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Temperature is a significant environmental factor in aquaculture. To investigate the 
physiological responses during temperature fluctuation (28~13°C), experimental shrimps 
(Litopenaeus vannamei) were treated with gradual cooling from acclimation temperature 
(AT, 28°C) to 13°C with a cooling rate of 7.5°C/day and rose back to 28°C at the same 
rate after 13°C for 24 h. Hepatopancreas histological changes, plasma metabolites 
concentrations, relative mRNA expression of unfolded protein response (UPR) pathway 
and apoptosis in hepatopancreas and hemocyte were investigated. The results showed 
that with the decline of temperature, the number and volume of the secretory cells in 
hepatopancreas increased significantly, the tubule lumen appeared dilatated, and the 
epithelial cell layer became thinner. The contents of glucose (Glu) significantly decreased 
to the minimum value of 13°C for 24 h. The contents of triglyceride (TG), total cholesterol 
(TC), and total protein (TP) increased and reached the peak of 13°C for 24 h. Alkaline 
phosphatase (ALP) and alanine aminotransferase (ALT) activities in plasma reached the 
lowest and highest value in 13°C, respectively. The expressions of all genes related to 
UPR and apoptosis in the hepatopancreas and hemocytes were significantly changed 
during the cooling process and reached the highest level of 13 and 13°C for 24 h, 
respectively. During re-warming stage, the histopathological symptoms got remission and 
each of the plasma metabolite concentrations and gene expressions returned to AT levels. 
These results revealed that pacific white shrimp can adapt to a certain level of temperature 
fluctuation by self-regulation.

Keywords: Litopenaeus vannamei, temperature, endoplasmic reticulum stress, apoptosis, self-regulation

INTRODUCTION

The pacific white shrimp Litopenaeus vannamei, with a wide range of salt-tolerance, rapid 
growth, and other characteristics suitable for intensive aquaculture, has become one of the 
most important aquaculture shrimps in the world. However, a variety of environmental stimuli 
affect the growth of shrimp, such as changes in pH (Han et  al., 2018a), salinity (Li et  al., 2008; 
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Wang et  al., 2016), dissolved oxygen (DO) (Han et  al., 2018b), 
temperature (Madeira et  al., 2015), and pollutants like nitrite, 
ammonia, and sulfide (Duan et  al., 2018b).

Since the start of global climate change, various extreme 
climates have happened frequently. Previous studies have 
indicated that many extreme weather events which were associated 
with drastic temperature fluctuation can directly affect the 
growth, physiological performance, and survival of animals 
(He et  al., 2018; Zhang et  al., 2019). It has been studied that 
temperature changes may lead to growth arrest, stoppage of 
feeding, and swimming or even death in 13°C (Fan et  al., 
2013; Huang et  al., 2017; Xu et  al., 2018). Our previous study 
has indicated that glucose-regulated protein 78  kDa (GRP78) 
was significantly up-regulated in the hepatopancreas of 
L. vannamei under 13°C for 24 h cold-stress (Fan et al., 2016). 
GRP78, also known as immunoglobulin-binding protein (BIP), 
is a central regulator of endoplasmic reticulum stress (ERS) 
and regulated the process of unfolded protein response (UPR) 
and apoptosis (Dejean et  al., 2006; Nakka et  al., 2010). At 
present, studies on ERS are mainly focused on mammals and 
the UPR pathway (Cao and Kaufman, 2012).

UPR is a self-protective mechanism which can promote 
cell survival in response to ERS. It includes three classical 
signaling pathways: the activating transcription factor 6 (ATF6) 
pathway, the inositol-requiring enzyme-1-X-box binding protein 
1 (IRE1-XBP1) pathway, and the protein kinase RNA (PKR)-
like ER kinase-eIF2α (PERK-eIF2α) pathway (Mori, 2009; Costa 
et  al., 2011). In addition, apoptosis signals will be  generated 
if stress is prolonged for protecting the organism by eliminating 
the damaged cells. Apoptosis signal-regulated kinase 1 (ASK1) 
is essential for the continuous activation of c-Jun NH2-terminal 
kinases (JNK) and induces cell apoptosis (Tobiume et al., 2001). 
Cysteine-containing aspartate-specific proteases (caspases) are 
a family of proteases that perform apoptosis in animals. Apoptosis 
mediated by ERS triggers a specific cascade of caspase 12, 9, 
and 3, and the activation of caspase 3 (CASP3) indicates that 
apoptosis has entered an irreversible stage (Morishima et  al., 
2002). In invertebrates, UPR is widely recognized as the key 
to ER stress response (Chen and He, 2019). However, studies 
of the UPR signaling pathway and apoptosis in L. vannamei 
mainly focused on the immune function, especially in response 
to WSSV infection (Chen et  al., 2012; Wang et  al., 2013; Xu 
et  al., 2014; Yuan et  al., 2016, 2017, 2018). UPR in response 
to temperature fluctuation has not been reported.

Additionally, it has been identified that hepatopancreas 
histology could be  used to monitor the impact of a stressed 
environment, showing ultrastructural alterations at the early 
stage of stress (Collins, 2010). Environmental changes like pH 
stress can cause change or damaged of hepatopancreas cells 
(Tao et  al., 2016). However, it is still not clear about the 
change of hepatopancreas histology during temperature 
fluctuation process.

In the present study, based on the statistics of weather 
conditions from the winter (November, December and January) 
in Guangdong from 2017 to 2018 (China Meteorological 
Administration, www.cma.gov.cn), we  found that the average 
daily temperature difference of winter in Guangdong was 7.52°C. 

The annual cold wave causes huge economic losses to the 
L. vannamei breeding industry in China. However, little was 
known about the responses of the shrimp during the process 
of temperature gradual cooling and warming. Thus, 
we  investigated (1) histological section of the hepatopancreas, 
(2) metabolite concentrations of plasma, and (3) UPR gene 
and cell apoptosis gene expressions of hepatopancreas and 
hemocyte in L. vannamei during temperature fluctuations. 
These results could provide valuable reference to analyze 
the adaptation mechanism of the shrimp in response to 
temperature fluctuation.

MATERIALS AND METHODS

Experimental Shrimp and  
Culture Conditions
The experimental shrimps, with an average weight of 5.4 ± 0.7 g, 
were obtained from a commercial farm in Panyu (Guangdong, 
China). The shrimps were immediately transported to the lab 
and acclimated in 500  L filtered, aerated (oxygen pump, 
HAP-120, HAILEA, Guangdong, China) seawater tanks 
(Guanzhong, K500  L, Jiangsu, China) at least 4  days before 
experiments. During the acclimation stage, the water salinity 
and temperature in tanks were consistent with that of the 
culture ponds (salinity 5‰, pH 8.3  ±  0.1 and temperature 
28  ±  1°C). Commercial shrimp feeds (Haida Group Feed, 
Jieyang, China) were given two times per day (5% of shrimp 
body weight per time).

Treatment
Sixty-three healthy shrimps were randomly divided into three 
replicate tanks. They were placed in an artificial climate incubator 
(Laifu, Ningbo, China), and the water temperature was decreased 
from acclimation temperature (AT, 28°C) to 13°C with a cooling 
rate of 7.5°C/day (2.5°C/8  h). After 13°C for 24  h, the water 
temperature rose back to 28°C at the same rate.

Sample Collection
Tissue Slice
At each temperature point [28, 23, 18, 13, and 13°C for 24  h 
during cooling process, 18 and 28°C during return process 
(r18 and r28°C)], the whole hepatopancreas of one shrimp 
from each tank were dissected from the cephalothoraxes and 
fixed with 4% paraformaldehyde (Biosharp, China) for tissue 
fixation and then stored in 4°C for paraffin sections by Servicebio 
(Wuhan, China).

Plasma and Gene Expression Analysis
Hemolymph was extracted from the ventral sinus of shrimp 
at each temperature point as same as tissue slice, using a 1  ml 
sterile syringe containing an equal volume of ice-cold 
anticoagulant solution (27  mM trisodium citrate, 385  mM 
sodium chloride, 115  mM glucose, pH 7.5). Hemolymph of 
two shrimps from each tank was mixed as one sample, three 
repeats. After being centrifuged at 3000 rpm (844g) for 10 min 
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in 4°C, the supernatant fluid was immediately stored in −80°C 
for analysis of plasma metabolite concentrations. The pelleted 
hemocytes were collected, instantly frozen in liquid nitrogen 
and then stored at −80°C for analysis of gene expression (Xu 
et  al., 2018). After hemolymph sampling, hepatopancreases 
were dissected, frozen in liquid nitrogen, and stored in −80°C 
for gene expression analysis.

RNA Extraction and cDNA Synthesis
Total RNA was extracted from hemocytes and hepatopancreases 
using RNAiso Plus reagent (TaKaRa, Japan) following the 
manufacturer’s protocol. RNA quality was assessed by 
electrophoresis on 1.0% agarose gel, and concentration was 
tested by mySPEC (VWR, USA). Total RNA was purified, and 
first-strand cDNA was synthesized using ReverTra Ace® qPCR 
RT Master Mix with gDNA Remover (TOYOBO, Shanghai) 
according to the manufacturer’s instructions.

Real-Time Quantitative PCR
The SYBR Green real-time Polymerase Chain Reaction (PCR) 
assays were carried out on a CFX Connect™ Real-Time System 
(Bio-Rad) using THUNDERBIRD® SYBR® qPCR Mix 
(TOYOBO). Previous studies showed that the expressions of 
β-actin were constant after environmental stimuli such as 
ammonia (Duan et  al., 2018a), dissolved oxygen (Han et  al., 
2018b), and pH stress (Han et  al., 2018a). Therefore, we  used 
β-actin as the housekeeping gene, and specific primer sequences 
were designed based on the coding sequence of the target 
genes using Primer Premier 6.0 software (Table 1). The real-
time PCR program was 95°C for 1  min, followed by 40  cycles 
of 95°C for 15  s, 60°C for 15  s, and 72°C for 45  s, followed 
by 1 step of 95°C for 10  s. Melting curves were obtained by 
increasing the temperature from 65 to 95°C (0.5°C/s) to denature 
the double-stranded DNA. The relative mRNA expressions were 
calculated by the comparative Ct method (2−ΔΔCt).

Statistical Analyses
All the data were presented as mean  ±  SD of triplicates. Data 
were statistically analyzed by SPSS 19.0 with one-way ANOVA 
and Tukey test. p  <  0.05 was significant difference.

RESULTS

Hepatopancreas Histological Analysis
According to the results of hepatopancreas with HE  staining, 
the hepatocytes in 28°C exhibited the well-organized tubules. 
With the decrease of temperature, stellate tubule lumen appeared 
dilatation, and some vacuoles appeared and ruptured to make 
the epithelial cell layer thinner. The secretory cells (“blasenzellen”, 
B-cells), which are the main site for synthesis of digestive 
enzymes, typically contain a single large secretory vesicle. The 
number and volume of B-cells significantly increased during 
the cooling process. All these symptoms got remission during 
the temperature return process (Figure 1).

Plasma Analysis
Analysis of plasma metabolite concentrations is shown in 
Figure 2. Compared to the AT group, the contents of glucose 
(Glu) decreased to the minimum value (50.78  mmol/L) at 
13°C for 24 h. After temperature rose back to 28°C, it recovered 
to the level nearly of AT (r28°C  =  62.82  mmol/L, 
AT = 64.81 mmol/L) (Figure 2A). The contents of triglyceride 
(TG) and total cholesterol (TC) decreased after cooling and 
reached the lowest (TG  =  0.25  mmol/L, TC  =  0.39  mmol/L) 
at 23°C, and then increased gradually and reached the peak 
of 0.49  mmol/L and 1.12  mmol/L, respectively, in 13°C for 
24  h (Figure 2B), while the change of TG contents was not 
statistically different with the AT group. Changes of total 
protein (TP) content during the cooling process were similar 
to the TC and TG. During the return process, the content 

TABLE 1 | The real-time PCR primers used in this study.

Primer names Nucleotide sequences (5′–3′) Protein ID

LvGRP78-F TCATTGCCAACGACCAGGGT AFQ62791.1
LvGRP78-R TCCGATGAGACGCTTGGCAT
LvPERK-F TCCTGACATCATCATTATCATCTCC XP_027239142.1
LvPERK-R TGAAGCTCATGCTCTCTGCCAATCC
LveIF2α-F GGAACCTGTCGTTGTCATCAGAGTAG AGI97278.1
LveIF2α-R AGAAGCTCTCCAACATGCCGAATG
LvATF4-F GCCACGATTCAAGATGCTGC AGI97279.1
LvATF4-R TCCTCCTCGTCCATGCCATA
LvATF6-F CTGTTGGGACAAGGACCATAAGC AYM00394.1
LvATF6-R GAATTGTAGGTGTGGCAGCTGTTA
LvIRE1-F TGGTGAGAAGCAGCTTGTGTTGG AFQ62792.1
LvIRE1-R ACTGTTGATGAAGAGCCACTTGTAGC
LvXBP1-F GTGGATCAGCAGTATCCCAACC AFQ62793.1
LvXBP1-R TGCCAAGGCAGCTGTATTGA
LvCasp3-F ACATTTCTGGGCGGAACACC AGL61582.1
LvCasp3-R GTGACACCCGTGCTTGTACA
LvASK1-F GCTGTGTTGAAGTCCGAGGAGAAG AKI88007.1
LvASK1-R AGCCAAGCAACCAACTCCATATCG
LvActin-F GACTACCTGATGAAGATCC AAG16253.1
LvActin-R TCGTTGCCGATGGTGATCA
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FIGURE 1 | Hepatopancreas tissue structure (×400) of L. vannamei with HE dying during temperature fluctuation. AT represents acclimation temperature (28°C), 
and r18 and r28°C represent 18 and 28°C in temperature return process, respectively. The letters in the figure indicate: A, ruptured cells; B, B-cell.
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of TP reduced to 20.67  g/L in r28°C (Figure 2C). Alkaline 
phosphatase (ALP) activities in plasma decreased significantly 
after cooling and reached the lowest (2  U/L) at 13°C. After 
temperature rose back to 28°C, ALP activities increased to 
15.67  U/L, which is near the activities at 18°C (17.67  U/L) 
in the cooling process. Alanine aminotransferase (ALT) activities 
remained stable from AT to 18°C and then significantly increased 
and reached the highest level (70.33  U/L) at 13°C. During 
the return process, ALT activities decreased to the level near 
AT (43.67  U/L) (Figure 2D).

Unfolded Protein Response and Related 
Apoptosis Gene Expression to 
Temperature Fluctuation in the 
Hepatopancreas
In the hepatopancreas, the relative expressions of GRP78 
increased significantly at 18°C and reached the peak at 13°C, 
which is about fourfold that at AT. During the next 24  h 
maintaining in 13°C and the return process, GRP78 expressions 
significantly decreased and they were near to the level of AT 
in r28°C (Figure 3A). Expressions of apoptosis related genes 
including CASP3 and ASK1 showed the same trend with the 
PERK sub-pathway and their highest expression levels appeared 
in 13°C (Figure 3B). In UPR, expressions of ATF6 showed 
the same trend found in GRP78 (Figure 3C). In the IRE1 

sub-pathway, expressions of IRE1 and XBP1 reached the peak 
at 18°C (Figure 3D). In the PERK sub-pathway, expressions 
of PERK, eIF2α, and ATF4 increased gradually during the 
cooling process, and the highest expressions (16.67, 9.74, and 
6.21 folds compared with that at AT, respectively) appeared 
at 13°C and then decreased significantly. There was no obvious 
difference among the expressions of eIF2α and ATF4 between 
r28°C and AT (Figure 3E).

Unfolded Protein Response and Related 
Apoptosis Gene Expression to 
Temperature Fluctuation in Hemocyte
In the hemocyte, the expression level of GRP78 remained 
stable from AT to 13°C and then significantly increased in 
13°C for 24  h, which is more than twofold the level in AT. 
After temperature rose back, expressions of GRP78 were 
approximate to the level of AT in r28°C (Figure 4A). For 
genes related to apoptosis, expressions of CASP3 and ASK1 
showed the same trend with the PERK sub-pathway (Figure 4B). 
In UPR, the expressions of ATF6 decreased significantly after 
cooling in 23°C and then increased gradually and reached 
the highest level in 13°C for 24 h compared with the expression 
in AT. After temperature rose back, it returned to nearly the 
level of AT (Figure 4C). In the IRE1 sub-pathway, IRE1 
and XBP1 showed a similar trend as ATF6 (Figure 4D). 

A B

C D

FIGURE 2 | Contents of glucose (Glu, A), triglyceride (TG) and total cholesterol (TC) (B), total protein (TP, C) and alkaline phosphatase (ALP) and alanine 
aminotransferase (ALT) (D) activities in plasma of L. vannamei during temperature fluctuation. AT represents acclimation temperature (28°C), r18 and r28°C 
represent 18 and 28°C in temperature return process, respectively. The bars represent the mean ± S.D. (n = 3). Statistical significance was calculated by one-way 
ANOVA. Bars with different letters indicate statistical differences (p < 0.05).
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In the PERK sub-pathway, expressions of PERK, eIF2α, and 
ATF4 increased gradually after cooling, reaching at 13°C for 
24  h approximately seven-, four-, and twofold, respectively, of 
the levels found in AT, but after temperature rose back the 
expressions decreased (Figure 4E).

DISCUSSION

Global climate change is impacting marine and estuarine 
aquaculture. It is generally known that coastal marine systems 
are some of the most important ecologically and socio-
economically on the planet. Temperature, as one of the interacting 
climatic variables, will drive future ecological changes in marine 
systems. Understanding how temperature change will affect 
the aquatic organisms is a key issue worldwide. L. vannamei, 
mainly distributed in the sea of Ecuador and introduced to 
China in 1988, is one of the most important aquaculture 
shrimps in the world. As its origins are tropical, temperature 
fluctuation is a serious challenge to its survival, growth, and 
distribution (Peng et  al., 2015; Cottin et  al., 2016).

In this study, the hepatopancreas histological changes, plasma 
metabolites concentrations, and relative mRNA expression in 
the UPR signaling pathway and apoptosis genes induced by 
ERS in L. vannamei during cold stress were studied.

Hepatopancreas Histological Change 
During Temperature Fluctuation
The hepatopancreas as a vital organ of crustaceans is involved 
in excretion, molting, diverse metabolic activities, and storage 
of energy reserves (Yepiz-Plascencia et  al., 2000; Verri et  al., 
2001). In this study, the number and volume of B-cells in 
hepatopancreas tubules was significantly increased after suffering 
cold stress. This may be  related to the fact that B-cells are 
the main site of absorption and digestion of nutrients 
(Almohanna and Nott, 1989; Wang et al., 2016). We suspected 
that the high rate of synthesis and release of digestive enzymes 
in B-cells accelerated the mobilization of nutrients in 
hepatopancreas tubules, by which shrimp can adapt to 
environmental stress.

The hepatopancreas of shrimp has high self-repairing ability. 
L. vannamei can repair hepatopancreas injury after long-term 

A B

C D E

FIGURE 3 | Relative expression of UPR and apoptosis related genes in hepatopancreas during temperature fluctuation. Water temperature was changed from 
28 to 13°C with a cooling rate of 7.5°C/day. After 13°C for 24 h, the water temperature rose back to 28°C at the same rate. AT represents acclimation temperature 
(28°C), r18 and r28°C represent 18 and 28°C in temperature return process, respectively. The relative mRNA expression levels of GRP78 (A), apoptosis related 
genes (CASP3, ASK1) (B), ATF6 pathway (ATF6) (C), IRE1 pathway (IRE1, XBP1) (D), and PERK pathway (PERK, eIF2α, ATF4) (E) were compared with those at AT. 
The bars represent the mean ± S.D. (n = 3). Statistical significance was calculated by one-way ANOVA. Bars with different letters indicate statistical differences 
(p < 0.05).
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exposure to low zinc (Jui-Pin et  al., 2008) and low pH 
(Han et  al., 2018a). The hepatopancreas weight of L. vannamei 
significantly declined after fasting, but then increased immediately 
after re-feeding (Pascual et  al., 2006; Sanchez-Paz et  al., 2007). 
In the present study, histological damage of the hepatopancreas 
got remission after temperature return, confirming the shrimp’s 
self-repair ability.

Plasma Metabolite Concentrations Change 
During Temperature Fluctuation
It has been widely accepted that protein acts as the main 
energy source for shrimp (New, 1976; Zhang et al., 2006; Cuzon 
et  al., 2010). Research has shown that lipids are the main 
energy source of tilapia (Oreochromis niloticus) during long-
time hypoxia stress (Li et  al., 2018). In this study, the results 
showed that lipids (TC, the major components of lipids, supply 
and store energy) and protein (TP provides energy and transports 
various metabolites) in plasma responded more rapidly to 
temperature fluctuation, while Glu remained stable before 13°C 
and recovered to AT levels after temperature rose back to 
28°C. It has been reported that the hepatopancreas is typically 
high in lipids and appears to be the main site for gluconeogenesis 

in decapod crustaceans (Hervant et  al., 1999; Vinagre and 
Silva, 2011; Reyes-Ramos et al., 2018; Berry et al., 2019). Thus, 
combined with hepatopancreas histology and plasma results, 
we  deduced that the increase of B-cells facilitates the 
gluconeogenesis to synthesize glucose from protein and lipid, 
by which shrimps maintain glucose demand under cold stress. 
However, after temperature dropped to 13°C, the rupture of 
hepatopancreas tubules causes lipids and proteins to enter 
hemolymph, resulting in an increase of lipid and protein content 
in plasma. The glucose content decreased at the same time 
due to the damage of the hepatopancreas.

It is known to all that nonspecific immunity plays an 
important role in the immune defense of aquatic animals. 
L. vannamei depends entirely on cellular and humoral immunity 
to prevent external injury (Iwanaga and Lee, 2005). ALP is 
directly involved in the transfer and metabolism of phosphoric 
acid groups in organisms and plays a significant role in the 
immune system against pathogens. The present study showed 
that ALP played a major role during the cold stress response 
in Sparus aurata and L. vannamei, and this is probably because 
ALP can help protect the hepatopancreas and hemolymph 
from cold-stress damage (Mateus et al., 2017; Peng et al., 2018). 

A B

C D E

FIGURE 4 | Relative expression of UPR- and apoptosis-related genes in hemocyte during temperature fluctuation. Water temperature was changed from 28 to 
13°C with a cooling rate of 7.5°C/day. After 13°C for 24 h, the water temperature rose back to 28°C at the same rate. AT represents acclimation temperature 
(28°C), r18 and r28°C represent 18 and 28°C in temperature return process, respectively. The relative mRNA expression levels of GRP78 (A), apoptosis-related 
genes (CASP3, ASK1) (B), ATF6 pathway (ATF6) (C), IRE1 pathway (IRE1, XBP1) (D), and PERK pathway (PERK, eIF2α, ATF4) (E) were compared with those at AT. 
The bars represent the mean ± S.D. (n = 3). Statistical significance was calculated by one-way ANOVA. Bars with different letters indicate statistical differences 
(p < 0.05).
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The activity of ALT in plasma can reflect the damage of the 
hepatopancreas (Jiang et  al., 2014; Yan et  al., 2016). It has 
been shown that various forms of stress can cause an increase 
in plasma ALT activity in fish (Cho et  al., 1994), and it is 
responsive to temperature change in fish (Costas et al., 2012). 
In the present study, the ALP activity decreased to the lowest 
level, and the ALT activity increased to the highest level at 
13°C, indicating that the shrimp was damaged at this 
temperature. However, there was no obvious change in the 
next 24  h when the temperature was kept at 13°C, but it 
increased significantly after the temperature rose back to 28°C. 
Thus, we  deduced that shrimp has the ability to adapt 
low-temperature stress to a certain extent, and these results 
were consistent with those found in the hepatopancreas 
histological analysis.

Differential Gene Expression About 
Unfolded Protein Response Pathway and 
Apoptosis During Temperature Fluctuation
UPR is a feedback regulatory system, capable of controlling 
the elimination of misfolded proteins in the ER, thereby 
maintaining the homeostasis of the endoplasmic reticulum. 
Appropriate ERS can activate UPR to improve the ER function 
and protect cells. But if the imbalance exceeds its regulating 
ability, it will lead to apoptosis. In invertebrates, apoptosis is 
also an effector factor of immune response. Environmental 
stresses such as temperature stimulation, pH changes, and toxic 
substances can induce apoptosis. In this study, the relative 
mRNA expressions of all UPR pathway- and apoptosis-related 
genes in the hepatopancreas and hemocytes were significantly 
changed during the cooling and re-warming process, which 
indicated that the UPR pathway and apoptosis participated in 
this process.

Previous studies indicated that shrimp can adapt to the 
environmental changes by self-regulation to a certain degree. 
In these studies, it was observed that the glutamate-oxalacetate 
transaminase and glutamate-pyruvate transaminase activities 
increased after shrimp were exposed to Zn for 7 days but 
declined after exposure for 14 and 28 days (Jui-Pin et  al., 
2008). Additionally, the lipid peroxidation levels in shrimp 
had no significant changes between 10 and 15 days after Cd 
exposure (Chiodi Boudet et  al., 2015). In our study, the 
expressions of genes (GRP78, ATF6, IRE1, XBP1, PERK, eIF2α, 
and ATF4) in the hepatopancreas reached their highest level 
at 13°C instead of 13°C for 24  h. The plasma metabolites 
concentration analysis also showed that ALT activity got its 
highest point at 13°C, and the activity of ALT in plasma 
is inversely proportional to the health of hepatopancreas. This 
finding is consistent with previous studies and confirms the 
self-repair ability of shrimp. In addition, all these related gene 

expressions reached their highest level in 13°C in hepatopancreas, 
while in hemocytes their peak appeared in 13°C for 24  h. 
Thus, we  deduced that the shrimp response to temperature 
fluctuation in the hepatopancreas may be  relatively rapid 
compared to that that in hemolymph.

CONCLUSIONS

In this study, protein and lipid were observed to be  the main 
energy source of L. vannamei during temperature fluctuation. 
All the three UPR pathways were involved in temperature 
fluctuation process, and their responses in the hepatopancreas 
were relatively rapid compared to that in hemolymph. All the 
results suggest that L. vannamei can adapt to a certain level 
of temperature fluctuation by self-regulation. However, the detailed 
adaptation mechanism in L. vannamei still needs further study.
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