxysmal gait disturbance occurring

in many patients suffering from Parkinson’s disease (PD). We find that EMG amplitudes

and frequencies do not change significantly during FOG episodes with respect to

walking, while drastic changes occur during intentional stops. Phase synchronization

between EMG signals is most pronounced during walking in controls and reduced in

PD patients. By analyzing cross-correlations between changes in EMG patterns and

brain-wave amplitudes (from EEGs), we find an increase in EEG-EMG coupling at the

beginning of stop and FOG episodes. Our results may help to better understand the

enigmatic pathophysiology of FOG, to differentiate between FOG events and other gait

disturbances, and ultimately to improve diagnostic procedures for patients suffering

from PD.

Keywords: phase synchronization, non-linear coupling, time series analysis, EMG, EEG, Parkinson’s disease,

freezing of gait

1. INTRODUCTION

Physiological systems under neural regulation exhibit non-stationary, intermittent, scale-invariant,
and non-linear behaviors (Bassingthwaighte et al., 2013), and their dynamics transiently change
in time across different physiologic states (Ivanov et al., 1999; Bunde et al., 2000; Kantelhardt
et al., 2002; Schmitt et al., 2009; Schumann et al., 2010; Kantelhardt et al., 2015) and under
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pathologic conditions (Peng et al., 1995; Bartsch et al., 2007a;
Hu et al., 2009; Penzel et al., 2016). The structural and
neuronal control networks that constitute physiological organ
systems lead to a high degree of complexity of their output
signals (Ivanov et al., 2009), and this complexity is further
increased by various feed-back interactions (Collins et al., 1996;
Hegger et al., 1998; Ivanov et al., 1998) and coupling among
different systems (Schäfer et al., 1998; Tass et al., 1998; Chen
et al., 2006; Bartsch et al., 2007b; Lin et al., 2016; Stramaglia
et al., 2016), the nature of which remains not well-understood.
Quantifying these physiologic interactions is a challenge as one
system can exhibit multiple simultaneous interactions with other
systems and organ systems can communicate through several
independent and coexisting mechanisms of interaction which
operate at different time scales (Bartsch et al., 2012; Bartsch and
Ivanov, 2014). To understand physiologic function it is critical
to identify physiological interactions and to track their evolution
under different physiologic states and pathologic conditions.

In human physiology, interactions have been studied
among a variety of different physiological systems. One of the
most prominent examples is the coupling between heartbeat
and respiration (Schäfer et al., 1998; Bartsch et al., 2007b).
Originally described through the periodic variation of the
heart rate within a breathing cycle and termed “Respiratory
Sinus Arrhythmia” (RSA) (Angelone and Coulter , 1964), it has
been shown recently (Bartsch et al., 2014; Penzel et al., 2016)
that RSA is only one aspect of cardio-respiratory interaction.
Another form of cardiorespiratory coupling can be quantified
by cardiorespiratory phase synchronization (Schäfer et al., 1998)
which is enhanced under meditation (Cysarz and Büssing, 2005),
changes across sleep stages and with healthy aging (Bartsch
et al., 2012), and is significantly reduced in subjects after
myocardial infarcts (Leder et al., 2000). Interactions between
brain dynamics and cardiac activity during sleep are strongest
for EEG delta waves (Brandenberger et al., 2001; Jurysta et al.,
2003). However, the relative contribution of different brain-wave
frequencies to the brain-heart coupling changes for different
sleep stages (Bartsch et al., 2015; Faes et al., 2015; Lin et al., 2016).
An entrainment between cardiac and locomotor rhythms can be
observed during running and cycling (Kirby et al., 1989a), and the
onset of cardiolocomotor coupling seems to induce a dissociation
of coupling between respiratory and locomotor rhythms as well
as reduces cardiorespiratory synchronization (Niizeki et al.,
1993). In Parkinson’s disease (PD) resting tremor a strong
interdependence between the EMG of forearm muscles and
activity in the contralateral primary motor cortex has been
demonstrated (Tass et al., 1998), which is effective primarily in
the single and double tremor frequency range (Timmermann
et al., 2003). Recent studies on other involuntary movements and
tremor syndromes suggest that different movement disorders
could be discriminated by neurophysiological means through
cerebro-muscular and cerebro-cerebral coupling analysis
(Timmermann et al., 2003; Klimesch, 2018).

In this paper we investigate cerebro-muscular coupling
between EEG and EMG activation patterns in lower leg
muscles in order to characterize normal gait and to distinguish
between intentional stops and unintended freezing-of-gait (FOG)

episodes. FOG is a paroxysmal gait disturbance seen in
about half of the persons with PD in the more advanced
stages of the disease (see Nutt et al., 2011; Snijders et al.,
2016 for reviews). During FOG “attacks” the sufferer is
unable to generate effective stepping, and rather trembles in
place with minimal progression, or simply “freezes” in place.
Several studies have documented FOG-associated changes in
physiological signals such as electroencephalography (EEG;
Shine et al., 2014; Handojoseno et al., 2015; Ly et al.,
2017a,b), electrocardiography (Maidan et al., 2010), galvanic
skin response (Mazilu et al., 2015), electromyography (EMG;
Nieuwboer et al., 2004), and kinematics (Bächlin et al.,
2010). These changes are probably associated with cognitive,
mental, spinal, motor and autonomic nervous system functions.
However, it is not known whether these presumably independent
functions are interacting in the context of FOG.

2. MATERIALS AND METHODS

EEG and EMG data were recorded from participants with
PD and from elderly controls (EC). Inclusion criteria for PD
participants were: age above 50 years, diagnosis of idiopathic
PD according to the UK Brain Bank Criteria (Hughes et al.,
1992), current levodopa treatment, ability to walk unassisted and
without pain for at least 100 m, and being able to understand and
perform verbal instructions. Exclusion criteria were the presence
of significant co-morbidities and major orthopedic problems. PD
participants were examined in the OFF state, i.e., at least 12 h
after the last intake of anti-PD medications. The study protocol
was approved by the Institutional Review Board (IRB) of the
Sheba Medical Center, and the experiments were conducted in
the Center of Advanced Technologies in Rehabilitation of the
medical center (see Shahar et al., 2019 for a thorough description
of the study).

Following the screening for eligibility, 25 participants (17 PD,
8 EC) agreed to participate and gave written informed consent
prior to the study. Two PD participants were unable to complete
the assessment protocol. Simultaneous (parallel) recordings of
32-channel surface EEG and 4-channel leg-muscle surface EMG
were finally obtained from 4 EC and 9 PD participants during
figure-eight walking experiments (see below). One EC participant
had to be excluded because the EMG recording consisted
mainly of artifacts. The group of PD patients was further
divided into those that showed the FOG symptom during the
experiments (PD+FOG, 4 participants) and those who did not
show FOG (PD-FOG, 5 participants). Among the former group
71 FOG episodes were observed (17.8 ± 8.1 per participant).
The demographic and clinical data of the study cohorts are
summarized in Table 1. We did not differentiate between males
and females because of the small sample size and because a
possible gender effect on the phenomenology of FOG has not
been reported. Regarding FOG prevalence, a large cohort of 490
PD participants found similar percentages for FOG in men and
women (Szewczyk-Krolikowski et al., 2014).

All participants performed gait trials during which they
were exposed to “FOG triggers,” i.e., gait tasks that are highly
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TABLE 1 | Demographic and clinical data of the study cohorts: Elderly controls

(EC), participants with PD that do not show freezing-of-gait (PD−FOG), and

participants with PD and freezing-of-gait (PD+FOG).

Group EC PD-FOG PD+FOG

f/m 1/2 2/3 0/4

Age [y] 65.7 ± 14.2 68.6 ± 9.0 64.3 ± 8.2

BMI [kg/m2] 23.5 ± 3.3 24.7 ± 2.9 26.6 ± 6.7

MoCA 24.0 ± 2.6 24.2 ± 5.9 22.8 ± 2.2

UPDRS 10.8 ± 4.9 12.8 ± 5.6

Number of stops 13 19 22

Number of FOG 62

Gender f/m, females/males; BMI, body mass index (in kg/m2); MoCA, Montreal Cognitive

Assessment (Lifshitz et al., 2012); UPDRS, Unified PD Rating Scale, Score Part III (Fahn

et al., 1987). Differences between the groups are not significant. All participants performed

multiple trials of the experiment; the listed total numbers of stop and FOG episodes was

used for the analysis.

probable to invoke FOG episodes among affected persons (figure-
eight shaped walking trajectory and narrow passage Plotnik
et al., 2014). Occasionally the participants were instructed to
stop walking (i.e., “commanded stops”) to provide a controlled
condition in contrast to the unintended FOG episodes. In
addition, a 30-s recording was obtained during continuous
standing still. EEG activity was recorded by a portable system
(Micromed, Mogliano Veneto, Italy) consisting of a 32-channel
montage using the international 10–20 electrode placement
scheme. In addition, four surface EMG channels (tibialis
anterior and gastrocnemius muscles of each leg) were recorded
simultaneously by the same device. The data were annotated by
post-hoc analysis of video files recorded during the gait trials.
Data slices were sorted according to motion type (walking,
freezing, commanded stops).

2.1. Signal Processing
EEG data were pre-processed using the EEGLAB software
(Delorme et al., 2011). For each gait task and each participant,
data pre-processing steps included: (i) omitting data from
electrodes with high impedance (>10k�) and high standard
deviation; (ii) data down-sampling from 2,048 to 256 Hz; (iii) a
basic finite impulse response high-pass filtering with a threshold
of 0.1 Hz; (iv) applying an Independent Component Analysis
(ICA) (Bell and Sejnowski, 1995) (“runica” implementation) for
the removal of eye movements and general movement artifacts.
The ICA algorithm exploits the fact that several EEG electrodes
are affected by the same artifacts, in particular movement
artifacts. This common “source” is identified by the algorithm,
and its relative contribution to each electrode is subtracted.
Using component activation, spectra and maps, the different
components were visually inspected, and a minimal number of
components (2 or 3) was removed. A similar ICA approach
has previously been used for removing EEG movement artifacts
during walking (see, e.g., Gwin et al., 2011; Arad et al., 2018).

Figure 1 illustrates the methodology for the leg-muscle
surface EMG signal analysis. We begin with the raw EMG
data from the right musculus gastrocnemius (blue) and the
right musculus tibialis anterior (red) during normal walking

(seconds –4 to 0) followed by a commanded stop (seconds
0 to +1; top left panel) or FOG episode (seconds 0 to +1;
top right panel). Data for both parts were recorded during
a figure-eight walking experiment. The EMG records of the
corresponding left muscles show a similar behavior but are not
displayed for the sake of clarity. The instantaneous amplitudes
and instantaneous frequencies are derived in several processing
steps, see Figures 1B,C, respectively. Firstly, a FFT high-pass
filter (Theiler et al., 1992) with a limit frequency at 10 Hz is
applied to the raw EMG signal (sampled at 2048 Hz) to eliminate
DC components and artifacts, e.g., due to electrode motion
during gait. The resulting detrended signal x(j)(t) oscillates at
varying amplitudes with frequencies between 10 and up to 200
Hz for each of the four EMG recordings (j=1,. . . , 4, two muscles
and two legs). AHilbert transform (Gabor, 1946; Boashash, 1992)
of x(j)(t) yields the analytic signal

x(j)(t)+ ix̃(j)(t) = A(j)(t) exp(iϕ(j)(t)), (1)

(i = imaginary unit) which is used to reconstruct instantaneous
amplitudes A(j)(t) and instantaneous phases ϕ(j)(t) of oscillations
that are related to the activation of several lower leg muscle
fibers. Instantaneous frequencies f (j)(t) = 1

2π [ϕ
(j)(t) −

ϕ(j)(t − 1t)]/1t are defined accordingly. In practice, we

use discrete time steps, and A
(j)

k
= A(j)(k1t). The Hilbert

transformed x̃k can be calculated by FFT: (i) transforming
xk into Fourier space, (ii) multiplying all Fourier coefficients
ωk by −i sgn(ωk), and (iii) applying the inverse Fourier
transform Rosenblum et al. (1996). Finally, moving average filters
with window lengths of 0.05 and 0.1 s have been applied to
the amplitude data (Figures 1B,E) and to the frequency data
(Figures 1C,F). While the stepping pattern is visible for t < 0 in
all figures, there is a drastic drop in EMG amplitudes and a certain
rise in EMG frequencies (i.e., for the musculus tibialis anterior)
after the stop command (Figure 1, left hand side). In contrast,
during FOG there is no significant change in EMG amplitudes
and frequencies (Figure 1, right hand side). The EMG-based
amplitude time series A(j)(t) and the frequency time series f (j)(t)
were resampled to 8 Hz for further analysis.

3. RESULTS

Figure 2 compares the average behavior of EMG amplitudes and
EMG frequencies during normal gait and commanded stops in
the three groups, EC, PD-FOG, and PD+FOG as well as during
FOG events (PD+FOG only). Data have been normalized to
1 for normal walking (time from −9 to −5 s), and averaging
has been applied to all corresponding events in figure-eight and
narrow-passage gait experiments; data from the left and the
right leg have been averaged as well. While during stops there
is a significant drop in EMG amplitudes and a well-pronounced
increase in EMG frequencies in all three groups, EMG amplitudes
and frequencies do hardly change for FOG events. Student’s t-
tests yield p < 0.001 for the deviation of the relative EMG
amplitudes from 1 in each subject group, each muscle, and
each second (t = 0.5 to 4.5 s) after the beginning of the
stop episode. For FOG episodes, no significant change is seen
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FIGURE 1 | (Color online) Illustration of EMG data preprocessing as optimized for the data recorded during FOG-provoking experiments. (A) Raw EMG signals

recorded with electrode pairs for the right musculus gastrocnemius (blue) and the right musculus tibialis anterior (red) in a PD subject during normal walking (time: –4

to 0 s) and during a commanded stop (time: 0 to +1 s). A Hilbert transform and the analytic signal approach were applied to these data to derive (B) instantaneous

amplitude, and (C) instantaneous frequency series. (D–F) Raw EMG and corresponding instantaneous amplitude and frequency series for a PD subject during walking

(time: –4 to 0 s) and during FOG (time: 0 to +1 s). Note the significant difference in EMG between the stop and the FOG episode.

(p > 0.05 in each case). We observe a slight increase in EMG
amplitudes about 4–5 s prior to FOG events (p = 0.013 at
t = −4.5 s, but insignificant for other times) and no further
increase or decrease during the actual FOG events. In contrast,
EMG frequencies show a slight increase just at the beginning
of FOG events (p < 0.001 at t = +0.5 s and −0.5 s and p =

0.05 at t = +1.5 s in musculus gastrocnemius, p = 0.05 at t
= +0.5 s in musculus tibialis anterior, insignificant for other
times). We note, however, that given the within-subject and
inter-subject variations of these changes (as indicated by the
error bars in Figure 2), these slight increases in EMG amplitudes
and frequencies cannot be used for a reliable detection or even
prediction of FOG events.

As shown in Figures 1, 2, EMG amplitudes and frequencies
have different average values during normal gait and when
standing still. Similar differences occur for the inter-relations
between these EMG-derived time series. In order to automatically
distinguish between stepping and standing still, we have applied
a phase synchronization analysis to all amplitude time series
A(j)(t) and frequency time series f (j)(t) (j = 1, . . . , 4, two muscles
and two legs). For each window of 4 s, i. e., each segment of
32 amplitude (or frequency) data points sampled at 8Hz, we
first subtract the local mean and use another Hilbert transform
(analogous to Equation 1) to obtain the instantaneous phases

of the amplitudes (ϕ
(j)

A/f
, j = 1, . . . , 4) and frequencies (ϕ

(j)

A/f
,

j = 5, . . . , 8), respectively (Gans et al., 2009). Then, for each
pair of time series (j, k = 1, . . . , 8, j 6= k), we calculate the phase
synchronization indices γj,k by averaging complex exponentials
and taking the absolute value,

γj,k(t0) =

∣

∣

∣

∣

∣

∣

1

32

31/(8Hz)
∑

t=0

exp[iϕ
(j)

A/f
(t0 + t)− iϕ

(k)
A/f

(t0 + t)]

∣

∣

∣

∣

∣

∣

. (2)

Finally, the phase synchronization indices γj,k(t0) are averaged
over the whole durations of the experiments, which are either
walking in a figure-eight pattern or standing still. Figure 3 shows
the group average results for EC, PD-FOG, and PD+FOG groups
for standing still (top panel) and figure-eight walking (bottom).
Links between a pair of nodes (j, k) (representing signals j and
k) appear, if the average value of the corresponding average
synchronization index γj,k is larger than an ad-hoc limit of
0.5, indicating a pronounced phase synchronization. During
still standing (top), only a few links appear for the EC group,
and these links are only due to EMG amplitude coupling. In
contrast, both PD groups do not show a pronounced phase
synchronization during still standing. The picture changes when,
for the walking condition (bottom), more links appear in all
three groups, and also frequency-frequency as well as amplitude-
frequency couplings emerge in addition to amplitude-amplitude
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A

B

FIGURE 2 | (Color online) Relative changes of (A) EMG amplitudes and (B) EMG frequencies during gait (time: –9 to 0 s) followed by a commanded stop or a FOG

event (time: 0 to +5 s). Time 0 (the vertical line) corresponds to a complete stop or FOG event (according to video footage). In case of stopping the command to stop

was given 1–2 s earlier, which explains the changes starting before 0. Data have been normalized to 1 for normal walking (time from –9 to –5 s). For stops, data from

the three groups show a similar behavior, i.e., significant drops in EMG amplitude and increases in EMG frequency. However, for FOG events EMG amplitudes and

frequencies hardly change. Full symbols are for musculus gastrocnemius and open symbols for musculus tibialis anterior (no significant differences); data from left and

right leg and all available episodes and subjects have been averaged. Error bars indicate the standard error of the mean (standard deviation divided by square root of

number of stop/FOG epochs). We note that no points that appear to the left of the vertical line (time 0) are affected by data measured after time 0. This also holds vice

versa, except for the normalization coming for the data measured more than 5 s before time 0.

coupling. The large number of links in the network of the healthy
elderly subjects during walking (bottom left) indicates that a
high level of coordination among lower leg muscles is needed to
generate normal gait.

Previous work by another group (Shine et al., 2014;
Handojoseno et al., 2015) suggests that FOG events can be
identified and predicted fromEEG signals. In Figure 4we present
changes in EEG amplitudes during normal walking, commanded
stops and FOG for the same groups of subjects as in Figure 2.
As for the reconstruction of EMG amplitudes, Fourier filtering
and a Hilbert transform have been used (see Figure 4 caption for
definitions of the EEG frequency bands). Slight decays of EEG
amplitudes during commanded stops are visible (for the beta
band: Student’s t-tests p < 0.01 from t = +0.5 to +4.5 s in
PD+FOG and from t = +2.5 to +4.5 s in PD-FOG, generally
weaker levels of significance for the higher bands, no significant
changes in EC subjects), but no significant changes in the EEG
amplitudes occur during FOG episodes except for p < 0.02
directly at FOG onset (t = −0.5 and +0.5 s) in the theta and
alpha bands. There may be a slight increase in the EEG amplitude
several seconds prior to and during FOG episodes as previously

reported (Shine et al., 2014); we obtain p = 0.04 at t = −3.5 and
−2.5 s for the theta band as well as p = 0.02 at t = −4.5 s in
the alpha band and at t = −2.5 s in the low beta band; all others
are insignificant. However, given the high degree of inter-subject
variation, the small number of subjects, and the different types
of FOG episodes (turn hesitation, hesitation in tight quarters,
open space hesitation, etc.) in our recordings, these changes seem
too weak to predict FOG episodes from our limited EEG data.
A figure showing the EEG amplitude behavior in each band
separately is included in the supplementary material (Figure S2).

An important aspect in better understanding the
pathophysiology of PD and in particular FOG is the study
of inter-relations between different physiological signals, e.g.,
EEG and EMG. Figure 5 shows cross-correlations between
EMG amplitudes (and frequencies) and EEG amplitudes.
Since FOG and stop episodes typically last for several seconds,
begin (and end) with an uncertainty of approximately 0.5 to
1 s, and our instantaneous EMG and EEG amplitudes have a
resolution of 8 Hz (i.e., 8 value per second), we have determined
these correlations in 1-s steps, using data from ±2 s (i.e., 32
data points) around each window center. A few seconds of
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FIGURE 3 | (Color online) Network representation of phase synchronization between EMG-derived amplitudes (four nodes in the top half of each circle, both legs and

both muscles) and EMG-derived frequencies (four nodes in the bottom half of each circle). A link is plotted if the corresponding average value of the synchronization

index γ (see Equation 2) exceeds an ad-hoc limit of 0.5. The link strength is indicated by different line styles (see figure legend): (i) dotted line for 0.5 ≤ γj,k < 0.55, (ii)

dashed line for 0.55 ≤ γj,k < 0.6, and (iii) solid line for γj,k ≥ 0.6. The six network plots show group averages for EC (left), PD-FOG (center), and PD+FOG (right)

groups; the top panel is for a standing still trial and the bottom panel for figure-eight walking. It is interesting to note that for both PD groups during still standing there

is a coupling between EMG amplitudes of GC which is absent in EC subjects. During walking, the amplitude-frequency synchronization increases for all groups, and is

most pronounced for EC and much smaller for PD+FOG. Also, PD+FOG subjects show very weak synchronization between right and left leg. Statistically significant

links are marked by the following colors (figure legend): (i) in the EC networks - red = links that are significant only for the EC to PD-FOG comparison, dark blue = links

that are significant only for the EC to PD+FOG comparison, violet = links that are significant for both comparisons; (ii) in the PD+FOG networks: orange = links that

are significant for the PD-FOG to PD+FOG comparison. Significance was probed performing Student’s t-tests and the significance level was set to p < 0.05. TA,

musculus tibialis anterior; GC, musculus gastrocnemius; R, right leg; L, left leg; amp, EMG amplitude signal; freq, EMG frequency signal.

data are needed to statistically distinguish trends associated
with the beginning of stop (or FOG) episodes from random
fluctuations. Since most of the analyzed signals contain such
trends (see Figures 2, 4), we have generalized the standard cross
correlation function

CCj,k(t0) =
1

32SDA(j)SDA(k)

31/(8Hz)
∑

t=0

{[

A(j)(t0 + t)− trendA(j)
]

×
[

A(k)(t0 + t)− trendA(k)
]}

(3)

by subtracting not only the average, trendA(j) = 〈A(j)〉 =
1
32

∑31/(8Hz)
t=0 A(j)(t0 + t) (order 0), but alternatively subtracting

a linear (order 1) or quadratic (order 2) regression to fit the
(temporarily local) trend of the signal in each 4-s window.
Figure 5 compares results for the three groups of subjects and
both detrending orders before and during commanded stops and
FOG. One can see that linear detrending significantly reduces the
EEG-EMG cross-correlations; for PD+FOG as well as PD-FOG

this reduction is close to 75%. With second order detrending,
cross-correlations even drop below 0.035 in all three groups. This
pronounced decline indicates that the cross-correlations between
EEG and EMG amplitudes at the beginning of stop episodes
are to a large extent due to trends in the original signals (cp.
Figures 2, 4). In contrast, for the EEG and EMG amplitude
data before and during FOG episodes, cross-correlations are
much less affected by detrending and remain > 0.04 even
after second order detrending. However, after detrending there
is no clear difference between the cross-correlation curves for
stops and FOG. The remaining slight increase in detrended
EEG-EMG cross-correlation curves for both PD+FOG stop and
FOG shortly prior to and during stop/FOG episodes could
be due to fast fluctuations that simultaneously occur in both
signals. The results are consistent for all considered four EEG
bands, several EEG electrodes (most pronounced for central
electrodes) and all EMG signals recorded from the four muscles.
No cross-correlations occur for EMG frequencies (star symbols
in Figure 5A).
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FIGURE 4 | (Color online) Relative changes of EEG amplitudes during normal walking (time: −9 to 0 s) followed by a commanded stop or FOG event (time: 0 to +5 s).

As in Figure 2, data have been normalized to 1 for normal walking (time from −9 to −5 s). We have considered the following EEG frequency bands: theta (4–7.5Hz),

alpha (7.5–13Hz), low beta (13–21Hz), and high beta (21–35Hz). Since we found no difference in how EEG amplitudes change for the respective frequencies, we

present here an average over all four bands. EEG data from the central electrodes (C3 and C4 closest to the motor cortex) were used; results for other EEG electrodes

are similar. Error bars indicate the standard deviations of the relative EEG powers across the four considered bands. As in Figure 2, points to the left of the vertical line

are not affected by data recorded after time 0.

4. DISCUSSION

4.1. Summary of Main Findings
We examined amplitude and frequency characteristics of leg-
muscle EMGs and EEGs as well as their coupling during normal
walking, voluntary stops and FOG episodes in patients with
PD and healthy elderly controls. The pure EMG amplitude
and frequency analysis exhibits a characteristic pattern for the
transition from normal walking to stopping, i.e., a pronounced
decrease in amplitude and an increase in frequency. In contrast,
only weak and non-significant changes in EMG amplitudes and
frequencies occur at transitions from normal walking to FOG.
Clearly, these changes cannot be used for a reliable detection
or even prediction of FOG events, although they may help in
distinguishing FOG events from normal stops.

There are only a few studies that have examined how FOG is
expressed in leg EMG signals. Ynagisawa et al. (1991) described
“unique but not uniform patterns of EMG” in five PD+FOG
participants suggesting that rhythmic contraction of leg muscles
beyond a certain rate is a factor in causing FOG. About a

decade later, in a more elaborated study, a consistent pattern of
premature timing of Tibialis Anterior and the Gastrocnemius

activity was observed before freezing, which was accompanied by

a reduction in EMG magnitude, however, data on EMG activity
during the freezing episode was not presented (Nieuwboer et al.,

2004). Our findings (Figure 2) are in agreement with those
shown by Mazzetta et al. (2019), where clear patterns of EMG
activities are seen during FOG episodes. Leg EMG activity
was associated with freezing since many FOG events involve
trembling in place (Schaafsma et al., 2003), or knee trembling
which was also implicated with impaired postural adjustments

associated with FOG (Jacobs et al., 2009). The finding of EMG
activation during FOG events was further elaborated by studies
using wearable sensors (Moore et al., 2008; Bächlin et al., 2010)
that measured lower limb movements during normal gait and
FOG episodes.

Studying EEG amplitudes in many electrodes, we also see
only non-significant EEG changes before and during FOG events,
irrespective of the considered EEG band. Although there may
be a slight increase in EEG amplitudes several seconds prior to
and during FOG episodes as previously reported (Shine et al.,
2014), these changes seem too weak to predict FOG episodes
from our EEG data given the high degree of inter-subject and
inter-event variations.

By studying phase synchronization of EMG amplitudes and
frequencies we could uncover that pronounced synchronization
links between pairs of amplitudes as well as several amplitudes
and frequencies and even pairs of frequencies occur during
walking, while there is only a weak EMG amplitude
synchronization during still standing. The degree of EMG
synchronization is generally higher in healthy subjects, while
the PD+FOG group showed the least and weakest links. This
indicates that normal gait in subjects with PD, in particularly in
those with PD and FOG, is already less well-synchronized than
in controls.

Finally, we analyzed EMG-EEG amplitude cross-correlations
and found pronounced correlations at the beginning of stop and
FOG episodes, especially for the PD-FOG and PD+FOG groups.
The high susceptibility of these cross-correlations to detrending
in the case of stops indicates that they are largely caused by
trends in this case. On the other hand, cross-correlations during
FOG aremuch less affected by detrending. However, the resulting

Frontiers in Physiology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 870

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Günther et al. EMG-EEG Coupling During Gait

FIGURE 5 | (Color online) Time-dependent cross-correlations between EMG amplitudes and EEG amplitudes during gait (time: –9 to 0 s) followed by a commanded

stop or a FOG episode (time: 0 to +5 s). Data for all pairs of EMG amplitude signals (both legs and both muscles) and all EEG amplitude signals (four bands, see

caption of Figure 4) have been averaged. The legend in (A) is valid for all panels showing results for stop episodes in all three groups of subjects and for FOG episodes

in the PD+FOG group, (A) without detrending, (B) with linear detrending, and (C) with quadratic detrending (see Equation 3). The large drop in the cross-correlation

curves for stop episodes after detrending (especially for PD+FOG) indicates that the pronounced maximum at the beginning of the stops is mainly caused by

non-stationarities (nearly step-like trends) in the amplitude signals. However, the detrended cross-correlation curves for stop and FOG episodes in the PD+FOG group

are not clearly different, since there is an overlap of their error bars at all time points. Error bars indicate standard errors of the means. We note that because we are

considering 4-s windows in the cross correlation analysis, Equation (3), two data points appearing to the left (right) of the vertical line (time 0) are influenced by data

originating from the right (left) of this line. Cross-correlations between EEG amplitudes and EMG frequencies do not change with transition to FOG as also shown in (A).

detrended cross-correlation curves for FOG and stop episodes are
not clearly different. The slight increase in the detrended cross-
correlation curves shortly prior and during FOG (and/or stop)
episodes could be due to increased EMG-EEG coupling during
FOG (and/or stop).

4.2. Limitations
A clear limitation of our study is the small number of subjects.
From the original 25 participants (17 PD, 8 EC) that were
recruited, only 9 PD patients and 3 EC subjects completed the
full study protocol and provided EMG data of sufficient quality
that could be used for our analysis (EEG data could be used in
23 subjects). Nevertheless, since the subjects performed multiple
trials, we obtained a good number of walking, stopping, and FOG
epochs as listed in Table 1. Additionally, we have probed our
results for significance and mention the p values when discussing
the corresponding figures. Because of the small sample size we

also could not study gender effects. However, gender effects on
the phenomenology of FOG are not known.

Another limitation may be the reconstruction of
instantaneous EMG amplitudes and frequencies using the
analytic signal approach which includes a Hilbert transform
of the original signal. Strictly speaking, a Hilbert transform is
established for narrow band signals only. However, in the case
of EMG signals (unlike for EEGs) it is not possible to define
narrow bands in a consistent fashion, since there are no such
bands described in the literature. Overall, we find that a Hilbert
transform yields an acceptable reconstruction of an analytical
signal for broad-band EMGs, since there is usually only one
oscillation present at a given time. This behavior is different
from EEGs, where multiple “waves” are present simultaneously.
The Hilbert transform has the advantage of deriving both,
instantaneous amplitudes and instantaneous frequencies in
a combined and therefore fully consistent way. This is not
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possible for “more direct” (e.g., rectification) approaches, where
amplitudes and frequencies must be derived using different
procedures. Moreover, our approach yields clearly visible
stepping patterns in Figure 1, indicating that even broad-
band Hilbert transform results in meaningful amplitudes and
frequencies related to the gait cycle. In contrast to rectification
methods, Hilbert transform is a linear transformation and not
susceptible to artificial frequency doubling. For comparison, we
have also applied two alternativemethods to derive instantaneous
EMG amplitudes and frequencies, see Supplementary Material

and Figure S1, and for these approaches we obtain similar results
as for the Hilbert transform.

5. CONCLUSIONS

Our results may help to gain clearer understanding of muscle
and brain activation during FOG and how it differs from both
walking and intentional stopping. Especially the interaction of
the motor cortex and leg muscles is subject to characteristic
changes during FOG and seems to be most promising for
further research. It seems that neither the leg muscle activation
patterns nor the interactions between brain activity and leg
muscle activation are interrupted or notably disturbed during
FOG. Unlike to what happens in voluntary stops, leg muscle
EMGs show a continued activation, and muscle activation seems
to be even increasingly correlated with brain activity during FOG.
Therefore, our findings seem to point into the direction of a
FOG origin in the brain. Either pronounced influences of the
brain upon leg muscle activation via fast variations or less well
coordinated influences of the brain upon them (compared with
normal walking) may be origins of FOG events.

This picture seems to be coherent with modified inter-
hemisphere EEG synchronization patterns in subjects with PD,
which we have demonstrated in previous work (Shahar et al.,
2019). Although we cannot confirm that such changes in EEG
patterns could be used to reliably predict actual FOG events
(as suggested in Handojoseno et al., 2015), there is a clear
evidence for excessive bilateral cortical synchronization during

locomotion in subjects with PD, and particularly in subjects
with PD and FOG. However, given the pronounced inter-subject
and inter-event variability of EMG and EEG variations before
and during FOG events, we must conclude that more such data
must be recorded and studied before final conclusions on the
pathophysiology of the enigmatic FOG events could be reached.
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