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Human aging is accompanied by a decline in muscle mass and muscle function, which
is commonly referred to as sarcopenia. Sarcopenia is associated with detrimental clinical
outcomes, such as a reduced quality of life, frailty, an increased risk of falls, fractures,
hospitalization, and mortality. The exact underlying mechanisms of sarcopenia are poorly
delineated and the molecular mechanisms driving the development and progression
of this disorder remain to be uncovered. Previous studies have described age-related
differences in gene expression, with one study identifying an age-specific expression
signature of sarcopenia, but little is known about the influence of epigenetics, and
specially of DNA methylation, in its pathogenesis. In this review, we will focus on the
available knowledge in literature on the characterization of DNA methylation profiles
during skeletal muscle aging and the possible impact of physical activity and nutrition.
We will consider the possible use of the recently developed DNA methylation-based
biomarkers of aging called epigenetic clocks in the assessment of physical performance
in older individuals. Finally, we will discuss limitations and future directions of this field.
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INTRODUCTION

Human aging is accompanied with a decline in skeletal muscle (SM) mass and function, which is
commonly referred to as sarcopenia. It negatively affects the quality of life of older people as it
is associated with decreased mobility, loss of physical independence and increased morbidity and
mortality (Ling et al., 2010; Szulc et al., 2010; Taekema et al., 2010; Beaudart et al., 2017). Sarcopenia
represents a major public health problem, that is anticipated to grow in the next decades due to
the increase in life expectancy (Ethgen et al., 2017; Shafiee et al., 2017). Sarcopenia is a complex
multifactorial phenomenon, encompassing both intrinsic (endocrine factors, motor neuron loss,
mitochondrial dysfunction) and extrinsic factors (nutrition, exercise) (Cruz-Jentoft et al., 2010; Kim
and Choi, 2013), but the precise underlying molecular mechanisms remain poorly characterized.
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Regulation of gene expression is a fundamental factor that
impacts the phenotype of each tissue and its age-related
alterations are involved in the aging process (Roy et al.,
2002). Previously published studies have tried to decipher the
transcriptomic profiles associated with SM aging, and age-
related differences in gene expression have been described (Jozsi
et al., 2000; Roth et al., 2002; Welle et al., 2003, 2004; Zahn
et al., 2006; Melov et al., 2007; Raue et al., 2012; Liu et al.,
2013; Mamoshina et al., 2018; Shafiee et al., 2018). Genes that
exhibit different expressions in relation to age are, among other,
involved in metabolism, stress responses, control of the cell
cycle and apoptosis, DNA damage response and transcriptional
regulation. Giresi et al. (2005) were able to identify an age-
specific expression signature of sarcopenia, comprised of 45 genes
that best distinguished the vastus lateralis muscle of young from
old male subjects. If the transcriptomic profiles associated with
muscle aging constitute a first essential level of information,
the characterization of other layers of genomic regulation (both
pre- and post-transcriptional) could be informative and allow
to better understand the process of muscle aging. Among
them, epigenetic mechanisms, which refer to changes in gene
function that are not related to changes in the DNA sequence
itself, are subject to profound rearrangements during aging.
Current data clearly demonstrate that the rearrangements in
the epigenetic landscape are one major hallmark of the aging
process (López-Otín et al., 2013; Kennedy et al., 2014). DNA
methylation, which corresponds to the covalent addition of
a methyl group to the cytosine in a CpG dinucleotide, is
one of the best studied and most mechanistically understood
epigenetic mechanism. Its role in aging, its implication in cellular
senescence and in the development of various diseases has been
extensively investigated (Calvanese et al., 2009; Pal and Tyler,
2016; Gensous et al., 2017). However, to date, our understanding
of its role in muscle aging is far from complete. The aim of
this article is to review the available evidence in humans on
the epigenetics of muscle aging, focusing specially on DNA
methylation. Additionally, we will also discuss the potential
impact of physical activity and nutrition in these processes as well
as the possible use of the newly developed epigenetic biomarkers
of aging (also referred to as epigenetic clocks) in the assessment
of physical performance and sarcopenia in the older individuals.
We will finally specifically discuss the limitations and future
directions of this field.

LITERATURE SEARCH

For this narrative review, the electronic search involved three
databases (PubMed, Scopus, and Google Scholar) and included
the following search terms: (epigenetics OR “DNA methylation”
OR “epigenetic clock”) AND (sarcopenia OR “muscle weakness”
OR “muscular weakness” OR “muscular atrophy”) AND
(“physical activity” OR nutrition). The inclusion criteria were
original research articles, articles published in English language
and related to humans. Non-human studies were scarce and were
not included. Reviews were excluded. Reference lists of selected
papers were hand searched for additional relevant publications.

EPIGENETICS OF HUMAN SKELETAL
MUSCLE AGING: FOCUS ON DNA
METHYLATION

Aging is characterized by a marked remodeling of genomic DNA
methylation patterns, with four main different types of changes
(Pal and Tyler, 2016): global hypomethylation, differential
methylation of specific genomic loci, increase in inter-individual
divergence between patterns of DNA methylation and increase
in the rate of epimutations. During the last decades, extensive
work has been carried out to relate the epigenetic changes to
aging and age-related phenotypes, and this remains an active area
of research. Various methods are available for determining the
methylation status of DNA samples (Kurdyukov and Bullock,
2016) and in the following paragraphs, we will review data
regarding human muscle aging obtained with candidate gene
approaches or with genome-wide analysis. We will also discuss
the potential impact of DNA methylation age-related changes on
satellite cells.

Gene-Specific DNA Methylation Changes
Associated With Muscle Aging
In the late 2000s, two studies examined methylation levels of
candidate genes in the vastus lateralis SM from young versus old
healthy subjects (Ling et al., 2007; Rönn et al., 2008; Table 1).
Methylation patterns of two genes coding for components of the
respiratory chain, NDUFB6 (NADH:Ubiquinone Oxidoreductase
Subunit B6) and COX7A1 (Cytochrome C Oxidase Subunit 7A1),
were analyzed. In both cases an age-related increase in DNA
methylation, combined with a decrease in gene expression, was
observed (Ling et al., 2007; Rönn et al., 2008), suggesting the
influence of DNA methylation on the expression of metabolically
important genes in SM and its possible implication in the
susceptibility to age-related metabolic diseases.

Genome-Wide DNA Methylation Analysis
Development of large-scale technologies has greatly changed
the study of epigenomics in the last years and has led to
significant advances in the understanding of DNA methylation
changes during aging. Some studies have applied genome-
wide technologies to the study of muscle aging, providing
a comprehensive profiling of DNA methylation patterns in
this process (Table 1). The first genome-wide study of DNA
methylation dynamics in SM was published by Zykovich
et al. (2014). Samples collected from 24 healthy older male
adults (age range: 68–89 years) were compared to 24 younger
ones (age range: 18–27 years). A predominant pattern of
DNA hypermethylation throughout the genome was observed
within the aged group. The authors identified specifically 5963
individual CpG sites that were differentially methylated between
the two groups. Of these, 5518 (92%) were hypermethylated
with age, while the remaining were hypomethylated. Surprisingly,
hypermethylation of CpG dinucleotides with age occurred mainly
within gene bodies (middle and 3′ end of genes), rather than
in the promoter regions, and differentially methylated positions
(DMPs) were underrepresented outside of genes. When the
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TABLE 1 | DNA methylation profiles associated with muscle aging.

Author Year Number
of
subjects

Age (years) Females, n (%) Location Population Measure of
physical
functioning

Tissue for DNA
methylation
analysis

DNA
methylation
analysis

Main result

Candidate gene analysis

Ling et al. 2007 196 Group of young
subjects:
mean = 28.0
(SD = 1.9) Group of
old subjects:
mean = 62.4
(SD = 2.0)

Young group: 50
(45.4%) Old
group: 48
(55.8%)

Denmark/Sweden Healthy twin
subjects

NA Skeletal muscle Bisulfite
sequencing

Increased DNA
methylation in the
promoter of the
NDUFB6 gene in elderly
subjects compared to
young ones

Rönn et al. 2008 196 Group of young
subjects:
mean = 28.0
(SD = 1.9) Group of
old subjects:
mean = 62.4
(SD = 2.0)

Young group: 50
(45.4%) Old
group: 48
(55.8%)

Denmark/Sweden Healthy twin
subjects

NA Skeletal muscle Bisulfite
sequencing

Increased DNA
methylation in the
promoter of the
COX7A1 gene in elderly
subjects compared to
young ones

Genome-wide analysis

Zykovich et al. 2014 48 Group of young
subjects:
mean = 21.3
(SD = 2.4) Group of
old subjects:
mean = 73.2
(SD = 4.6)

0 (0%) Canada –
United States

Healthy
subjects

NA Skeletal muscle Illumina Human
Methylation
450K

Predominant pattern of
DNA hypermethylation
in the aged group.
5963 individual CpG
sites differentially
methylated between
the two groups, with
500 of them used to
develop an epigenetic
signature of muscle
aging

Livshits et al. 2016 1550 Mean = 51.8
(SD = 13.17)

1550 (100%) United Kingdom Healthy twin
subjects

Whole body
dual-energy X-ray
absorptiometry
method

Whole blood Methylated
DNA immuno-
precipitation
sequencing

Identification of seven
regions whose
methylation status was
significantly associated
with variation in skeletal
muscle mass

EWAS with markers of physical fitness

Bell et al. 2012 172 Median = 57
(range = 32–80)

172 (100%) United Kingdom Healthy
subjects

HGS Whole blood Illumina Human
Methylation
27K

No differentially
methylated region
associated with HGS

Marioni et al. 2015b 1091 Mean = 69.5
(SD = 0.83)

543 (49.8%) United Kingdom Healthy
subjects

6 m walking test
and HGS

Whole blood Illumina Human
Methylation
450K

No significant
association between
individual CpG
methylation sites and
HGS or 6 m walking
speed

SD, standard deviation; HGS, hand grip strength; NA, not applicable.
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authors performed an ontology analysis on the intragenic
methylation changes, they observed that the most enriched
terms and pathways were related to “muscle cell” and “axon
guidance signaling,” suggesting a potential role of epigenetic
changes in the denervation of the neuromuscular junction during
aging (Gonzalez-Freire et al., 2014). Finally, among the 5963
DMPs, Zykovich et al. (2014) selected 500 CpG sites which
were able to discriminate with high confidence young tissues
from older ones, thus defining the first epigenetic signature of
muscle aging. To our knowledge, this is the only epigenome-wide
study conducted in human SM samples of healthy individuals
during aging. Another one, published 2 years later, aimed to
also identify associations between DNA methylation levels at
some CpG sites and SM mass variation with age, but it was
performed on whole blood (Livshits et al., 2016). In a population
of 1550 middle-aged female twins (age range: 17–82 years),
authors identified seven regions whose methylation status was
significantly associated with variation in SM mass. Four of these
CpG sites of interest were located in or near the genes DNAH12
(Dynein Axonemal Heavy Chain 12), CAND1 (Cullin Associated
And Neddylation Dissociated 1), CYP4F29P (Cytochrome P450
Family 4 Subfamily F Member 29, Pseudogene), and ZFP64
(ZFP64 Zinc Finger Protein), previously identified for some
of them (DNAH12, ZFP64) as involved in muscle physiology
(Teran-Garcia et al., 2005; Sakamoto et al., 2008). Finally,
two observational epidemiological studies with epigenome-wide
association analysis (EWAS) have tested associations between
whole-blood DNA methylation patterns and markers of physical
fitness (Bell et al., 2012; Marioni et al., 2015b; Table 1). In a cohort
of 172 female twins aged from 32 to 80 years old, no association
between methylation levels at individual CpG sites and hand grip
strength (HGS) was found (Bell et al., 2012). Similar results were
observed in another cohort of 1091 individuals: there were no
significant association between individual CpG methylation sites
and HGS or 6 m walking speed (Marioni et al., 2015b).

Satellite Cells
Additional research is required to determine the contribution
of DNA methylation to muscle aging and to the development
of sarcopenia and one promising line of research could be the
investigation of the impact of age-related epigenetic changes
on SM stem cell population, known as satellite cells. These
cells, located between the basal lamina and the muscle fiber
sarcolemma, contribute to muscle tissue turnover, repair and
regeneration (Dumont et al., 2015). Aging is accompanied by
reduced satellite cell pools and by a global decrease in their
functional properties (Renault et al., 2002; Dumont et al., 2015).
This is believed to exacerbate the decline of muscle mass
and strength associated with sarcopenia (Renault et al., 2002).
Epigenetic factors, and specially DNA methylation, are involved
in satellite cells differentiation and activation during early life,
essentially by their capacity to modify gene expression profiles
(Berdasco and Esteller, 2011; Dilworth and Blais, 2011). DNA
methylation could also contribute to the decline of myogenic
capacity of satellite cells during aging. Of particular interest are
the data obtained by Bigot et al. (2015). To our knowledge,
this is the only study performed on human cells in vitro,

specifically dedicated to the SM aging process. In this study, a
general age-related hypermethylation of gene bodies in elderly
muscle stem cells was observed as compared to cells isolated
from young subjects, echoing the data obtained in post-mitotic
skeletal muscle (Zykovich et al., 2014). It was also demonstrated
an impaired capacity from stem cell self-renewal in elderly
muscle (Bigot et al., 2015). This impaired self-renewal was linked
to an increased methylation with age of the SPRY1 (Sprouty
RTK Signaling Antagonist 1) gene, previously described as a
regulator of muscle stem cell quiescence (Shea et al., 2010). The
increased methylation of SPRY1, associated with a reduction in its
transcription, could be responsible of a failure of re-quiescence in
activated stem cells, leading to a decline of their pool in elderly
human muscle (Bigot et al., 2015).

IMPACT OF PHYSICAL ACTIVITY AND
NUTRITION ON DNA METHYLATION
PROFILES OF SKELETAL MUSCLE
AGING

DNA methylation patterns are not fixed but dynamic, and
they can be deeply modulated by environmental factors. They
represent a fundamental molecular link between aging and
environment. Physical activity and diet have been investigated
for their potential influence on DNA methylation profiles
in several tissues (Rönn et al., 2013; Bacalini et al., 2014).
In humans, regular physical activity and healthy eating have
been associated with major health benefits, including a global
reduction in morbidity and mortality (Warburton et al., 2006;
Kopperstad et al., 2017). There is also now growing evidence
indicating that resistance training can improve muscle mass,
muscle strength, functional mobility, and balance in older adults
(Papa et al., 2017). The molecular mechanisms behind the
beneficial effects of physical activity and healthy diet on SM
function are not fully understood, but we can assume that
one of the mechanisms through which they may induce their
beneficial effects could be related to their capacity to modify DNA
methylation patterns.

Physical Activity
Some studies have investigated the impact of physical activity
on DNA methylation status of SM tissue (Table 2). Focusing on
genes involved in metabolism and insulin resistance, two studies
have reported results from gene-targeted analysis (Alibegovic
et al., 2010; Lane et al., 2015). In a cohort of 20 healthy young
men, a period of 9 days of bed rest was associated with a
general increase in DNA methylation of the promoter region
of PPARGC1A (peroxisome proliferator-activated receptor-g
coactivator-1a) gene, with a tendency toward reversibility after
4 weeks of retraining (Alibegovic et al., 2010). Lane et al. (2015)
analyzed the methylation of the gene promoters of COX4I1
(Cytochrome C Oxidase Subunit 4I1) and FABP3 (fatty acid-
binding protein 3) and observed that an acute exercise of 2 h
of cycling was associated with an increase in the methylation of
the gene promoters assessed 4 h later. While these two studies

Frontiers in Physiology | www.frontiersin.org 4 August 2019 | Volume 10 | Article 996

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00996 August 2, 2019 Time: 9:22 # 5

Gensous et al. DNA Methylation and Skeletal Muscle Aging

focused on genes associated with metabolic pathways in a gene-
targeted approach, additional studies have evaluated the effects
of physical activity on SM DNA methylation on a wider level.
Thus, Barrès et al. (2012) evaluated the effects of a single,
acute bout of exercise [completion of a peak pulmonary oxygen
uptake rate (VO2 peak) test] in biopsies of vastus lateralis SM
obtained from 14 healthy, young sedentary individuals. They
observed a global decrease in methylation after acute exercise,
associated with a marked hypomethylation in promoters of genes
known to exert different metabolic and structural functions
in skeletal muscle [PGC-1a (Peroxisome proliferator-activated
receptor gamma coactivator 1 a), TFAM (Transcription Factor A,
Mitochondrial), PDK4 (Pyruvate Dehydrogenase Kinase 4), and
PPAR-d (Peroxisome proliferator-activated receptor d)], in line
with the previous results (Alibegovic et al., 2010). The alteration
in methylation with exercise was dose-dependent [acute exercise
trials at 40% (low-intensity) or 80% (high-intensity) VO2 peak]
and was associated with higher expression levels. One possible
explanation for the decrease in methylation levels after intense
acute exercise could be related to the processes of damage and
repair: exercise can induce SM damage (Clarkson and Hubal,
2002) and it was previously observed that the mechanisms of
repair established after DNA damage could modify the DNA
methylation patterns (Russo et al., 2016). However, to our
knowledge, this hypothesis has never been directly tested in SM
exercise-induced damage.

While Barrès et al. (2012) investigated the effects of acute
exercise, similar results were reported for multi-session training
(Nitert et al., 2012; Lindholm et al., 2014; Rowlands et al., 2014;
Seaborne et al., 2018). Nitert et al. (2012) observed that 6 months
of supervised moderate aerobic exercise (3 h per week) changed
the methylation levels of 134 genes in SM of men with or without
familial history of type 2 diabetes. Most of the genes differentially
methylated after exercise (115 out of 134) showed a pattern
of decrease in methylation levels. These genes were mostly
involved in retinol metabolism, calcium-signaling pathway, and
starch and sucrose metabolism (Nitert et al., 2012). In another
study, chronic endurance training was also associated with a
global decrease in methylation levels and with specific epigenetic
modifications in genes involved in lipid and glucose processing
pathways (Rowlands et al., 2014). More recently, Lindholm
et al. (2014) performed an EWAS in a well-controlled human
interventional study on 23 healthy young volunteers, evaluating
the impact of a long-term (3 months) endurance exercise
training (45 min, four sessions per week). To limit potential
confounding factors, authors used an innovative approach and
obtained an intra-individual control, training only one leg per
subject. Endurance training reshaped the epigenome and 4919
CpG sites across the genome were differentially methylated
in the trained leg (Lindholm et al., 2014). Ontology analysis
revealed an enrichment in genes associated with structural
remodeling of the muscle and glucose metabolism (CpG
sites with increased methylation), and with inflammatory and
immunological processes or transcriptional regulation (CpG sites
with decreased methylation) (Lindholm et al., 2014). Recently,
it has also been suggested that lifelong physical activity was
able to induce hypomethylation in promoters of genes involved

in energy metabolism, myogenesis or oxidative stress resistance
(Sailani et al., 2019). Finally, in agreement with the previously
mentioned studies which observed a decrease in methylation
levels after exercise, Seaborne et al. (2018) identified also
hypomethylation across the genome after training. Interestingly,
authors measured DNA methylation levels at four different
stages in the same eight previously untrained male participants:
at baseline and after 7 weeks of resistance training (loading),
but also after cessation of resistance exercise (unloading) and
return to 7 weeks of resistance training (reloading). Resistance
exercise at high intensity induced muscle hypertrophy and
significantly modified the methylation levels of 17 365 CpG
sites. Importantly, changes in DNA methylation patterns (and
specially hypomethylation) were retained even when exercise
ceased and following reloading, authors observed an increase in
the number of epigenetically modified sites (27 155 CpG sites)
and an enhanced number of hypomethylated ones. Combining
the epigenomic data with transcriptomic ones, the authors
recently observed a significant overlap between genes harboring
differential methylation levels after acute or chronic exercise and
genes differentially expressed in these conditions (Turner et al.,
2019). They identified particularly five genes (FLNB, MYH9,
SRGAP1, SRGN, and ZMIZ1) with persistent hypomethylation
after exercise associated with an increased gene expression. These
two recent studies show that exercise-induced epigenetic changes
can be retained, and that DNA methylation could underpin the
capacity of SM to retain information into later life and to respond
differently to previously encountered stimuli. This concept was
referred to as SM “epi”-memory (Sharples et al., 2016).

Nutrition
To our knowledge, only one study, focused on the contribution
to the development of metabolic diseases, has evaluated the effect
of diet on genome-wide DNA methylation patterns in human SM
(Jacobsen et al., 2012). Participants of this study were 21 healthy
young men, subjected to a short-term high-fat overfeeding
diet (HFO) (50% extra calories distributed as 60% fat, 32.5%
carbohydrate, and 7.5% protein). Muscle biopsies were obtained
after the intervention (5 days of HFO) and after a control
diet, in a randomized crossover setting, and were analyzed with
the Illumina R© Infinium Bead Array 27K. It was observed that
HFO induced widespread DNA methylation changes in SM,
affecting 6 508 genes. These changes were only partly and non-
significantly reversed when the HFO was switched back to the
control diet for 6–8 weeks.

USE OF EPIGENETIC CLOCKS IN THE
ASSESSMENT OF PHYSICAL
FUNCTIONING AND SARCOPENIA IN
OLDER INDIVIDUALS

One critical area of research in the field of sarcopenia is the
identification of potential biomarkers, especially for the early
selection of patients at risk and the personalized evaluation
of the effectiveness of prevention and treatment measures
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TABLE 2 | DNA methylation profiles of skeletal muscle in relation to physical activity.

Author Year Number
of
subjects

Age (years) Females,
n (%)

Location Population Physical
intervention

Tissue for DNA
methylation
analysis

DNA
methylation
analysis

Main result

Candidate gene analysis

Alibegovic
et al.

2010 20 Mean = 25.0
(SD = 1)

0 (0%) Denmark Healthy subjects 9 days of bed
rest followed by
4 weeks of
retraining

Skeletal muscle Bisulfite
sequencing

Increase in DNA
methylation of the promoter
region of PPARGC1A after
bed rest, partially reversed
by 4 weeks of retraining

Lane et al. 2015 7 NA 0 (0%) Sweden Competitive
endurance-trained
cyclists

120 min
steady-state
ride

Skeletal muscle Bisulfite
sequencing

Acute exercise of 2 h of
cycling associated with an
increase in the methylation
of the gene promoters
COX4I1 and FABP3

Genome-wide analysis

Nitert et al. 2012 28 Mean = 37.5 0 (0%) Sweden Healthy subjects 6 months of
exercise

Skeletal muscle MeDIP-Chip
analysis

Methylation levels of 134
genes in SM changed by
6 months of supervised
moderate aerobic exercise

Barrès et al. 2012 14 Mean age = 25
(SD = 1)

NA Sweden Healthy subjects Acute exercise Skeletal muscle LUMA
(luminometric
methylation
assay) and
methylated
DNA Immuno-
precitation
(MeDIP)
followed by
quantitative
PCR

Global methylation
decreased after acute
exercise. Modification of
promoter methylation of
exercise-responsive genes
in a dose-dependent
manner

Rowlands
et al.

2014 17 Mean age = 49
(SD = 5)

13
(76.5%)

Polynesia Type 2 diabetes obese
patients

Resistance
training or
endurance
training for
16 weeks

Skeletal muscle Illumina
Methylation
450K

Global decrease in
methylation levels with
chronic endurance training.
Specific modifications in
genes involved in lipid and
glucose processing
pathways

Lindholm
et al.

2014 23 Mean = 27.0
(SD = 0.79)

11
(47.8%)

Sweden Healthy subjects 3 months
training (only
one leg)

Skeletal muscle Illumina
Methylation
450K

Endurance training
reshaped the epigenome.
4919 CpG sites
differentially methylated in
the trained leg

(Continued)
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(Curcio et al., 2016). Until now, a valid and unique biomarker
of sarcopenia has not yet been identified, but molecular
mechanisms associated with the aging process could provide
effective ones. During the past years, there has been considerable
interest in epigenetic biomarkers of aging, also referred to as
epigenetic clocks. Epigenetic clocks are mathematical models
which combine weighted averages of methylation levels at
specific CpG sites, in order to estimate the biological age, also
named epigenetic age or DNA methylation (DNAm) age, of
an individual (Field et al., 2018). The epigenetic age predicted
according to the different models developed so far is strongly
associated with chronological age in several independent studies.
The discrepancy between DNAm age and chronological age
has been proposed as an index of accelerated or decelerated
aging. Epigenetic biomarkers have outperformed other molecular
biomarkers in predicting age, and are considered as the most
promising biomarkers of biological age (Jylhävä et al., 2017).
One of the most important characteristic of the Horvath’s and
Hannum’s clocks (Horvath, 2013; Hannum et al., 2013), which
are the most popular epigenetic age predictors, is their ability
to predict all-cause mortality independent of classic risk factors
(Marioni et al., 2015a; Chen et al., 2016; Christiansen et al.,
2016; Perna et al., 2016). Thus, individuals whose clock measure
is 5 years above their chronological age have a 21% increase
mortality risk (Marioni et al., 2015a). Compelling evidence has
also accumulated that epigenetic age may be a powerful predictor
for age-related diseases and so far, many phenotypes, such as
obesity (Horvath et al., 2014; Nevalainen et al., 2017), menopause
(Levine et al., 2016), or Parkinson disease for example (Horvath
and Ritz, 2015), have been linked to the epigenetic age predictors
(Horvath and Raj, 2018). Epigenetic clocks could identify subjects
who age at faster rates compared to others and who are therefore
more at risk to develop adverse effects of aging, such as sarcopenia
or frailty. Frailty is defined as a state of increased vulnerability,
that results from an age-related decline in reserve and function
across multiple physiologic systems (Xue, 2011). Sarcopenia and
frailty are both associated with negative health outcomes and
sarcopenia is considered as a major risk factor for frailty (Cesari
et al., 2014). The biological clocks may shed light on mechanisms
behind accelerated decline in physical functioning associated
with sarcopenia and frailty and can represent a potential tool
able to track individual variation in physical function with
aging. Potential relationships between epigenetic age acceleration
measures and frailty-related phenotypes have been investigated
and the results obtained are summarized in the next paragraphs.

So far, five studies have examined associations between
measures of epigenetic age acceleration (AA) in blood and
fitness measures of aging (Marioni et al., 2015b; Quach et al.,
2017; Simpkin et al., 2017; Gale et al., 2018a; Sillanpää et al.,
2018; Table 3). Marioni et al. (2015b) were the first to
examine cross-sectional and longitudinal associations between
the epigenetic clock (Horvath’s and Hannum’s predictors) with
walking speed and HGS. At baseline, a higher epigenetic AA
was significantly associated with a weaker grip strength, while
the association with walking speed was non-significant. Walking
speed and HGS declined moderately over time but epigenetic
AA did not correlate with changes over 6 years of follow-up
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TABLE 3 | Epigenetic biomarkers of aging and markers of physical fitness.

Author Year Number of
subjects

Age (years) Females, n
(%)

Location Population Measure of
physical
functioning

Tissue for DNA
methylation
analysis

DNA methylation
analysis

Main result

Physical functioning

Marioni
et al.

2015b 1091 Mean = 69.5
(SD = 0.83)

543 (49.8%) Scotland Lothian Birth Cohort
1936 (individuals
born in 1936 who
were
living in the Lothian
area of Scotland)

Walking speed.
HGS

Whole blood Illumina Methylation
450K.
Horvath’s clock.

Cross-sectional study:
Higher AA significantly
associated with weaker
HGS Longitudinal study:
No correlation between AA
and changes over 6 years
of follow-up

Simpkin
et al.

2017 790 Mean = 53.4
(SD = 0.16)

790 (100%) United Kingdom MRC National Survey
of Health and
Development
(NSHD). Individuals
born in the same
week of March 1946

HGS. Standing
balance time.
Chair rise time

Buccal cell
(n = 790) and
matched blood
tissue (n = 152)

Illumina Methylation
450K.
Horvath’s clock.

Cross-sectional study: No
association between
physical capability at age
53 and epigenetic AA
Longitudinal study: For a
1-year increase in AA,
decrease in HGS by an
additional 0.42 kg from age
53 to 60–64

Quach
et al.

2017 WHI
sample:
4173.
InCHIANTI
study: 402

WHI study:
Mean = 64
(SD = 7.1)
InCHIANTI study:
Mean = 71
(SD = 16)

WHI study: 4173
(100%). InCHIANTI
study: 229 (56%)

WHI study:
United States.
InCHIANTI study:
Italy.

Post-menopausal
women

Self-reported
physical activity

Whole blood Illumina Methylation
450K.
Horvath’s and
Hannum’s clocks.
IEAA. EEAA.

Weak correlation between
greater EEAA and being
physically inactive

Sillanpää
et al.

2018 48 Mean = 61.3
(SD = 5.9)

48 (100%) Finland Monozygotic
Caucasian twin pairs.
Participants originate
from two studies
[SAWEs (n = 15 pairs)
and FITSA (n = 9
pairs)]

HGS. Knee
extension
strength. 10 m
maximal walking
speed test

White blood cells Illumina Methylation
450K.
Horvath’s clock.

Increased epigenetic AA
associated with lower HGS

Gale et al. 2018a 248 Mean = 79.0
(SD = 0.45)

122 (47.1%) Scotland Lothian Birth Cohort
1936 (individuals
born in 1936 who
were
living in the Lothian
area of Scotland)

Percent of daily
time spent
sedentary.
Number of
sit-to-stand
transitions

Whole blood Illumina Methylation
450K.
Horvath’s and
Hannum’s clocks.
IEAA. EEAA.

EEAA or IEAA not
associated with objectively
measured sedentary or
walking behavior

Frailty

Breitling
et al.

2016 1820 Dataset 1:
Mean = 62.1
(SD = 6.5) Dataset
2: Mean = 63.0
(SD = 6.7)

Dataset 1: 484
(50.0%). Dataset 2:
464 (54.5%)

Germany ESTHER study:
observational study
of the elderly general
population of
Saarland

Frailty Index
based on the
accumulation of
deficits

Whole blood Illumina Methylation
450K.
Horvath’s clock.

Greater epigenetic AA
associated with frailty For a
one-year increase in
epigenetic AA, frailty index
increased by about 0.25%
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(Marioni et al., 2015b). It should be noted that not all participants
had DNA methylation data available in the subsequent waves of
analysis after baseline, possibly contributing to limit the statistical
power to test the associations between changes in methylation age
and changes in fitness. Simpkin et al. (2017) reported different
results: they evaluated the associations between epigenetic AA at
age 53 and changes in objective measures of physical performance
(HGS, standing balance time and chair rise speed) from ages 53 to
60–64. In this study, cross-sectional data revelated no association
between physical performance at age 53 and epigenetic AA,
while an association between AA and a greater decrease in
HGS in British females aged between 53 and 60–64 was noted.
For a one-year increase in epigenetic AA, HGS decreased by
an additional 0.42 kg. No association was found with standing
balance time or chair rise speed (Simpkin et al., 2017). In a
cohort of 48 monozygotic twin sisters, Sillanpää et al. (2018)
observed that an increased epigenetic AA was also associated with
a lower HGS, but not with knee extension strength or walking
speed. Lately, refinements in Horvath’s and Hannum’s predictors,
termed extrinsic and intrinsic epigenetic AA (EEAA and IEAA,
respectively), which take into account variations in the cellular
composition (cell counts) when measuring DNA methylation
from whole blood, have been developed. IEAA is independent
of age-related changes in blood cell composition, while EEAA
incorporates them. Quach et al. (2017) have investigated the
relationship between these two newly developed estimates of
biological age and levels of physical activity (categorized as
sedentary or active). They analyzed cross-sectional data from
4 173 postmenopausal female participants from the Women’s
Health Initiative and 402 participants from an Italian population.
They found a weak correlation between being biologically older
(greater EEAA) and being physically inactive (Quach et al., 2017).
It should be noted that the data on physical activity levels were
self-reported. When sedentary and walking behavior in older
people were objectively measured over 7 days using an activPAL
activity monitor, no convincing evidence was observed on a
possible association between biological age, estimated by IEEA or
EEAA, and the amount of time participants spent being sedentary
of physically active (Gale et al., 2018a).

Two studies have specifically evaluated the relationship
between the epigenetic AA in blood and frailty (Table 3) and
their results were globally consistent (Breitling et al., 2016; Gale
et al., 2018b). In a cohort of 1 820 older adults, Breitling et al.
(2016) observed that a greater epigenetic AA was associated
with frailty, measured by a deficit accumulation-based approach,
even after accounting for several risk factors and blood cell
counts. For a one-year increase in epigenetic AA, the frailty index
increased by about 0.25%. Two years later, Gale et al. (2018b)
reported the results from the Lothian Birth Cohort 1936. They
observed that having a greater EEAA was associated with an
increased risk of being frail, as defined by Fried criteria (Fried
et al., 2001). For a one-year increase in EEAA, the risk ratio for
being frail compared to being not frail was 1.06 (CI 1.02–1.10).
No associations were found with pre-frail status, or with IEEA
measures (Gale et al., 2018b).

Interestingly, there is an overlap between some CpG sites
included in the epigenetic signature of muscle aging published
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by Zykovich et al. (2014) and some CpG sites included in
Hannum’s clock (Hannum et al., 2013). Over the 500 CpG sites
able to distinguish SM samples from old or young subjects,
nine are also present in the epigenetic age predictor. Among
them, three CpG sites related to FHL2 (cg22454769, cg24079702)
and ELOVL2 (cg16867657) genes were previously identified
as strongly correlated with age in several tissues (Garagnani
et al., 2012; Bacalini et al., 2017; Spólnicka et al., 2018),
while two other ones (cg10501210 and cg07553761 associated
with genes C1orf132 and TRIM59, respectively) were also
previously integrated in a forensic age predictor (Spólnicka
et al., 2018). These CpG sites have a high age prediction
accuracy and are poorly affected by an eventual disease status
(Spólnicka et al., 2018).

LIMITATIONS AND FUTURE DIRECTIONS

We presented here a focused review of the available experimental
evidences linking DNA methylation and SM aging in humans,
as well as the impact of exercise, acute or long-term, and
diet (Figure 1). It is evident that current knowledge in this
field is still sparse and that future research is imperative
to further better elucidate the connection between DNA
methylation remodeling and SM aging in humans. We believe
that there is a need to pursue research in this field. In the
past years, a wealth of studies, based notably on technological
innovations such as microarrays or high-throughput sequencing,

has clearly demonstrated a powerful link between complex
epigenetic changes and aging, and epigenetic alterations are
now doubtless acknowledged as a crucial hallmark of aging
(López-Otín et al., 2013; Kennedy et al., 2014). Moreover,
epigenetics, modulated by external factors, are now recognized
as a fundamental link between environment and aging, and
DNA methylation is an appealing target for therapeutic
interventions. Given this particular importance, it is clearly
pertinent to better decipher the DNA methylation changes
occurring with age in SM.

Moreover, the characterization of age-related DNA
methylation changes has allowed, in the past years, the
identification of epigenetic markers of biological age (Hannum
et al., 2013; Horvath, 2013; Levine et al., 2018), which are
currently the most promising biomarkers of aging and life
expectancy and may increase our understanding on human
aging (Horvath and Raj, 2018). Literature data presented in
the above sections provide some evidence suggesting that
epigenetic AA could be a marker of physical performance in
older individuals, associated specially with frailty and HGS. HGS
has already proven its utility in clinical practice and has been
associated with mortality (Cooper et al., 2010; Ling et al., 2010).
The concomitant assessment of epigenetic age, in a minimally
invasive manner in routinely obtained blood, could complement
the clinical assessment of physical performance and being the
starting point of a “biological geriatric assessment” (Tuttle and
Maier, 2018), in order to track individual variation in physical
function with aging.

FIGURE 1 | Overview of DNA methylation changes occuring in skeletal muscle during aging, with influence of physical activity and nutrition.
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It is sure that our knowledge in the field of DNA methylation
and SM aging is still limited and that much has to be done,
in particular to overcome some important limitations. One of
the main limitations of this topic is that the available studies
are mostly descriptive, considering only directional changes
of DNA methylation and lack mechanistic insights. In this
context, it is hard to conclude to which extent the observed
DNA methylation changes in SM are a cause or a consequence
of the aging process. The age-related changes in epigenetic
patterns could contribute to aging by affecting genomic stability
and gene expression regulation. The contribution of the age-
related changes in DNA methylation to transcriptomic changes
is highly dependent on the genomic context, as promoter
methylation is usually associated with gene silencing while
DNA methylation changes occurring at other sites have a
more variable impact on gene transcription (Jones, 2012).
Regarding the influence of physical activity and diet, the
available studies were mainly focused on the possible influence
between epigenetic modifications, lifestyle factors and genes
involved in metabolic adaptation and were not specifically
designed to evaluate the aging process. Except for the study
recently published by Sailani et al. (2019), they were all
performed in young, healthy, disease-free subjects and to date,
to our knowledge, no interventional study has examined the
effects of physical activity or nutrition on DNA methylation
profiles of SM in elderly, or link the observed epigenetic
changes to phenotypic changes and health-related outcomes
following training.

Additionally, just as other studies that have analyzed
the association between epigenetic changes and age-related
phenotypes, some of the DNA methylation studies mentioned
in the previous sections on muscle aging and physical
functioning have been carried out on whole blood samples,
comprised of multiple cell types. Cell composition of the
analyzed sample is a well-known source of heterogeneity in
DNA methylation studies (Ziller et al., 2013) and some age-
related DNA methylation changes are tissue-specific (Slieker
et al., 2018). Whole blood is the most accessible source
of samples in humans and the invasive surgical procedure
required to obtain SM is frequently considered as a limiting
factor for the study of this tissue in humans. However,
it should be kept in mind that the use of whole blood
could represent a limit to infer mechanistic insights from
the data obtained and renders a direct comparison of these
studies more difficult.

Differences between gender balance of the subjects
included could add another layer of difficulty to compare
between the different studies. It was previously reported
substantial differences in gene expression or protein-
protein interactions in human SM according to gender
during aging (Roth et al., 2002; Welle et al., 2008; Liu et al.,
2010, 2013; Shafiee et al., 2018), and a recently published
study also observed for the first time differences in DNA
methylation between myoblasts and myotubes of males and
females (Davegårdh et al., 2019).

Regarding epigenetic biomarkers of aging, some limitations
exist too, and they should be overcome before epigenetic

clocks can be used routinely for physical functioning and
sarcopenia. Firstly, the size of the observed associations
is small, and the cross-sectional nature of the majority
of the published studies does not allow to draw firm
conclusions on predictive properties of the clocks on
sarcopenia or frailty incidence. Moreover, the actual high
cost of these markers seems to be poorly adapted to
clinical application.

The limited number of studies available highlights how
young this field is, but an increasing number of papers are
being published really recently (Sailani et al., 2019; Turner
et al., 2019) and the future holds exciting promises. Further
investigation is warranted and should address the above-
mentioned limitations. The functional impact of the age-related
methylation changes in SM must be studied. Moreover, DNA
methylation patterns of sarcopenic SM should be evaluated.
Indeed, individuals included in the studies published so far
are predominantly healthy and disease-free, and it would
be of great interest to compare the DNA methylomes of
sarcopenic and non-sarcopenic SM in older adults, in order
to identify targets that could differ from healthy muscle aging.
Additionally, the tissue, or even maybe the fiber, specificity
of the age-associated DNA methylation changes deserves
deeper investigation.

Regarding the impact of physical activity and nutrition, future
studies are required to evaluate if training or diet are able to
modify DNA methylation in the specific population of elderly
and if these lifestyle factors are able to reverse the age-related
DNA methylation signatures reported during muscle aging. It
remains also to be evaluated the retainability/reversibility rates
of these processes and to what extend the exercise- or diet-
induced methylation changes are involved in the beneficial effects
of training and diet.

Finally, regarding the epigenetic biomarkers of aging,
large powered longitudinal human studies, with several
measurements at different time points, are required. Many
developments of the epigenetic clocks are anticipated in
the coming years, as new epigenetic biomarkers of aging
are constantly emerging and could be interesting tools
for physical functioning. For example, a new interesting
epigenetic biomarker, termed DNAm PhenoAge, was recently
published with the intention to better characterize lifespan
and healthspan (Levine et al., 2018). This model, based on
the replacement of chronological age with a “phenotypic
age” constructed with a weighted average of 10 clinical
characteristics, outperformed the previous versions of the clocks
in terms of prediction of all-cause mortality and age-related
morbidity, and appeared related to exercise, dietary habits
and physical performance (Levine et al., 2018). This model
appears to be an extremely interesting target to evaluate in
the years to come.

CONCLUSION

Epigenetic changes have an important influence on
the aging process and they represent one crucial
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hallmark of aging (López-Otín et al., 2013; Kennedy
et al., 2014). Our current knowledge on how age-
associated DNA methylation changes are related to
muscle aging is still sparse. Further research is needed
to disentangle the role of epigenetics in muscle aging,
and to investigate how skeletal muscle methylome can
change in response to exercise or dietary interventions.
A proper understanding of the pathways involved
in muscle aging and sarcopenia is required to pave
the way for the development of new strategies for
diagnosis and treatment of the deleterious effects of
muscle loss with age.
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