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Frog model organisms have been appreciated for their utility in exploring physiological
phenomena for nearly a century. Now, a vibrant community of biologists that utilize this
model organism has poised Xenopus to serve as a high throughput vertebrate organism
to model patient-driven genetic diseases. This has facilitated the investigation of effects
of patient mutations on specific organs and signaling pathways. This approach promises
a rapid investigation into novel mechanisms that disrupt normal organ morphology
and function. Considering that many disease states are still interrogated in vitro to
determine relevant biological processes for further study, the prospect of interrogating
genetic disease in Xenopus in vivo is an attractive alternative. This model may more
closely capture important aspects of the pathology under investigation such as cellular
micro environments and local forces relevant to a specific organ’s development and
homeostasis. This review aims to highlight recent methodological advances that allow
investigation of genetic disease in organ-specific contexts in Xenopus as well as provide
examples of how these methods have led to the identification of novel mechanisms and
pathways important for understanding human disease.

Keywords: Xenopus, gene discovery, organogenesis, disease model, mechanism discovery, genetics of
congenital malformations, birth defects

INTRODUCTION

The frog has served as a powerful tool for understanding human physiology dating back to early
efforts in biomedical research. Many researchers found this model appealing due to its prevalence
as a pregnancy test (Elkan, 1938). Injected human chorionic gonadotrophin induces ovulation and
facilitates fertilization of a large number of embryos for experimentation. Subsequently, there has
been an ongoing effort to develop methods to interrogate biology in the Xenopus embryo. Recently,
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next generation sequencing technologies have allowed
researchers to rapidly amass a compendium of candidate
gene variants that are putatively disease causing (Zaidi et al.,
2013; Glessner et al., 2014; Homsy et al., 2015; Sifrim et al.,
2016; Jin et al., 2017; Li et al., 2017; Manheimer et al., 2018).
A major challenge is annotating these candidate genes with
pathogenesis mechanisms. While statistical analysis of variants
and computational approaches to predict mutational effect are
necessary to identify putative disease-causing patient variants,
many of the candidate genes have no known relevant biological
function suggestive of its role in disease pathogenesis. Therefore,
there is a pressing need for model systems to decipher these
mechanisms. This is where patient driven gene discovery and
disease modeling in Xenopus have proven fruitful.

SCREENING AND EVALUATION OF
PATIENT VARIANTS

Xenopus tadpoles develop most organs in just 3 days and
the cell fate map for each organ system is well defined, so
rapid phenotyping in knockout animals is possible (Moody,
1987). In fact, several gene knockout Xenopus lines are available
to researchers through the community resources Xenbase
and the international Xenopus resource centers (Table 2).
In addition, the ability to manipulate only one side of
the embryos and use the un-injected side as an internal
control by one of two cell injection strategy has rendered
Xenopus as a useful model to decipher disease mechanisms of
patient variants.

Also, advances in CRISPR/Cas9 technology allow screening
genes for disease relevance rapidly and inexpensively. The
efficiency of knockout through CRISPR/Cas9 targeting is
sufficient for screening in the F0 population of Xenopus embryos
(Blitz et al., 2013; Bhattacharya et al., 2015). These F0 mosaic
knockouts can also be used as founders to establish mutant
lines. Community created resources such as CRISPR Scan
(Moreno-Mateos et al., 2015) which can facilitate targeting
specific loci and avoiding off target effects (Doench et al.,
2014) have greatly simplified CRISPR based gene depletion
experiments. Various tools are available to assess CRISPR genome
editing efficiency, such as tracking of indels by decomposition
(Etard et al., 2017). Off target effects can also be further
evaluated by designing multiple non-overlapping sgRNAs to
verify that multiple gene disruptions lead to similar phenotypes.
Alternatively, complementary methods such as the use of
morpholino oligos can similarly validate the phenotypic effects
of CRISPR in F0 knockout screens. Subsequently, to test the
specificity of targeted gene depletion strategies, human derived
mRNA can be co-injected to rescue a mutated phenotype.

While results for CRISPR based knock-in technologies look
promising in Xenopus (Aslan et al., 2017), knock-ins of human
gene variants have not yet been fully utilized. On the other hand,
to test patient variants for pathology, gene depletion followed
by rescue with either wildtype human mRNA or patient variant
mRNA has been effective and highly efficient (Braun et al., 2018;
Kulkarni et al., 2018). Another limitation of the Xenopus model is

a lack of antibodies available to detect Xenopus proteins, and there
is an on-going concerted effort to produce monoclonal antibodies
which will be freely shared with the Xenopus research community
(personal communication D. Alfandari).

EMERGING METHODS IN EVALUATING
EFFECTS OF GENETIC MANIPULATIONS
IN ORGANOGENESIS

Cardiac Morphogenesis
Xenopus is well suited for studying heart development as,
unlike mice, Xenopus embryos do not require functional blood
circulation for early cardiac development. This permits analysis
of mutations that would prove embryonic lethal in mice.
Additionally, the optical transparency which persists throughout
early organogenesis enables assessment of morphological heart
defects via multiple live imaging strategies (Figure 1).

Through targeted genome editing and a fate mapping, early
heart developmental processes are well outlined in Xenopus.
Similar to mammals, Xenopus heart development begins with
pre-cardiac mesoderm formation during gastrulation (Sater
and Jacobson, 1989). Cardiac precursor cells then migrate
toward the ventral midline where they subsequently become
specified as cardiac progenitor cells in two lineages: the first
and second heart fields. These two heart fields undergo further
remodeling to become two-atria/one ventricle and the outflow
tract, respectively (Buckingham et al., 2005; Gessert and Kuhl,
2009). Several transgenic Xenopus lines have been engineered

FIGURE 1 | Tools in Xenopus allow for the study of heart and kidney
development. Schematic of the organ systems in Xenopus along with
available tools to interrogate these systems.
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TABLE 1 | Transgenic lines discussed in this review.

Transgenic line Development Proposed utility

Tg(nkx2.5:GFP) Approx. 7.3 kb upstream of
transcriptional start site of
nkx2.5 (GU573788) fused to
GFP. This region should contain
the nkx2.5 promoter

Early heart field studies

Tg(mlc3:GFP) 8 kb of promoter of the X. laevis
MLClv (myosin light chain 3)
gene driving expression of
EGFP (note MLClv synonym
for = mlc3)

Myocardium studies

Tg(smad3:eGFP) 1.5 kb of promoter of the
X. laevis smad3 gene driving
expression of eGFP

Endocardium studies

Tg(WntREs:dEGFP) 7 copies of a TCF/LEF1 binding
DNA element, a minimal TATA
box and a reporter gene
encoding destabilized eGFP
and a polyA sequence

Wnt signaling in
cardiogenesis

Tg(Dre.cdhl7:eGFP) Approximately a 4.3 kb
genomic fragment upstream of
the Danio rerio cdhl7 driving
expression of EGFP

Pronephric
development

TABLE 2 | A subset of mutant lines of interest to disease processes in the
National Xenopus Resource Database.

Organ of interest Mutation Species Associated human disease

Kidney Pkhd1L X. Laevis Autosomal Recessive
Polycystic Kidney Disease

pkd2.L X. Laevis Polycystic Kidney Disease 2

wdpcp.L X. Laevis Bardet-Biedl syndrome
(ciliopathic genetic disorder that
affects many parts of body
including kidney failure)

eya1.L X. Laevis Branchio-oto-renal syndrome

Heart tbx5 X. Tropicalis Hold-Oram syndrome
(cardiac-limb syndrome)

gdf1 X.Tropicalis Double outlet right ventricle,
tetralogy of Fallot, Right atrial
isomerism

Imna X. Tropicalis dilated cardiomyopathy

myh6 X.Tropicalis familial hypertrophic
cardiomyopathy, dilated
cardiomyopathy, atrial septal
defect

with fluorescent proteins fused to promotor regions of relevant
cardiac markers to examine these developmental processes
in vivo. One Xenopus line harbors the promoter of NKX2 fused
to GFP and serves as a suitable marker for the early heart
field (Sparrow et al., 2000), while MLC1v-GFP and SMAD3-
GFP lines prove useful for labeling the myocardium and
endocardium, respectively (Smith et al., 2005; Smith and Mohun,
2011; Table 1).

Another exciting model is the Wnt reporter line developed
in Xenopus (7X LEF/TCF-GFP) (Tran et al., 2010; Tran and
Vleminckx, 2014; Table 1). Both canonical and non-canonical
Wnt signaling is spatiotemporally controlled to orchestrate

proper cardiac development (Nakamura et al., 2003; Naito
et al., 2006; Tzahor, 2007; Ueno et al., 2007; Gessert and
Kuhl, 2010). In the context of left-right patterning, Wnt and
serotonin signaling were found to be crucial for left-right
organizer (LRO) specification and differentiation (Nascone and
Mercola, 1997; Beyer et al., 2012). In particular, Wnt direct
target gene, foxj1, expression is up-regulated in ATP4a dependent
manner that consequently controls motile ciliogenesis in the LRO
(Walentek et al., 2012). Left–right patterning in turn has far
reaching consequences for cardiogenesis (Reviewed in Duncan
and Khokha, 2016; Garfinkel and Khokha, 2017). Wnt action
during cardiogenesis can be divided into four stages. First, high
levels of Wnt/β-catenin activity is required for the formation of
prospective heart mesoderm (Smith and Howard, 1992; Antin
et al., 1994). Once cardiac mesodermal cells colonize the ventral
midline, Wnt signaling is damped down allowing for cardiac
specification and generation of multi-potent progenitor cells
(Marvin et al., 2001; Schneider and Mercola, 2001). Shortly
thereafter, Wnt signaling is up-regulated for the expansion
and proliferation of cardiogenic progenitor cells and repressed
again for terminal differentiation of cardiomyocytes (Ai et al.,
2007; Kwon et al., 2007). As the role of Wnt signaling in
cardiac development is both dynamic and complex, further
investigation is warranted in this Xenopus Wnt reporter line.
Exemplifying the utility of this model, recent work using this
Wnt transgenic Xenopus line has comprehensively delineated the
spatial and temporal dynamics of Wnt signaling through whole-
mount in situ hybridization and cross-sectioning of embryos
(Borday et al., 2018).

Lastly, optical coherence tomography (OCT) has recently been
employed as a reliable and efficient imaging modality to assess
cardiac structural anomalies in Xenopus tadpoles (Deniz et al.,
2017). OCT uses coherent light waves to capture cross-sectional
images of tissues in live embryos (Kagemann et al., 2008). OCT
can thus comprehensively measure Xenopus cardiac structures
including the atria, trabeculated ventricle, atrioventricular valve,
and the diameter of outflow tract. As evidence of its utility,
depletion of the myosin heavy chain 6 (myh6) gene which has
been shown to have variants that cause human cardiomyopathy
(Abu-Daya et al., 2009) was employed in Xenopus embryos.
OCT imaging of these embryos yielded successful dynamic
assessment of cardiac defects such as dysregulated AV valve
excursion times (Deniz et al., 2017). Overall, OCT and cardiac
fluorescent transgenic models maximize the power of the optical
transparency in Xenopus embryos by allowing for dynamic live
imaging and observation of cardiac development at both cellular
and sub-cellular levels.

Kidney Morphogenesis
The embryonic kidney in Xenopus consists of a pronephros
that is simplistic compared to human metanephroi (Fox and
Hamilton, 1964; Vize et al., 1995); however, this provides
a straightforward structure that can be readily interrogated
(Figure 1). Additionally, regions of the pronephros correspond
to regions of the human metanephros based on function and
patterns of gene expression (Carroll and Vize, 1999; Carroll
et al., 1999; Wild et al., 2000; Saulnier et al., 2002; Zhou and
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Vize, 2004; Alarcon et al., 2008; Raciti et al., 2008; Buisson
et al., 2015). Although the whole mount in situ hybridization has
been used to interrogate the pronephros based on expression,
new tools allow kidney research to observe changes in vivo.
Among these is a transgenic line with GFP fused to Cdh17 that
facilitates visualization of the entire pronephros (Corkins et al.,
2018; Table 1).

Recent efforts in kidney research in Xenopus have also
yielded models of pronephric regeneration that show great
promise (Caine and McLaughlin, 2013). These studies build
upon work that has addressed pronephroi as in vitro explants
(Moriya et al., 1993; Osafune et al., 2002; Asashima et al.,
2009). As kidney tissue is susceptible to damage from genetic
as well as acquired renal disease, understanding its regenerative
potential may allow us to identify methods of recovering tissue
function in the context of disease. Additionally, observing
regeneration as opposed to organogenesis of the pronephros
facilitates uncoupling signaling relevant for the generation of
this specific organ from generalized processes of development.
Such an approach may be essential for understanding the
mechanisms of dysfunction observed due to patient-derived
candidate gene variants.

The ability to target specific regions of the developing embryo
is a powerful avenue to home in on factors relevant for specific
pathways and tissues. Screening candidate genes based on patient
variants in the Xenopus kidney is no exception. Although F0
CRISPR based knockout of genes is a powerful tool, this has
been deployed largely in whole embryo approaches. Developing
a tissue-specific targeting strategy is an important next step to
screen for organ-specific dysfunction. Fortunately, this has been
evaluated precisely in the context of the Xenopus pronephros
wherein CRISPR/Cas9 was injected in a targeted manner to
demonstrate that this technology could be applied in a subset
of embryonic blastomeres that give rise to the pronephric
tissue (DeLay et al., 2018). This advance shows that despite
the mosaicism observed via the targeted use of CRISPR/Cas9
in the F0 generation, this technology can be used to observe
downstream consequences of loss of function in particular
regions of F0 embryos without the need to raise mutant lines.
This may be particularly useful for studying the pronephroi in
the context of gene knockout scenarios in which embryonic
development is so severely affected as to preclude the study of
later organ development. By adopting this approach to limit
candidate gene screening to the embryonic kidney, we may be
better equipped to answer what role a novel gene is playing in
patient disease affecting this organ.

RECENT PATIENT DRIVEN XENOPUS
STUDIES IN ORGANOGENESIS

Novel Mechanisms in Congenital Heart
Disease (CHD)
Congenital heart disease (CHD) is the most prevalent class of
birth defects leading to high infant mortality in the United States
and yet for the vast majority of cases, the underlying molecular

mechanisms remain elusive (Van der Linde et al., 2011; Triedman
and Newburger, 2016). However, by coupling cost-effective
sequencing technologies to gene editing tools in animal model
systems, novel genetic variants from patients can be quickly
analyzed in vivo in a high-throughput manner. This has been a
productive approach in Xenopus as candidate genes have been
efficiently analyzed for their functional cardiac relevance in
Xenopus embryos.

For example, RAPGEF5 which encodes a guanine nucleotide
exchange factor for Rap-GTPase was found to have an
internal duplication which would likely lead to a null allele
in a heterotaxy patient. Depletion of Rapgef5 in Xenopus
recapitulates the left-right patterning phenotype found in the
patient. Unexpectedly, mechanistic studies established that
RAPGEF5 regulates left-right patterning via Wnt signaling
by regulating the nuclear localization of β-catenin (Griffin
et al., 2018). As previously noted, Wnt signaling is critical
for proper induction of dorsal mesoderm including cardiac
precursors and the LRO. As such, dysregulation of Wnt signaling
caused by Rapgef5 knockdown resulted in abnormal LRO
formation and cardiac looping phenotypes. Moving beyond
CHD, dysregulation of Wnt signaling is implicated in many
human diseases especially colorectal cancers (Morin et al., 1997;
Cancer Genome Atlas Network, 2012). Therefore, elucidating
this transport machinery may lead to novel therapeutic targets
for a host of diseases.

Another successful example of modeling heterotaxy candidate
genes in Xenopus was demonstrated by identifying a novel
functional role of inner-ring nucleoporins, Nup188 and Nup93
in the context of cilia. Nup188 and its interactant Nup93
were discovered to localize to the base of cilia suggesting
a role outside of the nuclear envelope. Knockdown of
these components results in the loss of cilia in the LRO
subsequently leading to abnormal heart patterning (Del Viso
et al., 2016). Cilia are key cellular structures necessary to generate
and sense unidirectional fluid flow and induce asymmetric
gene expression for proper organ situs (Wallingford and
Mitchell, 2011; Boskovski et al., 2013; Blum et al., 2014;
Yoshiba and Hamada, 2014). These studies demonstrate the
complex genetic etiology of CHD and the successful use of
Xenopus to identify and characterize disease mechanisms of
pathogenic human variants.

Novel Mechanisms in Congenital
Disease of the Kidney
Work utilizing the developing Xenopus kidney has led to new
roles and mechanisms for candidate genes in kidney development
and disease. Congenital anomalies of the kidney and urinary tract
(CAKUT) include a wide variety of patient presentations ranging
from abnormal kidney and urinary tract size and morphology
to tumor growth within this organ system (Rodriguez, 2014). As
these anomalies comprise the most common cause of childhood
renal failure, high throughout models for candidate CAKUT
genes are useful for testing candidate genes and exploring
pathogenesis mechanisms.

For example, variants of NRIP1 were identified in patients
with CAKUT (Vivante et al., 2017). These anomalies consisted
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of renal hypodysplasia and either vesicoureteral reflux or
ectopia. Prior to this work, the mechanism of NRIP1 function
in kidney development or even developmental at large was
not established. This study also highlights the potential to
investigate novel therapeutic pathways for patients in which
variants are identified. Since retinoic acid signaling was
downregulated by NRIP1 mutation in this instance, manipulation
of retinoic acid dependent pathways is an appealing avenue for
therapeutic studies.

Studies of ciliopathies are another excellent example of these
efforts. Though ciliopathies affect a wide array of organ systems
including the heart (Duncan and Khokha, 2016), the kidney is
particularly susceptible to the loss of function of cilia-related
proteins. Ciliopathies are a diverse array of diseases caused by
disrupted formation and/or function of cilia (Bisgrove and Yost,
2006; Gerdes et al., 2009; Oh and Katsanis, 2012; Werner and
Mitchell, 2013; Choksi et al., 2014). Cilia are cellular extensions
that have been shown to serve as mediators of extracellular
signals in the case of primary cilia (Nachury and Mick, 2019)
or a means by which cells coordinate extracellular fluid flow in
the case of motile cilia (Mitchison and Valente, 2017). In the
kidney, cilia dysfunction often manifests itself as a cystic change
in tissue morphology that renders the kidney unable to regulate
the urine concentration and hemofiltration (Ma et al., 2017). The
mechanisms by which cilia dysfunction leads to this tissue level
dysfunction are still not well understood.

In another example of patient driven gene discovery,
identifying a role for the DNA repair protein NME3 in
cilia established another example for a growing list of
ciliopathies (Hoff et al., 2018). Depletion of NME3 resulted
in renal malformations and left–right patterning defects
typical of ciliopathies in Xenopus along with a loss of cilia
in complementary vertebrate and cell culture models. The
association of NME3 with the ciliary nephronophthisis proteins
NEK8, CEP164, and ANKS6 supports its role as a ciliopathy gene.
This discovery adds to a growing number of ciliopathy related
genes that have known roles away from the cilium but seem to
also play an important role when recruited to the cilium. This
has far reaching implications for kidney disease biology, as the
discovery of new roles and/or localizations for gene products will
allow us to harness previous knowledge about these components
to understand the disease. Complementarily, subsequent
discovery of the proteins’ role in kidney morphogenesis may
lead to understanding its function in other contexts. In the
case of NME3, this work has led to a still evolving connection
between primary cilia function and DNA damage repair, which
may constitute an even broader pathway important for kidney
development and homeostasis.

Similarly, recent studies have implicated mutations in several
components of the outer-ring of the nuclear pore complex
(NPC) in steroid resistant nephrotic syndrome (SRNS) (Braun
et al., 2018). SRNS is a broad category of disease in which
the body excessively excretes proteins in the urine thus leading
to systemic fluid distribution imbalances and swelling which is
most often linked to disruption of the renal vascular interface
that functions in podocyte mediated fluid filtration (Dogra
and Kaskel, 2017). Variants of outer-ring NUPs were tested

in Xenopus knockdown models to verify their deleterious
status (Braun et al., 2018). This study went on to determine
that this effect on kidney morphogenesis is mediated through
Cdc42 signaling important for filopodia (Nobes and Hall,
1995). These findings highlight that proteins essential for
the function of every cell such as NPC components can
still give tissue specific phenotypes suggesting that we have
a great deal to learn about the pathogenesis mechanisms
of human disease.

Though these studies demonstrate the power that patient
driven gene discovery has for assigning disease causing variants
in human kidney disease, they also begin to show how this
approach aids in discovering novel mechanisms important for
kidney morphogenesis and function. Moving forward, the many
congenital kidney malformations that affect patients early in life
may be an efficient source of genetic information to direct the
study of kidney morphogenesis.

CONCLUSION

Sequencing technologies continue to improve in speed, accuracy,
and cost. Consequently, rather than phenotype driven therapy,
patient genotype can be included in decision-making and
treatment options tailored to individuals. However, one major
challenge to this approach is determining the biological relevance
of each variant as many candidate genes have no known
role in disease. Therefore, each variant offers the opportunity
for molecular function discovery in animal models. Studying
organogenesis in Xenopus including that of the heart and kidney
will allow us to unravel mechanisms of disease pathogenesis.
Analysis of candidate genes in Xenopus will not only allow for
assessing allele pathogenicity, but also promises to expand our
understanding of developmental biology.
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