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Inflammatory mediators play a critical role in the regulation of sympathetic outflow to 
cardiovascular organs in hypertension. Emerging evidence highlights the involvement of 
immune cells in the regulation of blood pressure. However, it is still unclear how these immune 
cells are activated and recruited to key autonomic brain regions to regulate sympathetic 
outflow to cardiovascular organs. Chemokines such as C-C motif chemokine ligand 2 
(CCL2), and pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and 
interleukin 1 beta (IL-1β), are upregulated both peripherally and centrally in hypertension. 
More specifically, they are upregulated in key autonomic brain regions that control sympathetic 
activity and blood pressure such as the paraventricular nucleus of the hypothalamus and 
the rostral ventrolateral medulla. Furthermore, this upregulation of inflammatory mediators 
is associated with the infiltration of immune cells to these brain areas. Thus, expression of 
pro-inflammatory chemokines and cytokines is a potential mechanism promoting invasion 
of immune cells into key autonomic brain regions. In pathophysiological conditions, this can 
result in abnormal activation of brain circuits that control sympathetic nerve activity to 
cardiovascular organs and ultimately in increases in blood pressure. In this review, we discuss 
emerging evidence that helps explain how immune cells are chemoattracted to autonomic 
nuclei and contribute to changes in sympathetic outflow and blood pressure.
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INTRODUCTION

The autonomic nervous system plays a major role in blood pressure regulation whereby 
dysfunction can lead to hypertension. Brain regions lacking a functional blood-brain barrier 
(BBB), known as circumventricular organs (CVOs), can sense and respond to circulating factors 
such as blood-borne hormones, like angiotensin II. This can lead to elevated sympathetic 
discharge and blood pressure (BP) (Nunes and Braga, 2011; Zubcevic et  al., 2017). CVOs, 
such as the subfornical organ (SFO) and the area postrema (AP), regulate sympathetic outflow 
by changing the activity of neurons in the paraventricular nucleus of the hypothalamus (PVN) 
and the rostral ventrolateral medulla in the brainstem (RVLM) (van der Kooy and Koda, 1983; 
Dampney et  al., 1987; Braga et  al., 2011). Both the PVN and the RVLM are implicated in 
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the regulation of sympathetic outflow to cardiovascular organs 
via direct projections to sympathetic preganglionic neurons 
(SPNs) located in the spinal cord (Strack et al., 1989a,b; Schramm 
et  al., 1993). Thus, these brain regions play an important role 
in regulating homeostatic levels of sympathetic outflow to the 
cardiovascular organs such that activation of the AP, by 
inflammatory mediators such as tumor necrosis factor alpha 
(TNF-α), for example, can lead to increases in both cardiac 
and renal sympathetic nerve activity (Korim et  al., 2018).

The upregulation of pro-inflammatory mediators is associated 
with human hypertension (Chrysohoou et  al., 2004; Antonelli 
et  al., 2012). Studies in experimental rodent models of 
hypertension confirm this finding. Moreover, they further show 
that upregulation of a wide range of pro-inflammatory mediators 
occurs in key brain regions known to regulate sympathetic 
outflow to cardiovascular organs (Shen et  al., 2015). These 
pro-inflammatory cytokines include TNF-α, interleukin 1 beta 
(IL-1β), interleukin 6 (IL-6), and pro-inflammatory chemokines 
such as C-C motif chemokine ligand 2 (CCL2). These mediators 
are upregulated in the PVN and RVLM, in models of both 
primary and secondary hypertension (Li et  al., 2014; Song 
et al., 2014). Selective blockade of these inflammatory mediators 
in the central nervous system reduces BP in animal models 
of hypertension (Li et al., 2014; Song et al., 2014). These studies 
indicate that upregulation of pro-inflammatory mediators in 
brain regions that control cardiovascular function contributes 
to sustained BP increase in hypertension. However, the factors 
leading to upregulation of these mediators in critical brain 
areas in the context of cardiovascular control remain unclear.

Recently, focus has shifted to the role of immune cells in 
the development of hypertension (Bomfim et  al., 2018; Caillon 
et  al., 2018; Carnagarin et  al., 2018). Resident immune cells in 
the central nervous system (microglia) are responsible for local 
inflammatory processes in the brain (Shen et  al., 2015). In fact, 
chronic central infusion of minocycline, an anti-inflammatory 
antibiotic that reduces microglia activation, reduces central 
inflammation and BP in hypertension (Shi et  al., 2010). There 
is also evidence that peripheral bone marrow immune cells are 
involved in inducing brain inflammation, leading to a hypertensive 
phenotype (Santisteban et al., 2015). Interestingly, when the bone 
marrow of spontaneously hypertensive rats (SHRs) is ablated 
and replaced with bone marrow from normotensive Wistar Kyoto 
rats (WKYs), central inflammation is attenuated, leading to BP 
reduction (Santisteban et  al., 2015). This evidence suggests that 
peripheral immune cells play an important role in central 
inflammation and the development of hypertension.

Infiltrating immune cells are activated and recruited by 
pro-inflammatory chemokines, such as CCL2 (Deshmane et al., 
2009). Interestingly, CCL2 is upregulated in the PVN of 
hypertensive rodents. This upregulation of CCL2 was linked 
to the presence of infiltrating immune cells in the PVN of 
these animals (Wang et  al., 2018). Moreover, there is a clear 
gradient of CCL2 levels in hypertensive animals, whereby the 
lowest levels are detected in bone marrow and the highest 
levels are detected in the cerebrospinal fluid (CSF) of rodents 
(Santisteban et al., 2015). Hence, this forms a distinct chemotactic 
gradient, such that immune cells are recruited to specialized 

cardiovascular control regions of the brain. Once there, they 
initiate an inflammatory cascade, which impairs sympathetic 
control and mediates sustained increases in BP.

In this review, we  discuss the evidence supporting brain 
chemoattraction and the involvement of immune cells in 
regulating sympathetic outflow to cardiovascular organs. We will 
focus on the effects of chemoattraction of immune cells to 
induce inflammatory cascades in key autonomic brain centers 
that control cardiovascular function, and the potential role of 
these changes in the development of hypertension.

UPREGULATION OF BRAIN PRO-
INFLAMMATORY CYTOKINES AND 
CHEMOATTRACTION OF IMMUNE 
CELLS ON THE REGULATION OF 
BLOOD PRESSURE

Upregulation of Brain Pro-inflammatory 
Cytokines in Hypertension
Increases in BP in rodent models of hypertension are associated 
with the upregulation of pro-inflammatory mediators, both 
peripherally and centrally. Recent studies demonstrate that a 
number of pro-inflammatory mediators are elevated in different 
rodent models of hypertension (Jia et  al., 2014; Song et  al., 
2014; Yu et  al., 2015; Li et  al., 2016). For example, there are 
significantly higher levels of TNF-α, IL-1β, IL-6, and CCL2  in 
the PVN of SHRs, a model of primary hypertension, compared 
with normotensive WKYs. Similarly, in a model of secondary 
hypertension (renovascular; two kidney-one clip, 2  K-1C), the 
levels of TNF-α, IL-1β, IL-6, and CCL2 are elevated in the 
RVLM (Li et  al., 2014). Furthermore, the levels of these 
pro-inflammatory mediators are also elevated in the PVN of 
angiotensin II-induced hypertensive rat models (Kang et  al., 
2009, 2014; Sriramula et  al., 2013; Su et  al., 2014), as well as 
in high salt diet-induced hypertension (Gao et  al., 2016; Wang 
et al., 2018). The downstream effect of this increased inflammation 
is thought to contribute to altered neuronal signaling caused 
by imbalances in neurotransmitter and neuromodulator levels 
in key autonomic brain centers. For instance, glutamate and 
norepinephrine are upregulated whereas GABA was 
downregulated within both the PVN and the RVLM of 
hypertensive animals (Jia et  al., 2014; Song et  al., 2014; Yu 
et  al., 2015; Li et  al., 2016). Thus, changes in the activity of 
neurons in key autonomic brain nuclei may contribute to 
elevated sympathetic nerve activity (SNA) and increases in BP.

Blockade of receptors for pro-inflammatory mediators within 
cardiovascular brain regions reduces BP in rodent models of 
hypertension. Recently, we  showed that blockade of TNF-α 
receptors (TNFR1) in the AP reduces BP in the 2  K-1C model 
of hypertension (Korim et al., 2018). Others have also demonstrated 
that non-selective blockade of TNF-α receptors (Sriramula et al., 
2013; Song et  al., 2014), IL-1β receptors (Lu et  al., 2017), and 
the downstream secondary messenger of pro-inflammatory 
cytokines NF-κB (Yu et  al., 2015) in the PVN of hypertensive 
rats reduced BP. Interestingly, antagonism of pro-inflammatory 
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cytokine receptors within the central nervous system not only 
reduced SNA and BP in hypertension, but also appeared to 
restore the neurotransmitter imbalances and excessive activation 
of cardiovascular brain regions (Sriramula et  al., 2013; Song 
et  al., 2014; Lu et  al., 2017). Thus, the dysregulation of 
pro-inflammatory mediator levels within key autonomic centers 
appears to be  associated with the development of hypertension.

Exogenous application of pro-inflammatory cytokines into 
specific central cardiovascular control centers of normotensive 
animals increases SNA and BP. For example, microinjections 
of TNF-α and IL-1β into the SFO (Wei et  al., 2015) and in 
the PVN (Shi et  al., 2011) increased renal SNA and BP. 
Furthermore, our group has recently shown that the 
microinjection of TNF-α into the AP increases both renal and 
cardiac SNA and BP (Korim et al., 2018). Interestingly, we found 
receptors for TNF-α to be expressed on AP neurons projecting 
to the RVLM – a cardiovascular brain region known for 
containing neurons directly projecting to SPNs (Strack et  al., 
1989a,b; Schramm et  al., 1993). These neurons appear to 
be  chronically activated in hypertensive animals and are also 
active following microinjection of TNF-α into the AP (Korim 
et  al., 2018). These studies provide a direct causal relationship 
whereby activation of neurons by pro-inflammatory mediators, 
within important central cardiovascular control regions such 
as the AP, increases the sympathetic outflow and BP. Indeed, 
we  have also previously demonstrated that the AP is critical 
in driving the increased cardiac SNA in an ovine model of 
heart failure (Abukar et al., 2018). Taken together, these studies 
provide compelling evidence to support a link between increases 
in brain pro-inflammatory mediators and the dysregulation of 
SNA and BP in hypertension.

C-C Motif Chemokine Ligand 2 and  
the Chemoattraction of Immune Cells  
in Hypertension
Chemokines are pro-inflammatory mediators and chemotactic 
cytokines, whose main function is to regulate cell trafficking 
(Rollins, 1997; Deshmane et  al., 2009; Zlotnik and Yoshie, 
2012). These proteins create a concentration gradient and 
activate immune cells, causing them to move up this chemotactic 
gradient (Zlotnik and Yoshie, 2012). The chemokine CCL2 
(also known as monocyte chemoattractant protein-1 or MCP-1), 
and its cognate receptor C-C Chemokine receptor type 2 
(CCR2), is one of the most extensively studied chemokines. 
While CCL2 can be secreted by a variety of cell types, including 
endothelial cells and vascular smooth muscle cells (Bartoli 
et  al., 2001), the main source of CCL2 is believed to 
be  monocytes/macrophages (Yoshimura et  al., 1989a,b). CCL2 
is secreted in response to injury, oxidative stress, growth factors, 
and expression of other pro-inflammatory cytokines – where 
CCL2 secretion forms a gradient toward these stimuli. This 
process is termed chemotaxis, where CCL2 recruits circulating 
monocytes/macrophages to the respective chemical stimulus 
in the inflamed tissue or site of injury (Ajuebor et  al., 1998). 
Evidence that CCL2 plays a vital role in the process of monocyte 
recruitment and cytokine expression is demonstrated by the 

finding that these are abnormal in CCL2 knockout mice (Lu 
et  al., 1998). Interestingly, both CCL2 and its receptor, CCR2, 
are expressed and produced in the brain, specifically in central 
autonomic control centers such as the PVN and the RVLM 
(Wittendorp et  al., 2004; Banisadr et  al., 2005; Hinojosa et  al., 
2011; Morioka et  al., 2013). However, the extent to which 
CCL2 and the chemoattraction of immune cells contribute to 
increased SNA and BP in the development of hypertension is 
still unknown and requires further investigation.

There is some evidence suggesting the involvement of increased 
chemoattraction of immune cells by CCL2 into cardiovascular 
brain centers during the development of hypertension. For 
example, selective antagonism of CCR2 receptors reduces BP 
in rodent models of hypertension (Aiyar et al., 1999; Elmarakby 
et  al., 2007; Chan et  al., 2012; Chang et  al., 2014; Wang et  al., 
2015). Furthermore, studies in models of both primary and 
secondary hypertension reveal upregulation of CCL2 both 
peripherally and centrally (Sriramula et  al., 2013; Li et  al., 
2014; Song et  al., 2014), with a 3-fold elevation in the levels 
of CCL2 within the PVN of hypertensive animals (Sriramula 
et  al., 2013; Li et  al., 2014; Song et  al., 2014). Upregulation 
of CCL2 occurs in the bone marrow, serum, and cerebrospinal 
fluid of SHRs compared with normotensive WKYs (Santisteban 
et al., 2015). Interestingly, the increase in CCL2 levels in SHRs 
forms a gradient from the bone marrow (lowest concentrations) 
toward the cerebrospinal fluid (highest concentrations) 
(Santisteban et al., 2015), possibly forming a chemotactic gradient 
toward the central nervous system. Thus, it seems that CCL2 
chemoattracts immune cells and triggers an inflammatory 
cascade within the brain, leading to increases in BP.

THE NEURO-IMMUNE-INFLAMMATORY 
MODEL OF HYPERTENSION

In hypertension, increased circulating levels of angiotensin II is 
a potential cause for increased levels of brain CCL2 (Matsuda 
et  al., 2015). A hallmark of hypertension is the upregulation of 
renin-angiotensin system and increased levels of angiotensin II 
(Goldblatt et  al., 1934; Crowley et  al., 2006, 2010). While not all 
human essential hypertension is angiotensin II mediated, the serum 
levels of CCL2 are increased in hypertensive patients (Antonelli 
et  al., 2012). Interestingly, treating these patients with angiotensin 
II receptor blockers, which reduces blood pressure, also reduces 
plasma levels of CCL2 (Marketou et  al., 2011), suggesting a link 
between angiotensin II and increased levels of CCL2. Similarly, 
in a rodent renovascular model of hypertension, peripheral blockade 
of receptors for angiotensin II attenuates peripheral CCL2 production 
(Xie et al., 2006). Moreover, in vitro studies show that angiotensin 
II can directly stimulate the production of CCL2 from monocytes 
and vascular smooth muscle cells (Chen et  al., 1998; Tsou et  al., 
2007). In addition, systemic angiotensin II infusion increases CCR2 
receptor expression in circulating monocytes – which is blunted 
by blocking angiotensin II receptors (Ishibashi et al., 2004). Recent 
studies further show that application of angiotensin II to primary 
hypothalamic neurons induces increased CCL2 mRNA and CCL2 
protein levels in the cell culture media (Santisteban et  al., 2015). 
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As such, the stimulation of receptors for angiotensin II on peripheral 
circulating monocytes, vascular smooth muscle cells, and even 
on neurons induces the production of CCL2  in these cells.

Increased levels of CCL2 lead to the disruption of the BBB 
and facilitate immune cell infiltration into the brain tissue. 
While the BBB prevents immune cells from entering the brain, 
we  have previously suggested that this structure is disrupted 
in hypertension (Setiadi et  al., 2018). The regulation of BBB 
permeability involves tight junction proteins expressed on 
endothelial cells (Begley and Brightman, 2003). CCL2 is known 
to disrupt the BBB, through dysregulation of tight junction 
proteins such as ZO-1, ZO-2, occludin, and claudin-5 (Stamatovic 
et  al., 2009; Roberts et  al., 2012). In vitro studies have 
demonstrated that the application of CCL2 to primary mouse 
brain endothelial cell cultures reorganizes and redistributes 

tight junction proteins, increasing the permeability of the BBB 
(Stamatovic et al., 2003, 2009). Hence, CCL2 can directly disrupt 
the BBB by regulating the distribution of tight junction proteins. 
In SHRs, increased BBB permeability in the PVN and RVLM 
facilitates the entry of circulating angiotensin II into these 
brain structures (Biancardi et  al., 2013). Interestingly, in vitro 
studies using primary human brain endothelial cells corroborate 
in vitro animal studies by showing that CCL2 can disrupt 
tight junction proteins expressed on endothelial cells cultured 
from human brains (Roberts et  al., 2012). Furthermore, the 
application of CCL2 to primary human brain endothelial cell 
cultures induces the expression of cell adhesion molecules, 
such as PECAM-1 on the surface membrane of endothelial 
cells, which is required for facilitating transmigration of immune 
cells through endothelial cells (Muller et  al., 1993; Roberts 
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FIGURE 1  |  Chemoattraction of immune cells in the brain, autonomic dysfunction, and hypertension. Schematic diagram showing the potential role of 
chemoattraction of immune cells and their components in determining increases in sympathetic nerve activity and blood pressure. Increased circulating levels of 
angiotensin II leads to production of the chemokine CCL2. CCL2 can act directly on the BBB, increasing the permeability of endothelial cells and recruiting immune 
cells to the brain tissue. The resulting overexpression of pro-inflammatory cytokines produces sustained activation of cardiovascular sympathetic neurons and 
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1 beta; IL-6, interleukin 6; TNF-α, tumor necrosis factor alpha.
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et al., 2012). Thus, not only can CCL2 reorganize the distribution 
of tight junction proteins expressed on endothelial cells to 
increase BBB permeability, it can also induce the expression 
of cell adhesion molecules on the surface membrane of endothelial 
cells to facilitate immune cell entry into brain tissue (Figure 1).

The recruitment and infiltration of immune cells into distinct 
brain regions can induce an inflammatory cascade resulting in 
the local upregulation of pro-inflammatory cytokines. The 
recruitment of activated immune cells into brain areas, including 
the PVN, results in the production and the upregulation of 
pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 
(Santisteban et  al., 2015; Zubcevic et  al., 2017; Sharma et  al., 
2019). These pro-inflammatory cytokines are capable of directly 
activating neurons and increasing sympathetic outflow and BP 
(Shi et al., 2011; Wei et al., 2015; Korim et al., 2018). Furthermore, 
the upregulation of pro-inflammatory cytokines and chemoattraction 
of activated immune cells also leads to activation of microglial 
cells (Santisteban et al., 2015; Zubcevic et al., 2017; Sharma et al., 
2019). As microglia are the resident immune cells of the brain, 
activation of microglia leads to further release of pro-inflammatory 
mediators (Shi et al., 2010; Shen et al., 2015), therefore establishing 
an inflammatory state and escalating the inflammatory process 
centrally. Such a chronic inflammatory state results in further 
activation of immune cells, further neuroinflammation, and further 
rises in BP, leading to severe hypertension (Marvar et  al., 2010). 
Whereas the blockade of receptors for pro-inflammatory cytokines 
in the brain (Sriramula et  al., 2013; Song et  al., 2014; Lu et  al., 
2017) prevents the activation of microglia (Shi et  al., 2010), the 
recruitment of peripheral macrophages to the brain (Santisteban 
et  al., 2015) and completely reverses the increased levels of 
peripheral and central pro-inflammatory cytokines and chemokines, 
leading to a reduced BP in hypertensive rats.

In summary, we  propose a possible mechanism by which 
an inflammatory state in brain areas that control cardiovascular 
function is established, resulting in impaired BP control and 
hypertension. We propose that the increased levels of angiotensin 
II in the circulation results in the production and release of 
CCL2. This chemokine produces a chemotactic gradient that 
recruits immune cells toward the central nervous system. In 
addition, CCL2 increases BBB permeability and promotes the 
recruitment of activated immune cells. These immune cells 
initiate an inflammatory cascade where several pro-inflammatory 
mediators are released locally. Pro-inflammatory mediators 
activate neurons directly or indirectly by involving microglial 
transmission, which relays excitatory synapses to cardiovascular 
sympathetic premotor neurons in the ventrolateral medulla 
(Brown and Guyenet, 1985). The excitation of these neuronal 
subsets increases SNA and BP. These findings suggest that 
sustained activation of autonomic circuits contributes to the 

development of increased SNA and BP in neurogenic hypertension. 
Hence, chronic chemoattraction and recruitment of immune 
cells into key cardiovascular control regions might be a potential 
pathophysiological mechanism responsible for impaired BP 
control and hypertension (Figure 1).

CONCLUSION

In this review, we  discussed recent findings that support our 
proposal of a potential mechanism to explain the contribution 
of neuroinflammation and chemoattraction mediated by CCL2, 
in brain regions that control cardiovascular function, as a cause 
of the sustained increase in sympathetic tone and BP in 
hypertension. This mechanism likely involves the recruitment 
and the infiltration of immune cells by chemokines to key 
autonomic brain areas. In future, targeting brain immune cells 
or the chemoattraction of immune cells may serve as a new 
avenue for developing antihypertensive treatments. In fact, in 
the pre-clinical setting, blockade of receptors for CCL2 or preventing 
immune cells from being activated reduces BP, in addition to 
slowing the development of atherosclerosis and vascular hypertrophy 
(Aiyar et  al., 1999; Bush et  al., 2000; Elmarakby et  al., 2007; 
Chan et  al., 2012; Chang et  al., 2014; Santisteban et  al., 2015; 
Wang et  al., 2015). However, more thorough investigations are 
required to determine the mechanism by which chemoattraction 
and immune cells interact with the central nervous system, during 
the development and maintenance of hypertension.
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