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Chronic atrophic gastritis (CAG) is one of the most important pre-cancerous states with
a high prevalence. Deciphering its mechanical network is of significant importance for
its diagnosis and treatment. The time-series factor associated with CAG progression
specially needs to be considered together with its biological condition. In the present
work, 1H NMR-based dynamic metabonomics was firstly performed to analyze the
urinary metabolic features of CAG coupled with ANOVA-simultaneous component
analysis (ASCA). As results, 4 (alanine, lipids, creatine, and dimethylglycine), 2
(α-ketoglutarate and alanine) and 5 (succinate, α-ketoglutarate, alanine, hippurate,
and allantoin) urine metabolites were finally selected as the candidate biomarkers
related to phenotype, time, and their interaction, respectively. Mechanistically, the
network pharmacology analysis further revealed these metabolites were involved
into mitochondrial function, oxidation reduction, cofactor binding, generation of
precursor metabolites and energy, nucleotide binging, coenzyme metabolic process,
cofactor metabolic process, cellular respiration, and tricarboxylic acid cycle. Especially,
mitochondria were the most important targeted organelle referred 30 targeted
proteins. The present work provided a novel network pharmacology approach for
elucidating the mechanisms underlying the pathogenesis of CAG based on urinary time
dependent metabonomics.

Keywords: chronic atrophic gastritis, biomarkers, metabonomics, ANOVA-simultaneous component analysis,
network pharmacology

INTRODUCTION

Chronic atrophic gastritis (CAG) is an inflammatory disease of the stomach from various
etiologies (Ferlay et al., 2002, 2005; Weck and Brenner, 2006). Typical symptoms, when present,
include epigastric pain, fullness, belching, anorexia, and other non-specific symptoms. CAG
can lead to mucosal atrophy, intestinal metaplasia (IM), and gastric intraepithelial dysplasia
(GED), also known as intraepithelial neoplasia, which is defined as the precancerous stage of
gastric carcinoma (Asaka et al., 2001). Global cancer statistics for 2012 estimated that there
were 951,600 new cases of stomach cancer worldwide (Torre et al., 2015). The transition from
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chronic gastritis to gastric cancer is a typical disease model of
uncontrolled inflammation leading to malignant transformation.
Preclinical research thus seems essential to probe the mechanisms
related to CAG biology. Modern research in the exploration
of pathogenesis is moving from classical methodologies to the
characterization of the metabolome variation induced by CAG
(Chan et al., 2014).

In recent years, studies on the metabolic disturbances of
CAG, have been reported with the aims to interpret its
biochemical process. A lot of potential CAG biomarkers in bio-
fluid samples were identified relating to energy metabolism,
inflammation, immune dysfunction, and oxidative injury, which
were matched with the relevant pathological changes in the
formation of CAG (Cui et al., 2017; Liu et al., 2017).
However, metabonomics, a relatively new “omics” technique that
attempts to profile all low-molecular weight metabolites, are
often used in longitudinal studies such as monitoring disease
progression, tracking nutritional interventions, or observing
drug toxicity. So other factors (such as the time-series for their
process) together with the biological condition of interest need
to consider during data analysis. Special designed statistical
approach based on ANOVA-simultaneous component analysis
(ASCA) has been developed to deal with the multifactor
issues as well as time-series studies (Smilde et al., 2005;
Zwanenburg et al., 2011). It has been successfully applied to
analyze metabonomic data. Gao et al. (2010) used ASCA to
investigate the effects of Aβ25−35 injection, time, and their
interaction on the hippocampus and serum metabolome (Du
et al., 2017). ASCA was also used to examine different sources
of the data related to each experimental factor (defined as
time, diet, and individual) to assess dietary influence on type 2
diabetes development, where showed a significant contribution
of the time-diet interaction factor (Ly-Verdú et al., 2015).
Meanwhile, network pharmacology is a bioinformatics strategy
to map the disease mechanical networks from the biological
level (Zheng et al., 2018). Increasing evidences also showed
its potential on illustrating the molecular mechanisms of the
complex disease.

In this study, two factors and their interaction, CAG
(phonotype) and time, were included to screen the metabonomic
biomarkers associated with CAG in a rat model over time. Thus,
ASCA was selected, since it can not only include underlying
multiple factors and their interaction, but also facilitate to
interpret the various effects of different factors. We constructed
CAG rat models and examined the urinary time-dependent
metabonomic analysis using NMR. Then, network pharmacology
was used to decipher the mechanical network of CAG based
on the obtained potential metabolic biomarkers related to CAG,
time, and their interaction.

MATERIALS AND METHODS

Reagents and Materials
Deuterium oxide with 0.05% 3-trimethylsilyl-(2, 2, 3, 3-2H4)-
1-propionate (TSP) (D2O, 99.9%) was purchased from Sigma-
Aldrich (St. Louis, MI, United States). Sodium deoxycholate

was provided by Beijing Aoboxing Bio-tech, Co., Ltd., (Beijing,
China). The assay kit for pepsin activity (PA) was purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
Ultrapure water (18.2 M�) was prepared with a Milli-Q water
purification system (Millipore, Molsheim, France). All other used
chemicals were of analytical grade.

Animal Treatment
All procedures for animal treatment were in accordance with the
National Guidelines for Experimental Animal Welfare (MOST,
China, 2006) at the Center for Animal Experiments, which
had full accreditation from Animal Ethics Committee of Shanxi
University and were exerted to minimize animal suffering and
the number of animals necessary for the attainment of reliable
data. SPF-grade male Sprague-Dawley (SD) rats (body weight,
180 ± 20 g), were obtained from Vital River Laboratory Animal
Technology Co., Ltd., (Beijing, China). They were maintained at
a constant humidity (ca. 60%) and temperature (ca. 23◦C) with a
light/dark cycle of 12 h.

After 1 week of adaptation, the rats were randomly separated
into 2 groups according to the body weights (n = 6), control
group and CAG group. The replication of CAG rat model was
performed according to Zhang’ experimental method with some
modifications (Zhang et al., 2013). From the 1st day, those rats in
model group were administrated freely with ammonia solution
(0.1%) and sodium deoxycholate (20 mmol/L) on alternate
days, respectively. Meanwhile, the animals were treated with the
hunger disorder method, which rats had free access to normal
diet for 2 days, and then fasted for 1 day. The cycles were
performed during the whole experimental period of 10 weeks.
The control group had free access to normal chow and water.
Body weights were measured every 6 day in 1st month and every
3 day in the followed experimental period.

Sample Collection
Urine samples were collected individually at 0-, 4-, 6-, 8-,
and 10-week in metabolic cages for 24 h urinary (containing
0.05% sodium azide) collection after a 12 h fast. Whole urine
samples were centrifuged for 10 min at 3,333 g. And then
the supernatant was carefully collected in fresh polypropylene
tubes, stored at −80◦C for further analysis. After the last
body weight determination at the 10th week, rats were
anesthetized with 10% urethane. Blood samples were collected,
and centrifuged at 2,500 g for 15 min at 4◦C. The resultant
plasma samples were stored at −80◦C for PA analysis. The
gastric tissues were immediately removed and washed with
physiological saline. One part of gastric tissues was cut and
put into a tube containing 10% formaldehyde solution for the
histopathology analysis.

Biochemistry Assays and Histological
Examination
Biochemical index of gastric PA was measured according to the
instruction of enzymatic kit. Gastric tissues were fixed with 10%
formaldehyde solution for 48 h, embedded in paraffin, 5 mm
sectioned, and stained with hematoxylin-eosin (HE). Images
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were obtained and studied under light microscopy (Olympus
BX53, Tokyo, Japan).

Urinary Sample Preparation and NMR
Analysis
Five hundred microliter of urine was mixed with 200 µL
phosphate buffer (0.2 M Na2HPO4/NaH2PO4, pH 7.4)
containing D2O for the purpose of field lock and TSP as a
chemical shift reference. The whole mixtures were eddied for
30 s, and centrifuged at 14,800 g for 15 min (4◦C). Finally,
550 µL of sample supernatant was placed in a 5 mm NMR tube
for NMR analysis.

The one dimensional (1D) NMR spectra and two-dimensional
(2D) NMR spectra were recorded at 298K on a Bruker 600 MHz
AVANCE III NMR spectrometer (Bruker BioSpin, Bremen,
Germany) equipped with a Bruker 5 mm PA BBO probe operated
at 600.13 MHz 1H frequency. Samples were analyzed using
nuclear over hauser effect spectroscopy (NOESY, RD-90◦-t1-90◦-
tm-90◦-acquire) NMR spectra with water suppression. Each 1H
NMR spectrum of urine consisted of 64 scans requiring a 2.654 s
acquisition time with the following parameters: spectral width
of 12345.7 Hz, spectral size of 65536 points, and a relaxation
delay (RD) of 1.0 s.

For spectral assignment purposes, two-dimensional (2D)
NMR spectra including 1H-1H correlation spectroscopy (COSY),
1H-13C heteronuclear single-quantum correlation spectroscopy
(HSQC) were recorded. 2D 1H-1H COSY spectra were analyzed
using the noesygpprqf pulse sequence for urine samples and
following parameters: 1.5 s RD and 6602.1 Hz spectral width in
F2 and 6601.5 Hz in F1. 2D 1H-13C HSQC spectra were analyzed
using the hsqcetgpsisp pulse sequence for urine samples and
following parameters: 1.2 s RD and 6602.1 Hz spectral width in
F2 and 36220.3 Hz in F1.

Metabolite peaks were interpreted with available biochemical
databases, such as HMDB1 and KEGG2. Further validations were
achieved by extensive analysis of 2D NMR spectra (COSY and
HSQC), and the cross peaks in HSQC were input in COLMAR
13C-1H Query server3. The cutoff value for 1H and 13C were set
as 0.06 and 0.6 ppm, respectively. These results were manually
checked by interactive user interface using the “Show Me” button,
as well as the parameter of matching ratio and uniqueness.

Data Processing and MetaboAnalyst
Analysis
The collective 1D NMR spectra were corrected for phase and
baseline distortions using MestReNova (version 8.0.1, Mestrelab
Research, Santiago de Compostella, Spain). The 1D NMR spectra
of urine were referenced to the chemical shift of TSP (δ 0.00 ppm),
respectively. The regions δ 0.50–9.00 ppm was reduced into
integral bins of equal width (0.001 ppm). The region of δ 4.68–
5.19 ppm was excluded from the analysis to eliminate the effect
of imperfect water saturation.

1http://www.hmdb.ca/
2http://www.kegg.com/
3http://spin.ccic.ohio-state.edu/index.php/hsqc/

And then the generated data was modified to be the accepted
data formats described in the “Time-series/Two-factor Design”
module of MetaboAnalyst analysis4 (Xia and Wishart, 2016),
which contained multiple types of variation among phenotype
(CAG), time, and their interaction.

The dataset was first normalized to constant sum and
pareto scaled, and then introduced into ASCA, which was
used to investigate the different variations including phenotype,
time, and their interaction. Its major advantage was that
each sub model can be analyzed separately without being
confounded with the other variation sources. SPE (squared
prediction error) and Leverage were proposed to evaluate the
fitness of the model. SPE was used to test the fitness of
a model for the metabolite. Leverage was used to evaluate
the importance of the metabolite to the model. Variables
with low SPE and higher leverage should have significant
contributions to the model and were picked out as influentially
affected metabolites.

Biological Function Analysis of Targeted
Proteins Based on Network
Pharmacology
To further analyze the important roles of the potential
biomarkers, their upstream proteins were firstly data-mined
from Metscape of cytoscape, which was an open source
software to integrate biomolecular interaction networks
with high-through put expression data into a unified
conceptual framework based on KEGG (Gao et al., 2010).
Meanwhile, the proteins related with CAG were collected
to characterize the pathological protein network of CAG
based on OMIM5 and Gene Cards databases6. These collected
proteins were all imported to STRING for protein-protein
interactions analysis (PPIs) to link their interactive actions.
In such a network, a node represented a protein, and
the relationship between them is represented by the lines
between the nodes.

To analyze the synthetic biological functional annotation
information, the screened proteins were corrected to be their
official gene symbol, and imported into DAVID database7,
which could find out the most significant enrichment biological
annotation. Homo sapiens were selected as the restricted specie.
The molecular function information of the genes was detected
based on the Gene Ontology analysis. The charts were imported
out as Excel format with a threshold (p < 0.05).

Statistical Analysis
All values were expressed as mean ± SD. A two-tailed unpaired
t-test by SPSS 16.0 (Chicago, IL, United States) was applied
to analyze those significant differences between two groups
including the 0th week and the other individual groups. The value
of p < 0.05 was considered statistically significant.

4http://www.metaboanalyst.ca/
5http://www.ncbi.nlm.nih.gov/omim
6http://www.genecards.org/
7https://david.ncifcrf.gov/
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FIGURE 1 | Histological examination of gastric tissues from control (A) and
CAG (B) rats.

RESULTS

Weight Change, Clinical Biochemistry,
and Histopathology
As depicted in our previous study (Cui et al., 2017), the weight
growth tendency of CAG rats were significantly slower compared
with control rats, which was an obvious symptom of CAG.
Meanwhile, the level of PA was decreased by 43.8% in CAG group
at the 10th week (p < 0.01). The gastric mucosa histopathology
of model rat was also markedly changed, where glossy gastric
mucosa folds were flat or disappeared with pale appearance. Light
microscope showed that irregular arrangement and reduction
layer of gastric gland in model rats, while increasing thickness of
musculoris mucosa, with partly infiltration of eosinophilic cells,
inherent glands reduction, and significant atrophy (Figure 1).

Candidate Biomarkers Screening Based
on ASCA Analysis
Thirty-two metabolites were firstly identified based on the
available biochemical databases and human metabolome
database (HMDB) (Supplementary Table S1). Example
of the typical 1D and 2D NMR spectrum was showed in
Supplementary Figures S1, S2. 853 variables were finally
obtained from urine samples after normalization for the followed
ASCA. Supplementary Figure S3 showed the effects before and
after normalization, which obtained remarkable improvement
in the data structure. Here, ASCA was applied to analyze the
urinary dynamic metabonomic data consisting of different
variations associated with the animals experiment (phenotype,
CAG), time and their interaction (Supplementary Figure S4).
Supplementary Figure S5 showed the validation of the ASCA
model by a permutation approach (p < 0.05), which indicated
that the applied model was suited for the following the candidate
biomarkers screening. The major patterns based on PC1 of the
corresponding sub models were showed in the score scatter
plots, which were associated with phenotype factor, time factor,
and their interaction, respectively, (Supplementary Figure S6).
The results indicated that the abilities of the corresponding
sub model were enough to explain the original variables and
the model were stable and reliable for the time-dependent
metabonomics data.

The major patterns associated with factor A (phenotype),
factor B (time variation), and their interaction graphically

displayed the relationship between eigenvalues and factors
(Figure 2). The significant variables associated with a specific
factor were identified based on the leverage/SPE plots. Table 1
showed the identified metabolites well-modeled by the ASCA
procedure according to the factors for the phenotype, time
and their interaction. A total of 8 metabolites were assigned
based on the literature and available biochemical databases,
and further evaluated by COLMAR 13C-1H Query server. As
results, 4 (alanine, lipids, creatine, and dimethylglycine), 2
(α-ketoglutarate and alanine) and 5 (succinate, α-ketoglutarate,
alanine, hippurate, and allantoin) urine metabolites were
finally selected as the candidate biomarkers related to
leverage, SPE and their interaction, respectively. It was
interesting that alanine was the only one contributed to
the two experimental factors and their interactions. The
metabolite α-ketoglutarate was contributed to the time-
dependent response and the interactions with phenotype.
Almost of all the screened metabolites were characterized
to be relative with phenotype or the interactions with time
factor. So the screened eight metabolites were all recognized
as the potential biomarkers related to the progression of
CAG based on ASCA.

Typical Metabonomics Alteration of the
Candidate Biomarkers
Figure 3 presented the alterations of the selected metabolites
during the whole experiment. It could be observed that most of
these metabolites showed slight change from 4th to 10th week
in control group, which indicated that the observed changes
in metabolic profiles were related to the progression of CAG,
but not due to the age of rats. The acute metabolic alteration
might be due to the unreliable effect induced by external
environment. Compared with normal rats, levels of alanine,
succinate, α-ketoglutarate were observed to be maximization
of the difference in model rats. At 6th weeks, there were
no changes in succinate, α-ketoglutarate levels between them.
Meanwhile, creatine was high at this time point and partly
restored to control levels during the late stages of CAG.
Dimethylglycine was reduced during the progression of CAG,
with a drastic reduction seen at 4th week in CAG mice.
Compared with the normal rats, allantoin was lower in the
CAG rats throughout the experimental period. Additionally,
two other metabolites, hippurate and lipids, were changed
in CAG rats of 8 weeks. These changes indicated altered
gut microbiome might be involved into the development and
progression of CAG.

Biological Function Analysis of Targets
Proteins
As showed in Figure 4, 57 upstream proteins were collected
as the related metabolic targets of CAG based on Metscape
(Supplementary Table S2), while 148 targeted proteins related
to CAG were found through OMIM and Genecard databases
(Supplementary Table S3). Among them, glutamic-pyruvic
transaminase (GPT) was both the same one. 98 nodes and
3348 edges were involved and used to construct their PPIs
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FIGURE 2 | Leverage/SPE scatter plots of the ASCA variables submodels for phenotype, time and their interactions. Metabolites in red region have high loadings
that follow the expression patterns of the submodels. Metabolites in blue region have expression patterns that are different from the major patterns.

network, while three proteins were not interacted with the
others. The thickness and the color of the edge represented the
strength of the interaction of these related proteins. Through
the network we could intuitively see that there existed the
relationships between the upstream targets and the disease
targets, which indirectly testified our metabonomics results.
Among those 57 upstream proteins, 46 key targeted proteins
were screened to analyze their biological functions in the
development of CAG, which could linked more targeted
proteins related to CAG.

Figure 5 illustrated the significantly biological functions
and their hits number. The results suggested that the
pathogenesis of CAG involved multiple abnormities of
biological process, which were related to mitochondrial
function, oxidation reduction, cofactor binding, generation
of precursor metabolites and energy (17 targets), nucleotide
binging, coenzyme metabolic process, cofactor metabolic
process, cellular respiration and tricarboxylic acid cycle.

Especially, mitochondria were the most important targeted
organelle referred 30 targeted proteins.

DISCUSSION

The common static metabonomics analysis was often used to
depict the single cross section of the given pathological state
of the disease, without fully considering the dynamic process
of their progression. As our previous reported, 18 urinary
metabolites, including isoleucine, valine, 3-hydroxybutyrate,
acetate, succinate, and α-ketoglutarate, etc., were screened from
a single time node (the 10th week) using orthogonal partial
least squares discriminate analysis (Cui et al., 2017). These
potential biomarkers paved a way for elucidating the underlying
mechanisms of CAG. However, these significant variations just
depicted a special pathologic state, which did not capture the
development of CAG, which is a dynamics process.
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factor are very complex and contain multiple types of variation:
the variation originating from differences related to disease
that are constant in time, the time-dynamic variation of each
individual, or their combinations (Smilde et al., 2010). So it
is necessary to separate the original dataset into sub-modules
to interpret the systemic effects derived from the biological
information. Meanwhile, the observation at different time points
and from different replications can be correlated in time-course
analysis, which might lead to inaccurate interpretation of the data
and prevent achievement of consistent biological conclusions in
common static methods.

In the present work based on ASCA, dimethylglycine,
succinate, α-ketoglutarate, hippurate and allantoin were all
probed in the static and dynamic metabonomics analysis, which
were correlative with the factors related to phenotype, time,
and their interactions. Another three metabolites only detected
through ASCA, alanine, lipids and creatine, were assigned to the
phenotype variations. These results suggested that the dynamic
metabonomics could discriminate the different variations linked
various experimental factors.

Two metabolites (α-ketoglutarate and alanine) were found to
be characterized as the time-resolved metabolic biomarkers.
Alanine was a new potential biomarker related to the
development of CAG, which was not identified from our
previous static dynamic metabonomics study (Cui et al., 2017).
Alanine has been reported as possible molecular markers
related to the human gastric mucosa differentiation toward
preneoplastic and neoplastic conditions (Calabrese et al., 2008).
The alteration of alanine levels observed in the urine samples
of 6- to 10-week-old CAG rats confirmed impaired gastric
function. α-Ketoglutarate was an intermediates of tricarboxylic
acid (TCA) cycle, could mediate the energy metabolism in the
body. Its level was reduction at 4-, 8-, and 10-week in CAG
rats, which could be attributed to the dysfunction of TCA
cycle in CAG. Analysis of their temporal changes revealed that
time has a non-negligible contribution to the total variation.
Meanwhile, these two metabolites were also associated with
the interactions between phenotype factor and time factor,
which further demonstrated that these metabolites underwent
time-dependent changes during the progression of CAG.

Four phenotype metabolites, alanine, creatine,
dimethylglycine and lipids, were involved into the progression
of CAG. Creatine, biosynthesized from arginine, was reported to
ascribe its protective effect to energy metabolism and oxidative
resistance in gastro biopsy specimens of the antral and corpus
mucosa (Gruno et al., 2006). In our study, the decreased creatine
at 4-, and 6-week was observed in CAG rat urine samples,
indicating that it might be involved into oxidative stress.
Dimethylglycine is an anti-stress nutrient with antioxidant
properties. Recently, studies have implicated the gastroprotective
effect of dimethylglycine could be contributed to its free radical
scavenging activity and cytoprotection of gastric mucosa (Bai
et al., 2016). The reduction of dimethylglycine during the whole
experiment also suggested that the defense of oxidative stress was
damaged induced by CAG. Lipids were necessary for cell energy
generation and lipid synthesis, which fulfill the cell biological
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FIGURE 3 | The changes of the endogenous metabolites based on ASCA at different stages.

processes. It is reported that inhibition of lipid production was
responsible for gastric cancer cell proliferation impairment
induced by glycerol uptake reduction (Li et al., 2016). In this
study, urine level of lipids was decreased from 6- to 10-week in
CAG rats, suggesting the disturbances of lipid play key roles in
CAG development.

Five different variations were screened out to depict the
interaction between phenotype and time factors based on ASCA.
Allantoin, a product of purine metabolism, was an indication
of high levels of reactive oxygen species via non-enzymatic
means. da Silva et al. (2018) also reported that allantoin could
possess gastroprotective activity through anti-inflammatory,
anti-oxidative, antisecretory and cytoprotective mechanisms. It
was also found to be depressed under CAG condition, indicated
that the pathology of inflammatory, oxidative, and secretory
participated into the development of CAG. The emerge of
hippurate in urine sample indicated that gut flora metabolism
was involved into the development of CAG (Diao et al., 2014).
Succinate was another intermediates of TCA cycle, suggested that
the alterations of energy metabolism played important role under
CAG condition. Alaine and α-ketoglutarate were both assigned
to the interactive variations. All the result demonstrated that the
development of CAG was a dynamic process, where ASCA was a
useful tool to illustrate its biochemical process.

In the present work, we have constructed a novel
metabonomics-based network pharmacology approach to
illustrate the mechanism of CAG linking experimental targets

and predicted targets together. ASCA could discriminate
the effect of phenotype factor (CAG) from time factor
on metabolic alterations, which really characterized the
development of disease. Network pharmacology could integrate
more comprehensive targets for targets prediction and linking
their interactions. 148 proteins were collected to construct the
CAG network, which have been reported that played import
roles in the pathological development of CAG. PPIs analysis
revealed that 3348 links existed the interactions among 198
proteins combining the disease targets and the predicted targets
based on the screened metabolites. All these proteins should be
recognized as the targets of CAG. GPT, one upstream protein of
alanine and α-ketoglutarate, have been reported to associate with
upper gastrointestinal bleeding (Moledina and Komba, 2017).
Integrating of them could obtain more comprehensive proteins
network related to CAG. However, PPIs among predicted
targets and experimental targets have not been experimentally
proved. Further experimental work can be applied to uncover
their relationships.

CONCLUSION

In summary, this study aimed to screen the candidate biomarkers
associated with the development of CAG integrating of
metabonomics, ASCA, and network pharmacology. The systemic
effects derived from phenotype, time and their interactions
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FIGURE 4 | Protein-protein interactions analysis (PPIs) linking their interactive actions of the upstream proteins related to relate to the endogenous metabolites
based on ASCA and the collected targeted proteins related to CAG based on OMIM and Genecard databases.

FIGURE 5 | Biological function of the targeted proteins relate to the endogenous metabolites based on ASCA.

were further exacted based on the application of ASCA,
which allowed separating the urinary dynamic metabonomics
dataset into related submodels. As results, 4 (alanine, lipids,
creatine, and dimethylglycine), 2 (α-ketoglutarate and alanine),
and 5 (succinate, α-ketoglutarate, alanine, hippurate, and
allantoin) urine metabolites were finally selected as the candidate

biomarkers related to phenotype, time and their interaction,
respectively. The followed network pharmacology analysis
further revealed that the predicted targets were involved into
mitochondrial function, oxidation reduction, cofactor binding,
generation of precursor metabolites and energy, nucleotide
binging, coenzyme metabolic process, cofactor metabolic process,
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cellular respiration, and tricarboxylic acid cycle. Additional
studies are still necessary for further evaluation and validation of
the biomarkers identified in the current study.
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