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Movement coordination depends on directing our limbs to the right place and in the
right time. Movement science can study this central requirement in the Fitts task that
asks participants to touch each of two targets in alternation, as accurately and as fast
as they can. The Fitts task is an experimental attempt to focus on how the movement
system balances its attention to speed and to accuracy. This balance in the Fitts task
exhibits a hierarchical organization according to which finer details (e.g., kinematics of
single sweeps from one target to the other) change with relatively broader constraints of
task parameters (e.g., distance between targets and width of targets). The present work
seeks to test the hypothesis that this hierarchical organization of movement coordination
reflects a multifractal tensegrity in which non-linear interactions across scale support
stability. We collected movement series data during a easy variant of the Fitts task to
apply just such a multifractal analysis with surrogate comparison to allow clearer test
of non-linear interactions across scale. Furthermore, we test the role of visual feedback
both in potential and in fact, i.e., by manipulating both whether experimenters instructed
participants that they might potentially have to close their eyes during the task and
whether participants actually closed their eyes halfway through the task. We predict that
(1) non-linear interactions across scales in hand movement series will produce variability
that will actually stabilize aiming in the Fitts task, reducing standard deviation of target
contacts; (2) non-linear interactions across scales in head sway will stabilize aiming
following the actual closing eyes; and (3) non-linear interactions across scales in head
sway and in hand movements will interact to support stabilizing effects of expectation
about closing eyes. In sum, this work attempts to make the case that the multifractal-
tensegrity hypothesis supports more accurate aiming behavior in the Fitts task.
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INTRODUCTION

One of the central and fundamental capacities of the typically
developing human movement system is to extend a limb toward
a target. Very much of movement coordination is the timely
movement of one limb from one target to the next. So, it is no
mistake that the Fitts (1954) task remains a central paradigm
of movement-science research: the Fitts task asks participants
to make contact with one of two targets in alternation, swiftly
and accurately, and in so doing, it epitomizes the challenge of
movement coordination. The primary goal of this manuscript is
to examine this task in terms of hand contacts with the target.
This manuscript is not an attempt to document or explain Fitts
law as in Meyer et al. (1988). We use the Fitts task in a low-
difficulty setting merely to measure a simple, low-stakes case of
goal-directed behavior.

In this low-stakes adaptation of the Fitts task, we hope to show
five points of evidence about the relatively unconstrained use of
vision for planning tactile interaction with a task environment
over time. First, this simple task of making manual contact with
targets in alternation depends on non-linear interactions over
time across the body. Second, we know the first point because
multiple parts of the body generate multifractal fluctuations
during this task. Third, across progressively more cycles of
alternation, stronger multifractal evidence of non-linearity at the
hand predicts greater stability (i.e., lower standard deviation) in
contact with targets. Fourth, again, across progressively more
cycles of alternation, stronger multifractal evidence of non-
linearity at the head supports use of visual information for
making more stable contact with the targets - both the use
of current visual information with eyes open and the use of
past visual information after closing the eyes. Fifth and lastly,
anticipating a loss of visual information stabilizes contacts with
the targets, but this stabilizing effect of anticipation depends on
the mixture multifractal evidence of non-linearity both at the
head and the hand.

A key aspect of movement coordination that the Fitts task
epitomizes is hierarchical organization. The Fitts task requires
a long run of movements through repeated cycles. The Fitts
law relates movement times with a difficulty index defined as
between-target distance divided by target width (Fitts, 1954).
So, the Fitts task prompts variations of movement amplitude
between targets and variations of accuracy within targets. Within
this long run of cyclical movements, individual cycles show a
finer pattern of accelerations and decelerations. As the movement
system lands its limb on one target or the other, it makes use
of varying degrees of correction. Besides the obvious constraints
of the difficulty index on motor kinematics, Wijnants et al.
(2012) showed in a manual Fitts task that the parameters of
the task changed how stability in target contacts spread across
time, from one cycle to the next. The evidence for their claim
was a variety of fractal fluctuations, with different degrees of
fractal structure under different task settings. Hence, even the
simple demands of the Fitts task show how global constraints can
produce changes in finer-scaled movement dynamics. A fractally
scaled measurement is one that exhibits a scale-invariant decay
of variability, with short- or small-scale behaviors showing close

correlation with the longer-range or more global constraints of
a task. So, multiple fractal results from measured movement
performance offer a glimpse the movement system’s hierarchy of
cross-scale interactions.

This hierarchical form and the consonant fractal geometry
have rich potential for supporting the movement system’s
solution of vast challenges in movement coordination. The
multifractal tensegrity hypothesis makes hierarchically organized
interactions central to the explanation of dexterous behavior.
Specifically, this perspective suggests that the interaction across
scales is the hallmark of dexterity. It appeals to the physiological
evidence that the human movement system embodies a balance
between tensions and compressions across many nested scales,
e.g., cellular, tissue, organ, synergy, and organism levels of
analysis (Turvey and Fonseca, 2014). Outside of this perspective,
evidence of multifractal fluctuations in various physiological or
behavioral measures often appears only as an exotic by-product
in the residual term of mechanistic or anatomical models of the
movement system (Chen et al., 1997; Slifkin and Eder, 2012). That
is to say, theories of movement that emphasize anatomical motor
components more than softly-assembled interactions might
recognize the multifractal evidence, but they might consider it
only “noise” independent from the underlying mechanism or as
an artifact of the underlying mechanism.

The multifractal tensegrity hypothesis takes a different view
and makes multifractal geometry part of the central hypotheses
about what drives motor coordination. It begins from the
premise of expecting an interaction-driven architecture across
all scales of the movement system, and it takes the expectation
of multifractal structure as a logical prediction. According to
this interaction-driven architecture, the aforementioned tension-
compression balance reflects an architectural/morphological
principle of “tensegrity.” The term “tensegrity” is a neologism
short for “tensional integrity.” This tensional integrity certainly
permits the distinction of anatomically distinct components.
However, this tensional integrity entails that components hang
together in a tightly-knit network relationship that allows local
perturbations to spread globally. Thus, tensegrity allows global
configuration to absorb and constrain minor local perturbation
and to translate larger local perturbations into new global
stabilities (Ingber, 2006). A major entailment of tensegrity
principles is fractal and, more generally, multifractal geometry.
The nested tension-compression balance generates fractal shapes
in a purely symmetric or unbounded system (e.g., nested
icosahedra extending in all directions). Without any bounds or
constraints on this abstract requirement for balancing tension
with compression, there is no pressure for any deviation from
the same power-law to govern the entire system. However,
as soon as we embed this system into a context or add any
constraints, the constraints produce local deviations from the
originally abstract uniformity. These constraint-driven local
deviations press the tensegrity system into embodying a variety
of power-law forms in which the deviations from the original
requirement to balance tensions and compressions manifest in
deviations from a single power-law description throughout. Put
more simply, the deviations produced by constraints produce
deviations in how cross-scale interactions generate the power-law
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relations. The constraint of any asymmetries or finite bounds
(e.g., the skin surrounding the movement system or the size
and shape of a task environment) will turn this originally fractal
tensegrity into a multifractal form (Gouyet, 1996; Skelton and de
Oliveira, 2009). Crucially, the heart of the multifractal tensegrity
hypothesis is that estimates of multifractal evidence should speak
directly to the form of multi-scaled tension-and-compression
balance (e.g., Mandelbrot, 1974; Schertzer and Lovejoy, 1985;
Halsey et al., 1986).

The multifractal tensegrity hypothesis has shown early
promise across a wide range of scientific programs. First,
there has been broad evidence that human physiology exhibits
multifractal fluctuations suggesting cascade-driven dynamics
(Ivanov et al.,, 1999, 2001, 2002, 2004; Amaral et al., 2001).
Second, the formal structure of tensegrity principles has ready
use in in biomedical engineering projects alongside the explicit
intention to design structures with the right morphology (e.g.,
again, nested icosahedra) to mesh with existing physiology of
a movement system (e.g., Chambliss et al., 2013). Third, and
more to the present work’s point, the statistical-geometrical
signature of multifractal geometry allows us to recognize those
formal structures in the biological, behavioral “wild.” The present
work features tensegrity as a reason to expect that multifractal
patterning of movement variability is going to be a powerful
predictor of dexterous behaviors (Kelty-Stephen, 2018). What
follows below will take up multifractal geometry almost to
the exclusion of using the word “tensegrity,” but we plant the
multifractal-tensegrity hypothesis flag here at the outset to make
clear that the tensegrity principles at play in the movement system
implicate multifractal geometry as a privileged window on the
tensegrity principles supporting dexterous behavior, specifically
for this article, in the Fitts task. In this multifractal-tensegrity
view, dexterous behavior assembles itself at any constituent level
of this movement system as a consequence of explicitly non-
linear cross-scale interactions. What Wijnants et al. (2012) found
regarding the Fitts task aligned with this perspective, but it
remains to actually test that non-linear interactions across scale
are actually good for stabilizing task performance.

The present work aims to tailor empirical Fitts-task research
to clarify specifically the relevance of the multifractal-tensegrity
perspective. A general prediction that we hope to support is
that the non-linear interactions across scale in the movement
system support more accurate, more stable, and less variable
achievement of the task. We use measured time series of
movement variability and submit them to multifractal analysis
to assess these non-linear interactions across scale. The idea
that movement variability can promote greater stability might
initially seem counterintuitive. However, it grows from the
two sequential points: first, that movement variability is not
equivalent to error and second, that movement variability
might sooner afford ongoing exploration and corrections
to ongoing sensory and kinesthetic information. That is,
movement variability serves to enrich the movement-system’s
relationships with the task environment. Hence, by enriching
this relationship, more movement variability can stabilize
performance (Stoffregen, 1985, 1986; Stoffregen and Riccio, 1990;
Riccio, 1993; Stoftregen et al., 2005; Stergiou and Decker, 2011;

Sternad, 2018). The proposed tensegrity architecture of the
movement system suggests that multifractal estimates should
best portray the variability expected to promote stability. We
will quantify the movement system at the head and at the
hand as it moves the hand between targets in alternation
from target to target over 10 min blocks. We expect that
the statistical multifractal signatures of non-linearity estimated
from measurement movement will predict more focused, less
variable hand positions at target contacts. Testing this prediction
will involve two changes: one data-analysis change and one
methodological change.

The data-analysis change will be the use of multifractal
analysis in concert with surrogate testing. Using multifractal
analysis to quantify the strength of non-linear cross-scale
interactions requires comparison with surrogate-data time
series (Ihlen and Vereijken, 2010). We expect that non-linear
interactions across scales should support and indeed stabilize
aiming and so reduce aiming variability in the contacts with the
Fitts-task targets. Given the tensegrity structure of the movement
system, multifractal geometry should have a privileged ability to
quantify this variability. For instance, we know that variety of
power-law scaling of trial-by-trial movement variability supports
more accurate trial-by-trial use of perceptual information
(Stephen et al., 2010; Stephen and Hajnal, 2011; Kelty-Stephen
and Dixon, 2014). The difference here is that we can actually
test whether this non-linear cross-scale interaction explicitly
predicts this accuracy by testing whether the standardized
marginal difference between “multifractality of original series”
and “multifractality of surrogate series” predicts less aiming
variability and so greater precision in the Fitts task. So, what
we are implicating is, literally, a t-statistic: “multifractality of
original series” minus “multifractality of surrogate series” divided
by the standard error of surrogate multifractality. We will call this
t-statistic tpp for short to abbreviate “t statistic for multifractal
difference between original series and surrogate data.” The
linear standard represented by the surrogate merely allows us
to estimate multifractal structure as if there were no non-
linear interactions. We aim to make the very specific prediction
that standard deviation in target contacts in a Fitts task varies
inversely with non-linearity fyp.

The methodological change is to have participants actually
close their eyes in the middle of the task (i.e., between two
equal-length blocks of the task) and even to give participants
the expectation at the outset of potentially having to close
their eyes. This change is to give force to speculation elsewhere
about the role of visual feedback. Specifically, this manipulation
would interrupt any visual information that might operate as an
independent component exerting mechanistic effects producing
non-fractal fluctuations (e.g., Slifkin and Eder, 2014). However,
through the perspective of expecting a multifractal tensegrity,
the manipulation of having eyes close during the task would
further the interactions across scale. Specifically, under these
conditions, vision serves two roles: first, at a short time scale,
using current visual information for current behavior and,
second, over a longer time scale, using visual information
to anticipate the potential loss of visual information. This
work would build on previous research that has shown that
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multifractality predicts the use of current visual information as
well as the use of past visual information with eyes closed, both
through sequential monofractal analyses (Stephen et al., 2010;
Stephen and Hajnal, 2011; Kelty-Stephen and Dixon, 2014) as
well as through f-statistic fyp comparing series multifractality
to surrogate multifractality (i.e., non-linear interaction across
scales) in head sway (Carver et al., 2017). The present work tests
whether multifractal non-linearity in head-sway can moderate
the short-scale effect of closing eyes and moderate the longer-
range effect of expectation.

Interactions across time scales should mean that visual
information available shortly before closing eyes may persist
longer in participants with greater multifractal non-linearity
of head sway, and so although closing eyes should result in
greater aiming variability, multifractal non-linearity of head sway
may reduce aiming variability following the actual closing of
eyes. Previous research into anticipation has already indicated
relevance of multifractal evidence of non-linear interactions in
supporting coordination of several events into an organized,
anticipatory response under uncertainty (Stephen and Dixon,
2011; Marmelat and Delignieres, 2012; Torre et al., 2013;
Delignieres and Marmelat, 2014; Almurad et al., 2017a,b). Hence,
we expect to leverage the known possibility that multifractality
of bodily movement supports anticipation. Giving participants
the expectation of potentially closing eyes at the outset might
prompt an anticipatory mixing of visual information with
haptic information about hand behavior. So, we expect that the
interaction of fy(r at head and hand should moderate the effect of
expectation in reducing aiming variability.

The present work situated the Fitts task firmly in the
foundation of multifractal tensegrity and tested whether the
strength of multifractal signatures of non-linear cross-scale
interactions actually support greater accuracy and so less
aiming variability. We tested three hypothesized effects that
multifractal-indicated non-linearity #\r will have in stabilizing
accuracy (i.e., diminishing variability in the hand’s target contacts
with each cycle) in the Fitts tasks: (1) greater fyr in the
hand predicting greater accuracy (lower standard deviation)
in general, (2) greater tyr at the head predicting greater
accuracy (lower standard deviation) following the closing of
eyes, and (3) the interaction of greater fyr of hand and of
head predicting greater aiming accuracy under the expectation
of closing one’s eyes.

MATERIALS AND METHODS

Participants

Twelve Grinnell College students participated in this experiment
after providing informed consent according to the guidelines
of the Grinnell College Institutional Review Board and in
accordance with the Declaration of Helsinki. All participants
were right-handed, had normal or corrected-to-normal vision,
and exhibited no motor impairment. The motion-capture suits
malfunctioned for the second half of one participant’s task,
making the data for that one half of one participants data

unusable. Data analysis included this participant’s first half of the
task but excluded this participant’s second half.

Apparatus

Participants sat at a standard office desk. Two wooden blocks
(1.5” on each side) were glued to the desktop 10 inches (25.4 cm)
away from one another and within comfortable arm’s reach.
A Noitom Perception Neuron motion-capture suit recorded
movements throughout the entire experiment and logged the
data at 60 Hz using Noitom’s companion Axis Neuron software.

Design

There was a 2 (Expectation) x 2 (Eyes-Closed in Block 2) x
2 (Block) mixed design. All participants completed two 10 min
blocks of the task. Each participant was randomly assigned
to either level of Expectation (i.e., either “Expecting that the
experimenter might ask them to close their eyes later on” or
“No expectation of the experimenter asking them to close their
eyes later on”). Each participant was also randomly assigned to
either level of Eyes Closed in Block 2 (i.e., “Closing their eyes
during the Block 2” or “Keeping eyes open during Block 2”).
Three participants appeared in each of the four between-groups
crossings of Expectation with Eyes-Closed in Block 2.

Procedure
Experimenters helped participants put on the motion capture suit
and then instructed them to sit at the desk and explained that
the task would be to use the fingers of their dominant hand to
touch the each of the blocks attached to the desk in alternation
as fast and regularly as possible. Participants in one level of
the Expectation independent variable heard the experimenter
instruct them that they might have to close their eyes at some
undetermined point during the task and to continue completing
the fast, regular contact with the target. Participants in the
other level of the Expectation independent variable heard no
such instructions. All participants completed the task with their
eyes open for the first 10 min block. After 10 min of the task,
experimenters asked participants in one level of the Eyes-Closed
independent variable to close their eyes for the remainder of the
task, but experimenters made no such request to the participants
in the other level of this independent variable, allowing them
to continue the task with eyes open. Participants completed the
next 10 min of the task with either eyes open or eyes closed.
There was no break between Block 1 and Block 2 except to
recalibrate the machine.

The motion-capture suit collected upper-body position
information about head position and dominant-hand position.

Analysis

We computed multifractal analysis and surrogate testing on non-
overlapping epochs of the continuous lateral position series for
the dominant hand as it moved alternately from left to right. By
“lateral position,” we mean the position of the hand relative to
the midpoint between the targets, parallel to a line connecting the
targets. As for the head movement series, we reduced the three-
dimensional position series of the head to interpoint Euclidean-
distance series indicating the Euclidean distance between each
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pair of consecutive 3-dimensional positions (e.g., Kelty-Stephen
and Dixon, 2014). Whereas task constraints and the definition of
the outcome variable made it effective to focus strictly on only one
dimension of the hand position, we aimed to collapse as much
of the multidimensional structure of the head variability into a
similarly one-dimensional time series. We computed multifractal
analysis and surrogate testing on the same non-overlapping
epochs of interpoint Euclidean distance series indicating head
movements as we used for the hand-movement series. Use of the
same non-overlapping epochs allowed us to align the concurrent
multifractal estimates from hand and head. We compared
multifractal estimates to the outcome variable of manual-aiming
variability in this lateral direction, which outcome we abbreviate
below as SD(Aim) to indicate that we are using regression
modeling to predict how standard deviation of manual contacts
with the target changes within epoch. We defined epochs not in
terms of raw time but in terms of how many cycles the participant
produced. We defined epochs of three size: 20 cycles, 40 cycles,
and 80 cycles. This approach allowed us to evaluate effects on the
task outcome of variability on the grounds of an equal number of
cycles and/or manual contacts with the target (i.e., two manual
contacts per cycle) across time and across participant. Having
no prior intuitions on which to lock epoch size to one specific
value and wanting explicitly to examine the relationship between
multifractal structure and adaptation to task constraints across
time, we tested this relationship by using three separate epoch
sizes, thereby generating three sets of multifractal estimates and
three corresponding sets of SD(Aim) outcome estimates. We
compiled all results into one regression model to reveal whether
effects of multifractal structure might be brief or long-term (e.g.,
Franca et al.,, 2018).

Multifractal Analysis in General

In a broad sense, newcomers to multifractal analysis might
understand multifractality as a variability measure where we may
not necessarily assume the homogeneity that makes a standard
deviation so effective for quantifying variability. Linear modeling
can use the linear autocorrelation (or, equivalently, the Fourier-
amplitude spectrum) to model temporal sequence. However,
non-linear time series may exhibit not just one autocorrelation
but several - whether changing with time (i.e., changes in
autocorrelation function with time) or changing according to
fluctuation size (i.e., differently large or small fluctuations have
different autocorrelations). Multifractal analysis covers a broad
class of ways to query the variation of temporal sequence, and
we apply it to both the original series and to surrogate series that
have the same values and the same linear autocorrelation. The
contrast of original-series multifractality and surrogate-series
multifractality allows comparing the multifractal spectrum width
in both cases and using the difference between them as a measure
of non-linear interactions across time scale.

Multifractal Analysis by the Chhabra and Jensen
Method (CJ)

We use the Chhabra and Jensen (1989) method to estimate
the multifractal spectrum width because it is not sensitive to
sinusoidal trends free to vary across time — while finite-variance

scaling methods are (Bashan et al., 2008; Kelty-Stephen et al,,
2013). We preferred the direct algorithm to the wavelet transform
modulus maxima method as well (Muzy et al., 1991, 1993, 1994)
which is based in the same reliance on finite variance (Eke et al.,
2002) and shows strong agreement with multifractal detrended
fluctuation analysis, both in its resulting estimates and in its
sensitivity to quasiperiodic trends (Zhou et al., 2013).

First, CJ partitions (or “bins”) the series over sequences with
lengths varying from four points to a fourth of series length
(Figure 1; left panel). It estimates exponents o and f as the
relationships of average bin proportion and Shannon entropy
(Shannon, 1948; Figure 1; right panel), respectively, with bin size.
A mass p estimate weight proportions according to proportion
size (see Figure 2, left panel). g-based variability with mass
i(q) generalizes single o and f estimates from earlier steps
into continua a(q) and f(q). Multifractal analysis distinguishes
temporally heterogeneous series from homogenous series by the
amount of variety in a(q) and f(q) for all values of g yielding
stable power-law relationships. The multifractal spectrum is
the set of ordered pairs (a(g), f(q)), an often-asymmetric and
inverted U-shaped relationship (Figure 2, right panel). We
included a(q) and f(q) whenever log-scaled linear fits correlated
at r of 0.995 for the log-scaled linear fit. We excluded values of
q either (1) for which mass-weighted proportion and for which
Shannon entropy were undefined (e.g., due to masses rounding
to zero) or (2) power-law fits for which r < 0.995. The final
output of multifractal analysis here is the multifractal spectrum
width wpr equal to the maximum estimated a(g) minus the
minimum estimated a(q).

Surrogate Comparison
Multifractal-spectrum width varies with non-linear interactions
across time scales but also with histogram skew or linear
autocorrelation. Hence, evidence of non-linear interactions
requires comparing multifractal-spectrum width for original
series to multifractal-spectrum widths for a sample of (here, 30,
following the precedent of Thlen and Vereijken, 2010) surrogate
series that re-order original series’ values while preserving linear
autocorrelation and destroying original sequence (i.e., iterative
amplitude-adjusted Fourier-transform; IAAFT; Schreiber and
Schmitz, 1996; Ihlen and Vereijken, 2010; schematized in
Figure 3). Generating IAAFT surrogates involves taking the
Fourier transform of the repeated-measures series and repeatedly
scrambling phase spectrum while preserving the amplitude
spectrum. As noted above, the t-statistic fyp encoded the
standardized difference in multifractal-spectrum width Wyp
between original measured series and average multifractal-
spectrum width Wy across 30 surrogate-data series, divided
by standard error of surrogate-data series Wyr. That is
tmr = (Wyr of original series — Average Wy of surrogate-
data series)/(Standard error of Wiyr of surrogate-data series).
Tmr indicates non-linear interactions across time scales in
a standardized way that should generalize across series with
differing histogram skew or linear autocorrelation.

These t statistics reflect the comparison of each original
fluctuation series multifractal spectrum to a sample of
multifractal spectra generated from each of 30 phase-randomized
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FIGURE 1 | Schematic of first steps of multifractal algorithm that bin a repeated measure on many scales (left panel) and that estimate linear relationships between
logarithmic average proportion and bin size as well as between Shannon entropy and bin size.
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FIGURE 2 | Concluding steps of multifractal analysis that use parameter q to accentuate proportions of different size (left panel) and then re-estimate the same
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surrogates preserving the full linear description (i.e., mean,
standard deviation, and autocorrelation) of the original
fluctuation series. Any difference between original multifractal
spectrum width and average surrogate multifractal-spectrum
width must reflect a non-linearity - particularly if it falls outside
of the 95% confidence interval, yielding a significant ¢ statistic.
Because the phase-randomized surrogates already include
the autocorrelation over all time scales independently, this

term “non-linearity” is specifically equivalent with the phrase
“non-linear interactions across time scale.”

Multiple Linear Regression Model Testing Effects of
Multifractal-Indicated Non-linearity

A single mixed-effect linear regression (e.g., Singer and
Willett, 2003) using R library “nlme” (Pinheiro et al., 2018)
modeled the dependent variable of “standard deviation of hand
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ty (right panel).

position relative to target position during target contact” [i.e.,
SD(Aim)] as the sum of the following interactions as well
as all component lower-order interactions and main effects:
Expectation x Number(Epoch) x Size(Epoch) x typ(Hand) x
tmr(Head), Closedeyes x (Number[Epoch] + Size[Epoch] +
Expectation) x fjyr(Head), Expectation x Number(Epoch) x
Wyrr(Hand) x Wyr(Head), Closedeyes x (Number[Epoch] +
Size[Epoch] + Expectation) x (Mean[Head] + SD[Head]), and
Number(Epoch) x Half.

The first two sets of interactions tested the explicit hypotheses
noted above. The second two sets of interactions controlled for
simpler effects that a more skeptical point of view could want
represented. We detail both in the next two subsections.

Interactions addressing the explicit hypotheses

The first two sets of interactions tested the explicit
hypotheses. ~ Specifically, the higher-order interaction
Expectation x Number(Epoch) x Size(Epoch) x tyr(Hand) x
tmr(Head) and its component lower-order interactions and
main effects tested whether the ongoing effect of expectation
on SD(Aim) depended on epoch size as well as multifractal-
indicated non-linearities in hand and head positions. In plainer
language, this set of terms poses the questions: “Do non-linear
interactions across time in the hand stabilize aiming? (Hypothesis
1) Does that support work with hand non-linearity to stabilize
aiming under the anticipated threat of potentially losing visual
information?” (Hypothesis 3).

The higher-order interaction Closedeyes x [Number
(Epoch) + Size(Epoch) + Expectation] x typ(Head) and its
component lower-order interactions and main effects tested
whether the ongoing effect of closed eyes on SD(Aim) depended
on multifractal-indicated non-linearity in head position with

moderation by expectation as well as by the size and number
of epoch used to quantify standard deviation for SD(Aim). In
plainer language, this set of terms poses the question: “Does
the effect of closing one’s eyes on aiming variability depend on
non-linear interactions across time at the head?” (Hypothesis 2).

Interactions addressing control effects and representing more
skeptical views

The remaining interactions provided control effects to
address various more skeptical questions worth asking
about SD(Aim). That is, these lower-order effects give the
regression model due opportunity to control for the simpler
explanation. They represent the possibility that comparison
to surrogates and change with epoch size are each needless
complications.  Specifically, the higher-order interaction
Expectation x Number(Epoch) x Wyr(Hand) x Wyr(Head)
and its component lower-order interactions and main effects
tested whether the ongoing effects of expectation on SD(Aim)
for any epoch size dependent not on non-linearity but just
multifractal-spectrum width. That is to say, they answer the
following question: “Surrogate testing sounds difficult, and
non-linear interactions across time scale sounds like splitting
of computational hairs. Shouldn’t multifractal analysis be
enough to explain the contribution of hand and head sway to
aiming variability?”

For that matter, from such a diligently skeptical point of view,
we could doubt the usefulness of this multifractal mathematics
at all. The next set of control terms offers a test representing
this skeptical point of view. The higher-order-interaction
Closedeyes x (Number[Epoch] + Size[Epoch] + Expectation) x
(Mean[Head] + SD[Head]) and its component lower-order
interactions and main effects tested whether any effect of closed
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eyes on SD(Aim) was sooner dependent on simpler descriptive
statistics. That is to say, in plainer terms, “Shouldn’t aiming
variability with eyes closed sooner depend on the average size
and average variability of head sway? And shouldn’t these simpler
statistics fewer algorithmic steps away from the raw data sooner
show the relationships better with time, time span, and the threat
of potentially losing visual information?”

The last set of control effects described by the interaction
Number(Epoch) x Half and its component main effects offers
the model a way to articulate the simple effect of time. The
plain-language question posed by these terms would be “Won’t
fluctuations in hand and head also simply vary across continued
time in the task regardless of potential or action loss of
visual information?”

RESULTS AND DISCUSSION

We include three figures to depict example movements of the
hand during 50 s portions of the Fitts task under each case.
Figure 4 shows the lateral position of the hand over time in the
first half of the task. Figure 5 shows the lateral position of the
hand over time in the second half of the task with eyes closed,
both for a participant who expected they might have to close
their eyes and for a participant who did not expect to close their
eyes. Figure 6 shows the lateral position of the hand over time in
the second half of the task with eyes remaining open, both for a
participant who expected they might have to close their eyes and
for a participant who did not expect to close their eyes. Again,

in all cases, these figures depict 50 s in the task, extremely small
subsets of the 10 min halves of the task.

The regression model returned a number of lower-order
significant effects on SD(Aim), all of which appear in Table 1.
The resulting model predictions of epoch-by-epoch SD(Aim)
correlated with actual epoch-by-epoch SD(Aim), r = 0.7335. The
regression-model predictions appear in Figure 7. First, we review
the multifractal-free results of this modeling. Next, we review the
effects that multifractality had on SD(Aim).

While it is regrettable that this preliminary experiment did
not have more individual participants, the regression model met
the heuristic benchmark of having more than 10 observations
per predictor (Harrell et al., 1996; Babylak, 2004; Finlay, 2014).
Furthermore, post hoc power analysis using bootstrapping to
resample the dataset 1000 times found greater than 80% for all
effects reported, as well as for 17 other predictors in the model
that were non-significant. Hence, the repeated measures aspect
of this design compensated for the small sample size. Raw data
are available on request and online'.

Results Pertaining to Effects

Non-multifractal Indicated Non-linearity

Supplementary Table 1 lists the significant effects of non-
multifractal effects. SD(Aim) increased across halves of the
experiment and for longer spans of time and varied with
descriptive statistics of head sway, but this increase diminished

'https://dx.doi.org/10.17605/OSF.I0/S8BHV
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FIGURE 5 | Lateral hand position over time for 50 s in the second half of the task with eyes closed. Solid lines show the lateral position of the hand over time in the
second half of the task for two participants both with their eyes closed. Top panel shows movement series for a participant who had expected that they might have
to close their eyes. Bottom panel shows movement series for a participant who had no expectation of having to close their eyes. Dashed horizontal lines
schematize the average lateral position of manual contacts from which aiming variability SD(Aim) was calculated.

within halves especially over the course of longer epochs. Closing
eyes and actually losing visual information in the second half
of the task did in fact increase SD(Aim). The effect of closing
eyes and actually losing visual information interacted with the
effect of the mere threat of potentially having to close eyes and
lose visual information. Closing eyes accentuated relationships of
expectation with head sway and SD(Aim).

There Were No Effects of
Multifractal-Spectrum Width

The absence of effects of multifractal-spectrum width on
SD(Aim) suggesting indeed that multifractal analysis alone is
insufficient to explain the contribution of hand and head sway
to aiming variability. These null effects would on their own
entail a failure to support hypotheses that multifractal analysis
provides any insight into aiming variability in the Fitts task.
However, the insufficiency of multifractal-spectrum width to
predict aiming variability in the Fitts task is completely mute
on the specific point of non-linear interactions across scales. As
noted above, the better statistical signature of non-linear cross-
scale interactions is the difference of multifractal-spectrum width
between measured series and surrogate-data series. However, this
use of surrogate data to estimate the non-linearity of cross-scale
interactions appears to be carry significant weight in predicting
variability in the Fitts task. And it appears to overshadow any
such predictive weight for multifractal-spectrum width without
surrogate comparison.

Effects of Multifractal-Indicated

Non-linear Interactions Across Scale

This section reviews the contributions of typ(Hand) and
tmr(Head). All of the following effects reviewed below appear
schematized together in Figure 7. An important difficulty
in interpreting these effects is that there were no main
effects of either fyp(Hand) or of typr(Head). To ease this
task of interpreting these higher-order interactions, Figure 7
shows the summing together of these average effects of non-
linearity on SD(Aim).

Effects of Non-linearity in Hand Fluctuations
tMF(Hand)

As noted in the previous section, there were no main effects
of tyr(Hand). Instead, the regression model showed SD(Aim)
increased with greater hand non-linearity and with continued
time in the task (Number[Epoch] x tyr[Hand] B=1.17 x 107,
SE =5.56 x 10~%). This positive relationship between multifractal
non-linearity and SD(Aim) over time decreased for longer
time spans (Number[Epoch] x Size[Epoch] x tyr[Hand],
B=-723x 1077, SE = 2.86 x 10~7), suggesting that stronger
multifractal non-linearity at the hand predicted progressively less
variable aiming behavior especially over longer time spans.

Effects of Non-linearity in Head Fluctuations
tM,.-(Head)

Just as for typ(Hand), there were no main effects of tyr(Head).
Head non-linearity moderated the effect of actually closing
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TABLE 1 | Significant effects from regression modeling of manual-aiming variability SD(Aim).

Predictor Coefficient SE p
EFFECTS OF MULTIFRACTALITY OF HAND DUE TO NON-LINEARITY, tyr(Hand)

Number(Epoch) x ty=(Hand) 1.17 x 1075 5.56 x 1076 <0.05
Number(Epoch) x Size(Epoch) x ty(Hand) —7.23 x 107 2.86 x 10~7 <0.05
EFFECTS OF MULTIFRACTALITY OF HEAD DUE TO NON-LINEARITY, tyr(Head)

Closedeyes x tyr(Head) —210x 1074 9.67 x 1075 <0.05
Closedeyes x Number(Epoch) x ty-(Head) 1.52 x 10~° 479 x 1076 <0.01
Closedeyes x Size(Epoch) x tyr(Head) 3.80 x 106 1.50 x 106 <0.05
EFFECTS OF MULTIFRACTALITY OF HAND AND HEAD DUE TO NON-LINEARITY, tyr(Hand) x tyr(Head)

Number(Epoch) x Size(Epoch) x tyr(Hand) x tyr(Head) 6.11 x 108 2.48 x 1078 <0.05
Expectation x Number(Epoch) x Size(Epoch) x tyr(Hand) x tyr(Head) —1.09 x 1077 432 x 1078 <0.05

eyes and losing visual information. Whereas closing eyes
had produced a main effect of increasing SD(Aim), greater
head non-linearity when closing eyes predicts a small but
significant reduction in this increase (Closedeyes x tyr[Head],
B = —2.10 x 107% SE = 9.67 x 107°). That is to say,
head non-linearity initially stabilized aiming variability at the
hand, suggesting that head non-linearity appears to support the
persistence of past visual information. However, the next two
significant effects show that, whatever head non-linearity can
do to prolong the impact of past visual information during the
closed-eyes half of the task, this effect is fleeting both in terms of
how fast it vanishes over time and how small a time span we must
use to estimate non-linearity to see the effect clearly. Small but

positive interactions of this effect with continued time in the task
(Closedeyes x Number[Epoch] x tyr[Head], B = 1.52 x 1073,
SE = 479 x 107°) and longer time span for evaluating
aiming behavior (Closedeyes x Size[Epoch] x tyr[Head],
B =380 x 107% SE = 1.50 x 107°) both attenuate this
stabilizing effect.

We can summarize these effects of head non-linearity
in the following ways. First, the participants’ awareness of
potentially losing visual information seems to recruit head non-
linearity - rather than hand non-linearity - as a stabilizing
factor on aiming behavior [i.e., lowering SD(Aim)]. Second,
irrespective of participant expectations, head non-linearity exerts
an independent, additional stabilizing effect, reducing SD(Aim)
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(predictions shown specifically for 3rd quartile of tir) for participants keeping their eyes open in the second half (black solid lines) and for participants closing their
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perhaps by prolonging past visual information once participants
actually close their eyes and lose current visual information. This
evidence is thus precarious, with the first effect only marginally
significant and the second effect significant but fleeting. As the
next section shows, expectation remains necessary to knit the
stabilizing effects of hand and head non-linearities together into
a more reliable stabilizing effect on aiming variability.

Effects of Multifractal Non-linearity in Both Hand and
Head Fluctuations ty;r(Hand) and tyr(Head)

There were only two significant interactions involving
typ(Hand) x  fyp(Head). Over longer time in the task
and over longer time spans, increases in both hand and
head non-linearities predicted that SD(Aim) would increase
(Number[Epoch] x Size[Epoch] x tyr[Hand] x typ[Head],
B =611 x 1078, SE = 2.48 x 107%). However, expectation
significantly reversed this effect. Specifically, over longer
time in the task and over longer time spans, the mere threat of
potentially losing visual information along increases in both hand
and head non-linearity predicted that SD(Aim) would decrease
(Expectation x Number[Epoch] x Size[Epoch] x tyr[Hand] x

tmr[Head], B= —1.09 x 1077, SE = 4.32 x 10~8). That is to say
that expectation changed the perceptual-motor impact of any
relationship of non-linearity at the hand and at the head. The
capacity of expectation to reduce aiming variability depends on
multifractal non-linearity at both the head and the hand.

Integrating the Effects of Non-linearity by Conditions
of Expectation and Closing Eyes

The middle 50% of non-linearity estimates predicts almost
the same range of the actual epoch-by-epoch SD(Aim)

Figure 7 depicts the sum of all non-linearity-driven effects
on SD(Aim), specifically for the middle 50% of the actual
values of typ(Hand) and of fyr(Head), ie., model predicted
change in SD(Aim) for the first and third quartiles of each tyr
variable. In all cases, Figure 7 only depicts high tyr(Hand) and
high t)r(Head) together (in solid lines) and low fyr(Hand)
and low fjp(Head) together (in dashed lines). For simplicity’s
sake, Figure 7 does not show predictions for mixed cases. The
maximum and minimum values on the y-axes for all panel
indicates that the sum total of the non-linear-driven effects
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range from —0.0025 to 0.0035, spanning a range of SD equal to
(0.0035 - (—0.0025) =) 0.0060. So, these modeled results do look
subtle. It is certainly true that the non-linearity-driven effects
were a minority of the total significant effects, but it is worth
noting that the 0.0060-SD model-predicted change in SD(Aim)
for this middle 50% of non-linearity estimates is by no means a
modest proportion of the actual change in observed SD(Aim).
The first and third quartiles of actual epoch-by-epoch SD(Aim)
are 0.0131 and 0.0194, respectively, yielding a range of SD equal to
(0.0194-0.0131 =) 0.0063. Hence, this model-predicted range of
SD(Aim) using the actual middle 50% of non-linearity estimates
covers about (0.0060/0.0063 =) 95.24% of the actual middle 50%
of epoch-by-epoch SD(Aim). So, the subtlety of the effects in
terms of absolute values in Figure 7 belies the fact that, actually,
this predicted range is a substantial portion of the variance of
epoch-by-epoch SD(Aim).

Without expectation of potentially closing eyes, multifractal
non-linearity of hand and head is destabilizing factor most of
the time and only stabilizing with after eyes close

Figure 7 provides a high-level view of many different ways
to articulate the question about how non-linearity influences
aiming variability. It depicts these relationships between non-
linearity and SD(Aim) across the first and second 10 min halves
of the task, allowing us to see the effects of closing eyes half
way through (for the gray lines) relative to keeping their eyes
open. Also, Figure 7 depicts these effects through different epoch
sizes, i.e., different time spans for evaluating SD(Aim) and the
corresponding predictors for each epoch of different size. In the
left column representing model predictions for participants who
did not expect to potentially close their eyes, we can see that,
generally speaking, higher values of typ(Hand) and typ(Head)
predict greater variability in aiming. Without this expectation,
less multifractal non-linearity appears to predict greater aiming
stability [i.e., change in SD(Aim) closest to zero] than multifractal
non-linearity. Multifractal non-linearity seems to produce ever
greater variability in aiming as we examine progressively longer
epochs in the first half of the task, and the destabilizing aspect of
multifractal non-linearity in the second half of the task is clearest
in shorter epochs.

The only benefit of more multifractal non-linearity without
expectation is that it appeared to reduce aiming variability
compared to less multifractal non-linearity immediately upon
closing of eyes half way through the task. That is, in the left
column of Figure 7, the solid gray line dips into the negative
range of SD(Aim) below the dashed gray line. This reduction of
variability appears stronger in the shorter epochs, but although
the reduction of variability is much smaller in longer epochs as
noted above, this view of the suggests that this subtle effect is
much longer lasting over the longer run in longer epochs.

Expectation of potentially closing eyes, multifractal
non-linearity of hand and head becomes a stabilizing factor
Across the board, multifractal non-linearity of hand and head
becomes a stabilizing factor for participants expecting that they
may potentially have to close their eyes. That is to say, the
expectation of potentially losing visual information makes greater

multifractal non-linearity a stabilizing factor for aiming and
makes less multifractal non-linearity a destabilizing factor for
aiming. The only instance in which multifractal non-linearity
fails to serve stabilizing role in aiming behavior is roughly the
last two thirds of the second half of the task when we consider
epochs of 20 cycles. For all other cases, multifractal non-linearity
does appear to interact with expectation to support more stable
aiming, i.e., lower SD(Aim).

As in the case without expectation, this pattern of results
does predict an immediate benefit of multifractal non-linearity
when participants close their eyes. The 20-cycle epochs shows
a dramatic decrease in aiming variability for high multifractal
variability (i.e., the solid gray line) that is only shallower
when considering longer epochs. Hence, we see the same
sharp, short, and fleeting decrease in SD(Aim) that we
saw before without expectation (left column of Figure 7),
but the model predictions suggest that expectation extends
this stabilizing effect throughout more of the task especially
over longer epochs. When eyes stay open (i.e., solid black
lines), multifractal non-linearity generally continues to stabilize
posture. The differences of multifractal effects with eyes open
from the eyes-closed case appears to be twofold: it appears
to stabilize aiming less than it would immediately after
closing eyes, but it appears to exhibit more of the sustained
stabilizing factor.

CONCLUSION

We tested the hypothesis that multifractal-indicated non-
linearity would moderate effects of expectation of potentially
closing eyes and effects of actually closing eyes during the
Fitts task. Specifically, we expected the non-linear results
with wider multifractal spectra than their corresponding
surrogates would be associated with lower aiming variability
immediately after closing eyes and under the expectation of
potentially closing eyes. The results supported this hypothesis.
Specifically, we found a short, fleeting reduction in aiming
variability under cases of non-linearly wider-than-surrogate
multifractal spectra. We found the strongest evidence of
this reduction and its subsequent disappearance when
evaluating multifractality and aiming variability over the
shortest epochs. We also found a sustained reduction of
aiming variability following from the interaction of expectation
and non-linearly wider-than-surrogate multifractal spectra.
Primarily, what these results mean is that the non-linearity
of bodily movements during the Fitts task support stable
aiming behavior.

We can phrase these results as mostly affirmative answers to
the specific questions raised in the section detailing the regression
modeling of SD(Aim) that we defined as “standard deviation of
hand position relative to target position during target contact.”
In answer to “Do non-linear interactions across time in hand
stabilize aiming? (Hypothesis 1), we can now answer “Yes.”
Greater multifractal non-linearity in the hand reduced aiming
variability. This effect echoes older findings that the multifractal
structure in hand fluctuations supports more accurate use of
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mechanical and visual information (Stephen et al., 2010; Stephen
and Hajnal, 2011; Kelty-Stephen and Dixon, 2014).

These results replicate a previously known effect of head-
sway non-linearity for supporting the use of visual information
(Eddy and Kelty-Stephen, 2015; Carver et al., 2017), confirming
earlier suggestions from strictly multifractal evidence just short
of testing for non-linearity in head sway (Hajnal et al., 2018).
This known effect appeared through the stabilizing effect of
multifractal non-linearity once participants closed their eyes.
As detailed in the regression model, Hypothesis 2 asked “Does
the effect of closing one’s eyes on aiming variability depend on
non-linear interactions across time at the head?” The answer
is “Yes.” Multifractal non-linearity at the head reduces aiming
variability immediately after closing eyes, but the evidence for this
brief stabilizing effect is clearest at the shorter epochs. Whatever
capacity head sway has to embody interactions across time
scales, it appears that this interaction of time scales may serve
to prolong the effects of what visual information was available
before eyes closed.

Head-sway non-linearity and hand non-linearity together
moderated the effect of merely expecting potentially closing
eyes. In answer to the question “Does that support work with
hand non-linearity to stabilize aiming under the anticipated
threat of potentially losing visual information?” (Hypothesis
3), we can now answer “Yes.” With or without prompting
participants to actually close their eyes, expectation serves to
diminish the reductive effect of hand non-linearity on aiming
variability and to recruit head-sway non-linearity for reducing
aiming variability instead. Multifractal non-linearity has its
strongest stabilizing effect at the hand for longer epochs. Likewise,
multifractal non-linearity at head and hand helps to translate
expectation into stabilizing effects on aiming that become
stronger for longer epochs.

Head-sway fluctuations thus appear to carry double duty
for reducing aiming variability, both in supporting the use of
visual information and supporting the expectation that visual
information might not be available later on. It its key to
emphasize that expectation only showed interactions with head-
sway alone and with both head-sway and hand. Regarding
the interactions with head-sway alone, it is possible that this
stabilizing effect of expectation involved a new or further use
of visual information, i.e., expectation might engender more or
different of the non-linear patterns of exploration of the optical
array nesting the manual aiming task. Regarding the interactions
with head-sway and hand fluctuations, it is also possible that
expectation plays upon synergy-like relationships within the
organism between head and hand.

Candidate physiological explanations for these results could
include localized tissues or specific subsystems. Certainly,
heightened activity by sympathetic nervous system can increase
change covariation among disparate physiological systems (e.g.,
Garcia-Retortillo et al., 2019). Expectation might provoke stress,
anxiety, and uncertainty. Similarly, the strong relationships
between the visual and vestibular systems (Abekawa et al,
2018; Ruhl et al., 2018) could explain these effects. However,
qualifications, interactions, and context-sensitivities quickly
clutter this seeming simplicity. For instance, vestibular system

influences the sympathetic nervous system (Yates, 1992),
suggesting that the alternatives are not mutually exclusive.
Further, visual-vestibular interactions require qualification as
well by aging (Lui et al., 2019), migraines (Bednarczuk et al.,
2019), neuritis (Roberts et al., 2018), and interactions with
somatosensation (Moro and Harris, 2018).

The present results speak directly to a physiological
explanation residing in geometrical forms embodied by the
physiological mechanism of connective-tissue networks weaving
muscle, bone, nervous system together through the fascia. It
allows multifractal estimation of non-linear interactions across
scale and charting out the field dynamics of how this non-
linearity ebbs and flows across an organism’s spatial or temporal
extend (Chester et al., 2007; Dixon and Kelty-Stephen, 2012;
Kelty-Stephen and Dixon, 2014; Carver et al., 2017). Indeed,
broad interdependence of disparate physiological tissues is a
central theme of the multifractal tensegrity hypothesis and a main
motivation for using multifractal geometry to make explicitly
estimable the non-linear interactions governing a cohesive
system across many scales (Ingber, 2006; Van Orden et al., 2012;
Turvey and Fonseca, 2014). Indeed, the dawning picture we
have of the nervous system suggests a causal relationship run
by non-linear interactions across scale (Morgane et al., 2005;
Changizi and DeStefano, 2009; Deco et al., 2011). To the point,
beyond muddying our ability to identify clear parts with reliably
stable and distinct responsibilities, these non-linear interactions
appear to be the very physiological support that allows the
nervous system to operate as impressively as it does. Non-linear
interactions across scale typify all physiological tissues and
not just as a neat epiphenomenon of supposedly more real,
more legitimate mechanism in local tissue. The multifractal
tensegrity hypothesis acknowledges the multifractal-tensegrity
aspect of physiological tissues as firmer ground for physiological
explanation than local anatomical tissue.

The connective-tissue networks ground perception and
action upon a wider-than-neural set of physiological tissues.
Evidence of tensegrity support for perception and action
includes contextually-specific responses proceeding faster than
neural transmission alone would support - variously called
“ultrafast,” “mechanotransduction” (to indicate the procession of
mechanical rather than chemical causal forces), or, to distinguish
from the slow reflex meandering across multiple synapses,
“preflexes” (Brown and Loeb, 2000). These ultrafast, mechanically
grounded responses appear across a wide spectrum of behaviors,
from the activity of individual cells - both composing larger
organisms (Ingber, 2006) or autonomous amoeba (Grebecka
et al, 1999 - to responsivity of insects (Frantsevich and
Gorb, 2002; Endlein and Federle, 2013) to humans locomoting
(Moritz and Farley, 2004; Kiely and Collins, 2016), simply
standing quietly (Marsden et al, 1983) or using language
(Kelso et al., 1984; Moreno et al., 2011). Crucially, the ultrafast
mechanotransduction to be explained is more generic than
the local anatomical structures: e.g., amoeba and insects show
sensitivity to mechanical rotation despite not having any clear
analog to the vestibular system (Brunet, 1951; Hengstenberg,
1993; Svidersky and Plotnikova, 2002; Dilao and Hauser, 2013).
So, tensegrity provides a rich background of tensions and
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compressions that precede, extend beyond, and directly modulate
whatever the nervous system might do for a relatively narrow
sliver of living behavior. Interactions and context-sensitivities
amongst different neural subsystems are likely due to the
tensegrity architecture pervading physiological tissues (Ingber,
2006; Turvey and Fonseca, 2014).

The Non-linear Effects on Aiming
Variability

These effects of multifractal-indicated non-linearity are not so
exhaustive as to preclude effects of simpler statistics from head-
sway. The method section’s detailing of the regression model
notes that the inclusion of control effects allows us to ask the
following: “Shouldn’t aiming variability with eyes closed sooner
depend on the average size and average variability of head
sway? And shouldn’t these simpler statistics fewer algorithmic
steps away from the raw data sooner show the relationships
better with time, time span, and the threat of potentially losing
visual information?” Despite mean and standard deviation of
head-sway registering significant main effects and interactions
(Supplementary Table 1), none of these significant effects
precluded evidence of multifractal non-linearity having the
predicted interaction with closing eyes.

No Effects of Multifractality That Are Not
Due to Non-linearity

Multifractality appears worthless in this study except insofar as
surrogate testing and resulting ¢-statistics produce multifractal-
based estimates of non-linear interactions across scale. For all
of these effects of multifractal-indicated non-linearity, notably
absent were any effects of multifractal-spectrum width itself.
As noted in the method subsection detailing the regression
model, our modeling included a full set of interactions
between expectation, epoch size, epoch number, and - where
other interactions included the surrogate-based t-statistic -
multifractal-spectrum width. We offered the interactions to
represent the following sentiment and curiosity: “Surrogate
testing sounds difficult, and non-linear interactions across time
scale sounds like splitting of computational hairs. Shouldn’t
multifractal analysis be enough to explain the contribution of
hand and head sway to aiming variability?” Our model has
entirely failed to find any support for this notion. Other variants
of the Fitts task with greater difficulty may change this result, but
for our present purposes, we meant only to test whether non-
linearity was important for a very simple case of goal-directed
behavior. Simple tasks elicit non-linearly complex behaviors,
which point we do not see as a shortcoming or challenge to
interpretation but rather as a signature of how pervasive non-
linear interactions across scale can be.

Pervasiveness has been a key theme of earlier fractality-
inspired discourse (e.g., Kello, 2011; Moscoso del Prado Martin,
2011). Here, we are keen to assign pervasiveness specifically
to the non-linearity of interactions across scale entailed by
multifractal results through surrogate comparison and not to
the multifractality in itself, unqualified by surrogate comparison.
Linear interpretations of multifractality certainly exist (ie.,
unsystematic variation in the rate of divergence for strictly linear

autocorrelation), but they reflect an attempt to fit the data that
sooner exaggerates what is statistical articulable for mechanistic
hypotheses than represents a logically plausible hypothesis
(Gilden, 2009; Kelty-Stephen and Wallot, 2017). Indicating non-
linearity of interactions across scale is the most substantive
value that multifractality can have to inform complex-systems
approaches to perception and action, and so, the present
results of no multifractal effects that are not non-linear
makes this demonstration particularly neat and uncluttered by
linear counter-explanations of what multifractality means for
perception and action. To the point, multifractal geometry is
useful insofar as it quantifies the change in these pervasively
non-linear interactions across scale.

Implications

The present work sought to revisit a foundational task in
movement science. Previous work applying fractal methodology
to the Fitts task has focused on changes in fractal scaling
in the movement-time or movement-amplitude series. In
more difficult variants of the Fitts task, greater speed or
greater accuracy leads to stronger evidence of fractal scaling
in movement-time series or in movement-amplitude series,
respectively (Wijnants et al,, 2012). On the other hand, other
research has sought to explain weakening of the fractal-
scaling in movement-amplitude series due to a stronger
use of visual feedback implicated by higher difficulty level
(Slitkin and Eder, 2014). The present work attempts to
delve more deeply into the movement variability at a finer
grain, using more continuous time series, using multifractal
rather than monofractal modeling, directly manipulating visual
feedback rather than implicitly through difficulty level, and
investigating the role of non-linear interactions across scales
in hand and head to support the use of visual feedback
in the Fitts task.

This work still observes position variability in aiming per cycle
[ie., SD(Aim)] as a key dependent measure. However, whereas
movement-time and movement-amplitude series unfold at the
same cycle-by-cycle scale of analysis, the present approach of
analyzing fluctuations in the movement series per time sample
drops below that cycle scale of analysis in order to investigate
what more continuous structure may support the coarser cycle-
by-cycle performance. Furthermore, in answer to the claims
that temporal structure follows from visual feedback (Slifkin
and Eder, 2014), this study experimentally manipulates visual
feedback both in terms of participants’ expectations of potentially
closing their eyes and in terms of participants actually closing
their eyes. Also, whereas the prior fractal investigations of the
Fitts task use monofractal analysis and diverge across either a
“nomothetic” (Wijnants et al., 2012) or “mechanistic” (Slifkin
and Eder, 2014) interpretation of monofractal results, the present
work uses multifractal analysis and comparison of multifractal
results to linear surrogates of the original movement series
so as to test directly the nomothetic interpretation of cascade
dynamics (e.g., Van Orden et al., 2003; Thlen and Vereijken, 2010;
Stephen and Van Orden, 2012), i.e., specifically to test whether the
movement series entailed that Fitts performance was the product
of non-linear interactions across time scales.
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The present research found that aiming variability in the Fitts
task, i.e., the standard deviation of positions of the hand during
target contact, was predictable from non-linear interactions
across scales at the hand and the head. Crucially, this appeal
directly to non-linear interactions across scales follows directly
from the facts that aiming variability was not sooner - or to
any degree — predictable from the multifractal-spectrum width
alone and that the better predictors of aiming variability were
t-statistics expressing the difference of the original series from
linear surrogates. It is important to note that any monofractal
results are indistinguishable from the structure expressed in
linear surrogates (Ihlen and Vereijken, 2010; Kelty-Stephen et al.,
2013; Wijnants, 2014; Kelty-Stephen and Wallot, 2017). Hence,
although this work did not seek to estimate the mechanistic
contribution, the use of surrogate testing guarantees that these
results are due specifically to non-linear cascade dynamics and
not reducible to mechanistic explanations.

The present research further found that the effect of non-
linear interactions across scale differed according to different part
of the participating movement system. Non-linear interactions
across time scale associated with wider multifractal spectra at
the hand reduced aiming variability in the Fitts task. Non-
linear interactions across time scale associated with wider
multifractal spectra at the head reduced aiming variability
immediately following closing of the eyes, suggesting that effects
of visual feedback depend on the head-sway of the participating
movement system. Hence, contrary to Slifkin and Eder (2014),
fractality is not merely a symptomatic response to changes in
use visual information-on the contrary, multifractality predicts
the tensegrity-based usage of visual information. Non-linear
interactions across time scale associated with wider multifractal
spectra at the head and the hand reduced aiming variability over
the entire experimental task for participants who began with
the expectation that they might have to close their eyes. Hence,
the movement system performs the Fitts task according to an
interaction of its expectations of how long visual feedback will
be available with its non-linearly cascade-driven head and hand.

In short, aiming in the Fitts task is a full-bodied task that
relies on non-linear interactions that span the body no less
than the time scales of expectations and explicit instructions.
The current work is the latest supporting the notion of motor
coordination as a process developing through interactions across
multiple scales (e.g., Turing, 1952; Gottlieb, 2007; Molenaar,
2008). This notion appears here in the form of the multifractal
tensegrity model (Turvey and Fonseca, 2014), offering early
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