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Circadian rhythms, which measure time on a scale of 24 h, are genetically generated
by the circadian clock, which plays a crucial role in the regulation of almost every
physiological and metabolic process in most organisms. This review gathers all the
available information about the circadian clock in a small Malagasy primate, the gray
mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony
at Brunoy (France). Although the mouse lemur has long been seen as a “primitive”
species, its clock displays high phenotypic plasticity, allowing perfect adaptation of
its biological rhythms to environmental challenges (seasonality, food availability). The
alterations of the circadian timing system in M. murinus during aging show many
similarities with those in human aging. Comparisons are drawn with other mammalian
species (more specifically, with rodents, other non-human primates and humans) to
demonstrate that the gray mouse lemur is a good complementary and alternative model
for studying the circadian clock and, more broadly, brain aging and pathologies.

Keywords: circadian clock, gray mouse lemur, aging, non-human primate model, adaptation, evolution

Back to the lemur: 30 years of chronobiology studies in a primate
“Time is an illusion.”

Albert Einstein

INTRODUCTION

Circadian rhythms are biological rhythms that display an endogenous period of approximately
24 h. They are widely distributed in all living organisms, from cyanobacteria to mammals as well as
plants (Loros and Dunlap, 2001; Ditty et al., 2003). They are the external expression of an internal
biological clock driven by external environmental stimuli, chief among which is the cycle of days
and nights induced by Earth rotation. Temperature, food availability and social interactions also
influence endogenous clock expression (Dibner et al., 2010). The endogenous clock controls vital
physiological, metabolic and behavioral processes such as hormone secretions, temperature, cellular
metabolism and locomotor activity (LA) (Aschoff, 1983; Dvornyk et al., 2003; Lin et al., 2009;
Bass and Takahashi, 2010). It synchronizes these functions to light-dark cycles to anticipate the
environmental changes associated with the solar day. Moreover, it coordinates intrinsic activities
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with each other, suggesting a high adaptive value (Pittendrigh,
1993; Paranjpe et al., 2003; Sharma, 2003). This could explain
why circadian clocks are ubiquitous in living organisms, even
those living in constant darkness (e.g., in natural caves) (Koilraj
et al., 2000) or artificially maintained in aperiodic environments
(Sheeba and Sharma, 1999).

The circadian clock is composed of a central pacemaker
located in the suprachiasmatic nuclei (SCN) of the anterior
hypothalamus and peripheral oscillators in different organs (Buijs
et al., 2013; Moore, 2013). Light entrainment of natural cycles
requires retinal ganglion cells (RGCs) that contain melanopsin
and are intrinsically photosensitive (Rollag et al., 2003; Hankins
et al., 2008). Melanopsin-expressing RGCs are considered the
main mediator of circadian photoentrainment and directly
transmit information to the SCN via nervous pathways, which
thereby synchronizes all peripheral clocks via hormones such
as melatonin or corticosterone (Yamaguchi et al., 2003). Cones
and rods also contribute to encoding light intensity for photic
entrainment (Dkhissi-Benyahya et al., 2007; Güler et al., 2008).

Without any environmental cues, the circadian clock still
displays endogenous periodicity close to 24 h in most animal
species (Pittendrigh and Daan, 1976a), which is referred to as the
free-running period, or tau (Pittendrigh, 1960; Halberg, 1962),
and is generated and sustained intracellularly by a transcription-
translation negative feedback loop involving several genes (e.g.,
Clock, Per or Bmal1) (Gekakis et al., 1998; Yu et al., 2002; Duong
et al., 2011; Lande-Diner et al., 2013). It has been assumed that
fitness is enhanced when the endogenous clock closely matches
environmental periodicity (Pittendrigh and Daan, 1976a). When
reared under light-dark cycles that deviated from 24 h (21
or 27 h), fruit flies (D. melanogaster) exhibit a significantly
shorter lifespan than flies under 24 h cycles (Pittendrigh
and Minis, 1972). This study first introduced the “circadian
resonance hypothesis,” stating that eukaryotic systems perform
most effectively as oscillators when they are driven close to their
natural “circadian” frequency. Wyse et al. (2010) found that in
several mammal species, deviation of tau from 24 h is inversely
related to longevity, which supports Pittendrigh’s hypothesis.

During aging, changes in the circadian rhythmicity of
endocrine, metabolic and behavioral properties have been
described in several mammalian species, characterized by
amplitude alterations, phase delays or period modifications,
revealing potential internal desynchronization (Turek et al.,
1995; Valentinuzzi et al., 1997; Weinert, 2000; Kondratova
and Kondratov, 2012). In rodents, age-related wheel-running
activities are characterized by an increase in these rhythmic
deteriorations, which might be related to anatomical and
functional declines within the SCN (Farajnia et al., 2012;
Nakamura et al., 2015, 2016). Indeed, age-related circadian
changes may be related to lower sensitivity to light of the
circadian system (Witting et al., 1993), though the underlying
mechanisms remain unknown for the moment.

In the present review, we focus on the gray mouse lemur
(Microcebus murinus, Figure 1), a Malagasy non-human primate
belonging to the suborder Strepsirhini and to the Cheirogaleidae
family, which includes small, omnivorous primates. Gray mouse
lemurs are nocturnal, solitary foragers and sleep in groups during

the daytime. In its natural environment, the gray mouse lemur
faces dramatic seasonal environmental variations. During the
hot rainy season (from October to March), characterized by
a long photoperiod, elevated temperatures and abundant food
resources, the mouse lemur exhibits a high level of activity, a
high metabolic rate during the daily dark phase and mating
behavior. Conversely, the cooler dry season (from April to
September) is characterized by harsh conditions in terms of food
resources or temperature. These seasonal changes represent a
challenge in that it is necessary to adapt biological rhythms and
energy expenditures. At the onset of the dry season (photoperiod
shorter than 12 h), mouse lemur metabolism dramatically slows
down, leading to an increase in fat deposits and the occurrence
of pronounced daily phases of hypometabolism (Schmid and
Speakman, 2000; Génin and Perret, 2003). These physiological
changes are strictly dependent on photoperiod (Génin and Perret,
2000; Perret and Aujard, 2001b). In captivity, gray mouse lemurs
reach ages of up to 12 years (Languille et al., 2012). In the wild,
their life span is significantly lower (Lutermann et al., 2006).
The half-life is generally used to delineate adults from aged
individuals and is approximately 5–6 years in captive mouse
lemurs (Perret, 1997; Pifferi et al., 2018). Both physiological and
behavioral parameters show a decrease after 5.5 years (Aujard and
Perret, 1998; Némoz-Bertholet and Aujard, 2003), allowing the
discrimination of young and aged animals.

Although this species is nocturnal, M. murinus is a convenient
model for studying chronobiology because its behaviors,
biological rhythms and physiological functions depend strongly
on photoperiod. In addition, due to exhibiting a relatively small
body size (head-body length of approximately 15 cm) and low
body mass (60–80 g), mouse lemurs can be easily bred and
kept in captivity. This makes them an ideal laboratory model
among non-human primates, offering a compromise between
practical breeding methods and physiological and phylogenetic
proximity to humans. Finally, mouse lemurs have increasingly
gained attention as a promising model for human aging (Bons
et al., 2006; Languille et al., 2012; Picq et al., 2015), particularly
in the context of research on neurodegenerative diseases or age-
related perturbations of biological rhythms in humans. Indeed,
they develop cerebral age-related impairments (in cognitive
flexibility for instance) similar to those found in aged humans,
as recently illustrated by Joly et al. (2014) and Picq et al. (2015).
These deteriorations include circadian rhythm alterations such as
progressive fragmentation of LA during life (Aujard et al., 2006).

Since the early 1970s (Martin, 1972), seasonal and daily
rhythms have been studied, and this review includes published
data on circadian rhythms in mouse lemurs. Long seen as an
“archaic” or basal primate, the gray mouse lemur is actually
fully adapted to its fluctuating environment, particularly in terms
of circadian rhythms. This review aims to demonstrate that
M. murinus may be regarded as a promising aging circadian
model for humans. The first part details the mouse lemur’s
circadian clock characteristics and daily entrainment, which is
followed by a description of the environmental factors affecting
them. The third part investigates the effect of age on the circadian
clock. Finally, evolutionary considerations about the mouse
lemur’s circadian characteristics close this review. An additional
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FIGURE 1 | One-year old female mouse lemur (M. murinus) (left) and 7-year old male mouse lemur (right) in the breeding colony of Brunoy. Credit: Aude Noiret.

table drawing up a comparison of gray mouse lemur, rodents,
human and other primate species’ circadian features, is available
in Supplementary Table S1.

DAILY ENTRAINMENT OF THE
CIRCADIAN CLOCK BY LIGHT AND ITS
CHARACTERISTICS

Under constant conditions of ambient temperature and a 12:12 h
light-dark cycle, the gray mouse lemur exhibits a robust circadian
rhythm typical of a nocturnal species (Figure 2). LA is strictly
restricted to the dark phase and is associated with high body
temperature (Tb). During the light phase, mouse lemurs exhibit
daily hypothermia phases lasting several hours, starting with a
linear and rapid drop in Tb, leading to minimal Tb after 3 h on
average (Perret and Aujard, 2001a).

To assess changes in circadian rhythms in animals exposed
to variations in environmental conditions, two parameters were
considered as important markers: body temperature and LA.

General Characteristics of the
Endogenous Biological Clock
Endogenous Circadian Characteristics
In an aperiodic environment without any light or social cues, the
endogenous period (also called tau or the free-running period)
is one of the main characteristics of the biological clock and
represents the duration of a complete circadian cycle (Aschoff,
1960). This cycle can be divided into the subjective night and
the subjective day, which correspond to the active and resting
phases of an individual, respectively. When mouse lemurs are
kept under constant darkness (free-running DD – Figure 2)

and constant ambient temperature, LA and body temperature
exhibit strong circadian periodicity typical of a nocturnal species,
with high levels of LA and a higher Tb during subjective night
(Perret and Aujard, 2001a). As found in many nocturnal species
(Pittendrigh and Daan, 1976a), the gray mouse lemur clock
oscillates with a period of less than 24 h: on average 23.6 + 0.2 h
(Aujard et al., 2006). When maintained under constant light
(free-running LL), light exerts a strong inhibitory effect on LA in
the strictly nocturnal gray mouse lemur, but constant conditions
do not prevent temperature from exhibiting circadian rhythms.

As in all small mammals, daily hypothermia occurring under
free-running conditions (either DD or LL) is a component
of the circadian organization of the mouse lemur and cannot
be manifested without functional circadian system. Indeed,
bilateral lesions of the SCN affect the expression of natural
daily hypothermia in Djungarian hamsters (Phodopus sungorus)
(Ruby et al., 1989). In a wide range of endotherms using
daily hypothermia and living in seasonally predictable climatic
conditions, such as the mouse lemur, daily hypothermia is
expressed predominantly during the cold season and during
reproduction in summer (Kenagy, 1989; Körtner and Geiser,
2000; Schmid and Speakman, 2000; Génin and Perret, 2003).
The annual alternation of reproductive phase and sexual rest
associated with hypothermia is controlled by the photoperiod
via the pineal gland. In laboratory conditions, Djungarian
hamsters exposed to a short photoperiod exhibit testicular
regression followed by the expression of daily hypothermia
(Heldmaier and Steinlechner, 1981).

Phase-Response Curve
In nocturnal species, such as the gray mouse lemur, light drives
entry into the resting phase. To determine the phase-response
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FIGURE 2 | Representative outputs of locomotor activity (LA, arbitrary units)
and body temperature (Tb, C) rhythms in mouse lemurs exposed to control
light-dark cycles (LD, 12:12, night at 14 h, thick gray bar on top) and animals
under free-running conditions (DD, continuous dark indicated by a thin gray
bar). (A) Actogram (double plotted) over a 30 day-period under LD and DD.
(B) (Mean SEM) Tb (black curve) and LA rhythm (histograms) profiles over a
7-day period under LD and (C) under DD conditions (from Perret et al., 2010).

curve (PRC), individuals under free-running DD were subjected
to 1 h light pulses. These light pulses may have different effects:
phase advance, phase delay, i.e., shifts in the onset of activity
in the next cycle according to the circadian time of delivery or
no effect at all (Pittendrigh and Daan, 1976b). The PRC was
established using 49 young and old individuals (Figure 3). All
animals exhibited fast resynchronization independent of age.
A greater amplitude of phase delay (−2 h to −3 h) than phase
advance (+1 h) was also observed, revealing a “dead zone” in the
PRC (Schilling et al., 2001). According to a general rule described

FIGURE 3 | Superposition of the phase-response curves (PRC) of mouse
lemur obtained after 1 h bright white light pulses (black line and squares) and
human subjects after 1 h (dark gray line and circles) and 6.7 h (light gray line
and circles) bright white light pulses maintained under free-running dark-dark
conditions. The raw data (symbols) as well as three-harmonic fits (continuous
lines) are represented (from Schilling et al., 2001; St Hilaire et al., 2012). The
mouse lemur PRC falls between the two human PRCs. Note the absence of a
“dead zone” in the 6.7 h human PRC.

by Pittendrigh and Daan (1976b,c), individuals with a short tau
should exhibit greater delay and less advancement, which was
obviously the case with the gray mouse lemur.

Despite a general pattern of the PRC that is similar in
gray mouse lemurs and rodents, nocturnal and diurnal rodent
species exhibit phase delays almost twice as long as those of
the gray mouse lemurs, as observed in the golden Hamster
(Pohl, 1984) or in mice and rats (Pittendrigh and Daan,
1976b). This characteristic may be a typical primate trait, since
similar observations have been made in other primate species,
such as owl monkeys (Aotus lemurinus) (Rauth-Widmann
et al., 1991), marmosets (Callithrix jacchus) (Wechselberger
and Erkert, 1994) or squirrel monkeys (Saimiri sciureus)
(Hoban and Sulzman, 1985).

In humans, highly comparable characteristics of the PRC are
observed when the temperature rhythm (Minors et al., 1991)
or plasma or salivary melatonin (St Hilaire et al., 2012; see
Figure 3) is used as a circadian marker under different light
pulse durations. Minors et al. (1991) subjected volunteers to
3 h pulses, whereas St Hilaire et al. (2012) compared 1 h and
6.7 h pulses, with different but consistent results (Figure 3).
When subjected to 1 h pulses, human individuals display shorter
advances and delays (maximum −1.75 h and +0.45 h) than
when subjected to 6.7 h pulses (maximum −3.44 h and +2.02 h)
but longer delays than when subjected to 3 h pulses (maximum
∼2 h of advance and delay). As the PRC of the mouse lemur
was established only using 1 h light pulses, its shape cannot be
predicted under 7 h light pulses. The human PRC displays a
lower amplitude of phase delays and advances under the same
duration of light pulses compared to the mouse lemur species,
whose PRC is located halfway between the human and rodent
phase-resetting responses.
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Daily Entrainment by Light and Limits of
the Response
Resynchronization After a Phase Delay or Advance
The gray mouse lemur displays a capacity for quick
synchronization and resynchronization of its rest-activity
circadian rhythms. Within a few minutes after lights are turned
off, the animals become active, regardless of their age (Schilling
et al., 2001). When subjected to a 6-h advance or delay, mouse
lemurs synchronize their LA and body temperature rhythms
within 2 or 3 days (Schilling et al., 2001; Perret et al., 2003). These
findings contrast with the 8 days required for synchronization
after an 8 h delay (3.7 days after a phase advance) recorded by
Schanz et al. (1987). Moreover, the shorter the tau, the quicker
resynchronization to a 6-h phase advance is (Perret et al., 2003).

In rodents, a greater number of transient cycles is required
to adjust activity rhythms to shifts, especially in old individuals
(between 4 and 5 days, Halberg, 1969; Valentinuzzi et al., 1997).
In other primates, studies show divergent results: the galago
(Otolemur garnettii), a nocturnal prosimian, requires from 10 to
12 days for reentrainment (Erkert et al., 2006) to an 8-h advance
or delay, whereas the Senegal bushbaby (Galago senegalensis)
requires approximately 9 or 5 days, respectively (Schanz and
Erkert, 1987). The human situation is more questionable.
Buresova et al. (1991) showed that early morning bright light
advances the human circadian melatonin concentration within
1 day, whereas other studies report a synchronization delay of
approximately 3–4 days (Piérard et al., 2001; Czeisler et al.,
2016). The fast resynchronization of the gray mouse lemur could
therefore be a typical adaptation of this species.

Limits of Synchronization Determined by Changing
Night Length
Entrainment by light occurs within precise limits owing to
the presence of phases of insensitivity to light. To characterize
the limits of entrainment, 48 males were exposed to nighttime
durations ranging from 16 h per day to 5 h per day as well as free-
running DD and free-running LL. The markers of the rhythms
were Tb, LA and daily hypothermia. Whatever the nighttime
duration, LA was strictly restricted to dark phases, with a total
masking effect of light during the light phase. Focusing on LA
during dark phases, the reduction of the nighttime duration
was not compensated by an increase in LA during the dark
phase. With respect to body temperatures, daily hypothermia was
directly induced by light only if night duration did not go beyond
the length of subjective night (around 14 h). However, in animals
exposed to 24-h light-dark cycles with nighttime ranging from 10
to 5 h, the lower limit of the induction of daily hypothermia by
light was 9 h of night (Perret and Aujard, 2001a). Beyond these
limits, temperature and LA desynchronize in relation to phases
of insensitivity to light (Figure 4).

These precise limits of synchronization are due to phases of
insensitivity to light, as found in other mammals, even though
their limit of responsiveness seems to be much wider. For
example, two species of mammals, the flying squirrel (Glaucomys
sabrinus) and the chipmunk (Tamias striatus), are capable of
achieving synchronization when the photoperiod is less than

3 h per 24 h day and longer than 18 h, with relatively stable
phase angles (DeCoursey, 1972). Furthermore, LA and plasma
melatonin rhythms remain synchronized to the light-dark cycle
in all photoperiods in Soay sheep (from 8 h to 22 h light per day)
(Wagner et al., 2008).

In conclusion, the differences expressed in terms of
reentrainment to a phase advance or delay and the limits
of light entrainment show great variability within mammalian
species. Varied responses do not seem to be particularly related
to the respective circadian periods (tau < / > 24 h) but are
the expression of high phenotypic flexibility. Circadian clocks
therefore cannot be seen as fixed systems imposed on a certain
temporal niche but, rather, can be seen as plastic structures whose
behavioral outputs adapt optimally to external environmental
conditions, according to ecological constraints to perfectly match
their circadian characteristics with various abiotic and biotic
environmental parameters.

Mouse Lemur Daily Sleep Rhythms
To our knowledge, only two studies have investigated the
sleep-wake pattern of the gray mouse lemur based on
electroencephalographic (EEG) rhythms. Adult mouse
lemurs exposed to long daylengths exhibit approximately
55% wakefulness and 45% sleep over a 24 h period. Sleep
generally occurs during the diurnal resting phase (near 71%
of the recording time), whereas activity represents almost 90%
of the total nocturnal active phase (Pifferi et al., 2012). The
rhesus monkey (M. mulatta) displays a very similar sleep-wake
distribution during daytime (Hsieh et al., 2008), but the two
species differ on two points. First, rhesus monkeys spend more
time sleeping (89%) during the rest phase than mouse lemurs
(71%). This divergence could be associated with the different
durations of the rest phases in each species (8 h per day in rhesus
monkeys versus 14 h per day in mouse lemurs in winter). Second,
mouse lemurs exhibit a greater number of sleep bouts, which
reflects a much more fragmented sleep pattern during the rest
phase than that of rhesus monkeys, which exhibit a consolidated
sleep period of approximately 8 h, similar to humans, with only
brief arousals throughout the nighttime. This trait is comparable
to the fragmented sleep pattern found in rodents: in constant
conditions, rats sleep between 30 and 40% of the subjective
night (activity phase) and display more than 100 sleep–wake
transitions in the course of the circadian cycle (Mistlberger
et al., 1983; Tobler, 1995; Revel et al., 2009). Sleep fragmentation
is typical of small vertebrates and may be due to energetic
constraints (Capellini et al., 2008a; Roth et al., 2010). However,
mouse lemurs usually sleep in groups (Perret, 1998); the isolated
conditions of the tested individuals during the experimentation
might have changed their sleep-wake sequences and could have
a significant effect on rhythm fragmentation, which should
be investigated.

Despite its rodent-like fragmented sleep pattern, the mouse
lemur exhibits deep slow–wave sleep (SWS) that is much closer
to that in humans than that in rodents. This sleep phase (often
referred to as deep sleep) is marked by slow, high-amplitude EEG
waves. Rodents display a higher frequency of SWS (9–13 Hz,
SWS1, Panagiotou et al., 2017) than humans (1–3 Hz, SWS4,
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FIGURE 4 | Limits of synchronization determined by changing the night duration per 24 h in the mouse lemur. To be synchronized, the night duration must last at
least 9 h and must not exceed the duration of nighttime (14 h). Beyond these limits, temperature and locomotor activity desynchronize.

McCarley, 2004), whereas the mouse lemur’s SW lies in-between
(1–8 Hz, SWS2, Pifferi et al., 2012; Royo et al., unpublished).
The rat and the mouse lemur share a similar brain size (Le
Gros Clark, 1931), but mouse lemurs have larger neocortices that
are composed of more cortical areas and expanded parietal and
temporal regions. In fact, a greater number of neocortical areas
is a characteristic of primates in general, particularly in parietal,
temporal, and frontal regions, which are proportionally larger
in primates (Halley and Krubitzer, 2019). These characteristics
might explain why sleep patterns in mouse lemurs are similar to
those in other small mammals in their structure but are similar to
those in other primates in their electrophysiologic characteristics.
All these observations make the mouse lemur an interesting
intermediate sleep model between rodents and humans.

Underlying Mechanisms of Clock Photic
Entrainment
Evening and Morning Oscillators
Since light-dark cycles have been identified as the strongest
environmental cues, wavelength and light intensity obviously
play a major role in the clock synchronization of mammals
(Berson et al., 2002; Berson, 2003; Duffy and Wright, 2005).
The circadian clock, located in the SCN, receives environmental
inputs via photopigments located in the eyes and from
melanopsin-expressing RGCs. It has also been suggested that
the onset and cessation of animal activity are controlled by two
coupled oscillators (evening and morning receptors). A variation
in wavelength or light intensity may therefore influence the rest-
activity pattern of individuals. In non-human primates, only a
small amount of information about circadian photoentrainment
is available. In some lemurs, it has been suggested that cones play
a role in circadian light perception (Deegan and Jacobs, 1996;
Dkhissi-Benyahya et al., 2001; Erkert et al., 2006). In the gray
mouse lemur, synchronization increases with the light intensity
and is better for mid-wavelengths (470–540 nm) than for short
and long wavelengths (Perret et al., 2010). In most organisms,
twilight transitions are the dominant environmental stimuli
involved in synchronization of the circadian phase (Boulos et al.,
2002). For mouse lemurs, the most efficient wavelengths evoke
synchronization at light intensities ranging from 0.5 to 1 lux
(a threshold that is among the lowest in nocturnal species
(Erkert, 2008), which are comparable to dawn and dusk light,
respectively, in Malagasy forest, when dominant wavelengths are
shifted toward mid-wavelengths of 450–500 nm (Pariente, 1980).

Synchronization also appeared to be more efficient for dark-light
transitions than for light-dark transitions, probably due to the
greater sensitivity of photoreceptors to light, leading to a better
response in the SCN (Boulos et al., 1996; Comas et al., 2008;
Refinetti, 2008).

Olfactory Bulb Influence
Olfactory bulbs seem to play a major role in the expression of
biological rhythms. In rodents, removal of olfactory bulbs affects
diverse outputs of daily or seasonal rhythmicity, such as the rest-
activity pattern, changes in light-dark activity ratios, lengthening
of the circadian period, alterations in activity amplitude, etc.
(Possidente et al., 1990, 1996; Vinkers et al., 2009). In the mouse
lemur, removal of the olfactory bulbs alters the gonadal responses
to photoperiod, with a delay in testis development and reduced
testosterone levels, which highlights the role of olfactory bulbs
in the neuroendocrinological control of seasonal rhythmicity
(Perret and Schilling, 1993; Schilling and Perret, 1993). More
seasonal responses of the energy balance are modified in
bulbectomized animals (Séguy and Perret, 2005a). On a daily
scale, bulbectomized males in free-running DD displayed a
significantly shorter circadian period of body temperature and
LA (22.4 ± 0.2 h vs. 23.4 ± 0.3 h for control males). Although
bulbectomized males exhibited robust circadian rhythms, they
showed a delay in entry into daily hypothermia and increased
diurnal activity bouts (Perret et al., 2003). The effect of olfactory
bulb activity on the circadian clock could be mediated by social
olfactory cues (Goel and Lee, 1997; Granados-Fuentes et al.,
2006), or even by light, since it has been proven that PER1 and
PER2 gene expression in olfactory bulbs is light-sensitive in mice
(Hamada et al., 2011). All these effects are not directly related to
the sense of smell but, rather, are due to the neural projections
from olfactory bulbs to the SCN (Granados-Fuentes et al., 2006).
Besides, the analysis of the sensorial pathway in gray mouse lemur
has shown efferent projections of the olfactory bulbs on the SCN,
among other brain regions, exhibiting a direct link between the
olfactory system and the central pacemaker (Mestre et al., 1992).
Nevertheless, the underlying mechanisms of the precise role of
olfactory bulbs in endogenous clock resynchronization remain
largely unknown.

Cellular Aspects
The SCN are located in the hypothalamus and receive inputs
from light via the retinohypothalamic tract that reaches the
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ventral part of the SCN, where specific neuron populations
that communicate via peptide and protein secretions are
located (Moore and Speh, 2004). Among these neurons, the
vasoactive intestinal polypeptide (VIP)-containing neurons,
confined within the ventral region, are directly influenced
by photic input from the retina in rodents and in humans
(Mai et al., 1991; Moore and Danchenko, 2002). Their daily
VIP levels remain constant under constant light conditions in
rats, whereas they show a daily rhythm under LD conditions,
underlying the important involvement of this peptidergic cell
population in circadian rhythm control (Ibata et al., 1989;
Shinohara et al., 1993; Dardente et al., 2004). The VIP
neurons project to the dorsal part (or shell) of the SCN,
where neurons containing arginine vasopressin (AVP) settle,
which are one of the largest neuron population of the SCN
(Moore and Danchenko, 2002) and are implicated in the
coupling of SCN neurons (Li et al., 2009; Yamaguchi et al.,
2013). These two neuronal populations are therefore deeply
involved in circadian rhythmicity control, spreading photic
information to other neural target sites, leading to specific
rhythm expression, such as sleep/wake cycles (Kalsbeek et al.,
2010; Jones et al., 2018).

In the mouse lemur, few studies have addressed cellular
aspects of the biological clock. However, daily fluctuations
in AVP and VIP neurons have been characterized. These
neurons are located in the dorsal and ventral parts of the
SCN, as found in rodents and humans (van Esseveldt et al.,
2000). VIP neurons are exclusively found in the core SCN
lying adjacent to the optic chiasma. However, AVP neurons,
although mainly present in the shell SCN, are located outside
the SCN as well, in the supraoptic nucleus, medial preoptic
area, and the bed nucleus of the stria terminalis, as found
in rodents (Dong and Swanson, 2006; Xu et al., 2018). VIP
neurons are smaller than AVP neurons. Both neuron types
exhibit strong daily rhythms under 14:10 h LD cycles, showing
inverse activity throughout the day: AVP neurons display
their highest and lowest activity and intensity levels during
daytime and nighttime, respectively (with a peak at the end
of daytime and a drop at the beginning of nighttime); VIP
neurons behave in the opposite manner (Cayetanot et al., 2005a;
Aujard et al., 2006).

Being a nocturnal species does not prevent the mouse
lemur from displaying similar synchronization mechanisms
to humans. Indeed, most genetic and physiological circadian
parameters are nearly identical in diurnal and nocturnal
species, showing specific temporal expression over a 24 h day
(Challet, 2007). The expression of melatonin, for instance, is
restricted to nighttime and is mainly driven by the circadian
clock in both diurnal and nocturnal species (Simonneaux and
Ribelayga, 2003; Emet et al., 2016; Touitou et al., 2017). In
both categories of animals, light pulses at night activate Fos
expression and induce the expression of the Per1 and Per2
mRNA and proteins in the SCN (Rose et al., 1999; Yan
et al., 1999; Dkhissi-Benyahya et al., 2000; Dardente et al.,
2002; Yan and Okamura, 2002; Caldelas et al., 2003; Matìjù
et al., 2010; Schwartz et al., 2010; Grone et al., 2011; Morin,
2013). Anatomically, Per1 and Per2 are highly expressed in

AVP-containing neurons (dorsomedial part of the SCN) but
are expressed at lower levels in the VIP-containing neurons
(ventrolateral part of the SCN); this segregation is found in
both diurnal and nocturnal species (Dardente et al., 2002;
Yan and Okamura, 2002; Hamada et al., 2004; Foley et al.,
2011; Vandunk et al., 2011). To sustain circadian signals
intracellularly, the negative-feedback loops between Clock/Bmal1
heterodimers and Per and Cry gene transcription are thought
to be identical in diurnal and nocturnal mammals (Yu et al.,
2002; Duong et al., 2011; Lande-Diner et al., 2013; Bollinger
and Schibler, 2014). In addition, studies conducted in night-
active and day-active mammalian species reveal that the phase-
shifting effect of light is mainly efficient during the night
period, regardless of the chronotype (Pohl, 1984; Takahashi
et al., 1984; Hoban and Sulzman, 1985; Slotten et al., 2005;
Shuboni and Yan, 2010). In the daytime, light exerts no
synchronization effect during the previously described dead zone
of the PRC, located between two windows of responsiveness to
illumination. Therefore, under laboratory conditions, underlying
photic resetting is closely similar in nocturnal and diurnal
mammals. This suggests that differences between the two groups
may lie in mechanisms downstream of the SCN pacemaker,
certainly at the hormonal, glucose or lipid control level
(Kumar et al., 2015).

INFLUENCE OF ENVIRONMENTAL
FACTORS ON MOUSE LEMUR
CIRCADIAN RHYTHMS

Circadian rhythms are not static processes and are subject to
environmental influences, similar to other physiological and
metabolic parameters (Rand et al., 2006; Ciarleglio et al., 2011;
Azzi et al., 2014; van der Vinne et al., 2014; Riede et al.,
2017). In the mouse lemur, some physiological constants, such
as temperature, daily hypothermia or LA, may be affected by
environmental changes. In this section, an attempt is made to
draw up a list of several abiotic (temperature, food availability,
light intensity) and biotic (social interactions) parameters that
influence the daily pattern of circadian rhythms in the gray mouse
lemur and demonstrate the plasticity of their expression.

Abiotic Influence on the Daily Pattern of
Temperature and Locomotor Activity
Mouse lemurs experience large variations in environmental
conditions (Song and Geiser, 1997; Withers et al., 2000). During
the cold and dry winter season, resources are limited, which
contrasts with the breeding season during the hot summer
season. In response to external conditions, mouse lemurs
counteract environmental challenges by adjusting their energy
expenditures through daily modifications of their internal body
temperature, mainly via hypothermia expression and LA. As
mentioned above, these mechanisms are controlled by the
circadian clock (Perret and Aujard, 2001a). The diurnal decrease
in body temperature is an important adaptive energy-saving
strategy that is adjusted to ecological constraints and controlled
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by the biological clock (Aujard and Vasseur, 2001; Giroud et al.,
2008; Terrien et al., 2009).

Effect of Ambient Temperature
In response to both daily and seasonal changes in ambient
temperature (Ta), mouse lemurs adjust their energy expenditure
through daily hypothermia. Experimental exposure to Ta ranging
from 20 to 12◦C increases the duration and depth of hypothermia
bouts in association with a large decrease in the minimal Tb
(Séguy and Perret, 2005b; Terrien et al., 2009). Hypothermia
responses to cold Ta are regularly observed during the winter
season and remain unusual during the breeding season. Indeed,
in the mouse lemur, daily hypothermia during the reproductive
season never results in substantial energy benefits and can have
potential adverse consequences (body mass loss, oxidative stress,
DNA damage, sleep deficit, etc., Giroud et al., 2008; Villain et al.,
2016). While hypothermia and reproduction may be mutually
exclusive in the mouse lemur, as in most rodents, this does
not apply for all mammalian species. Echidnas, marsupials,
and some other placentals resort to hypothermia during the
reproductive season, although hormonal and energetic features
seem incompatible. In the wild, similar results have demonstrated
the high flexibility of daily hypothermia in the mouse lemur.
A minimal Tb of 7.7◦C and hypothermia bouts of up to 22 h
have been recorded in wild animals during the winter season
(Schmid and Speakman, 2000; Dausmann, 2014). Finally, when
exposed to hot ambient temperatures (>28◦C), mouse lemurs do
not display daily hypothermia (Aujard et al., 1998). In natural
conditions, mouse lemurs avoid high summer Ta by resting in
buffered cavities (Goodman et al., 1993; Radespiel et al., 2003;
Lutermann et al., 2010).

Low ambient temperature and body energy reserves and food
scarcity are known to be the main trigger of daily hypothermia.
Facing low food availability and/or Ta, mouse lemur require
larger thermoregulatory investments, which usually considerably
enhances hypothermia expression prevalence (Séguy and Perret,
2005b). However, the daily profile of Tb during hypothermia and
the time of arousal, appear to be more fixed and controlled largely
by the circadian clock.

The effects of Ta on other circadian aspects have not yet been
studied in the mouse lemur, but they have been examined in
other primates such as southern pig-tailed macaques (Macaca
nemestrina), squirrel monkeys, marmosets and owl monkeys,
which are four New-World monkey species. Variations in Ta do
not lead to major effects on individuals’ circadian characteristics
(with no effect on tau, Ta acts as a weak synchronizer, since it
fails to entrain free-running activity and Tb rhythms in the owl
monkey under trapezoidal Ta cycles of 20-30◦C, Erkert et al.,
2006). In all studied species, a lower Ta causes an increase in
activity, but a decrease in Tb, even though activity and Tb
patterns as well as tau remain unchanged. In some individuals,
however, the circadian Tb rhythm also shows pronounced
short-term variations, exhibiting an earlier or delayed Tb drop
under cold exposure, manifesting in the existence of ultradian
modulations at the Tb level (Erkert, 2008), as found in mouse
lemurs subjected to a cold environment (Terrien et al., 2009).
In humans, cold or heat exposure affects the Tb pattern and

sleep structure: heat exposure increases wakefulness and thermal
load during sleep and decreases SWS and rapid-eye-movement
(REM) sleep; cold exposure mainly affects REM sleep due to the
suppression of the thermoregulatory response (Muzet et al., 1984;
Okamoto-Mizuno and Mizuno, 2012).

Effect of Light Intensity
In addition to changes in photoperiod that have clear effects
on circadian rhythm patterns, changes in light intensity during
the night or light phase can also influence these patterns.
Marked species-specific differences exist in the circadian system’s
susceptibility to entrainment to light intensity. An intensity of
0.1 lux (full-moon luminosity, Kyba et al., 2017) during the
light phase is sufficient to entrain mouse lemur and owl monkey
circadian activity to 24 h (Erkert and Thiemann, 1983; Perret
et al., 2010). By contrast, this intensity fails to entrain the
endogenous rhythm of the Senegal bushbaby and the galago,
whose threshold for photic entrainment lies at approximately
3–30 lux (Erkert et al., 2006). These observations highlight
the differences in the circadian system’s threshold for photic
entrainment, even within nocturnal prosimians.

Mouse lemurs maintained under first in free-running
DD, then either under dim light (DimL, 50 Lux, 628 nmol
photons/s/m2) or under free-running LL (150 lux,
2600 nmol/s/m2) showed significant elongation of tau between
free-running DD, DimL and LL (from 23.3 ± 0.5 h in DD to
24.3 ± 0.2 h in DimL, and from 23.1.0 ± 0.2 h to 25.4 ± 0.2 h
in LL). LA was also negatively affected by DimL and constant
light, but DimL still allows quite normal LA, whereas constant
light exerts a masking effect on LA (Le Tallec, 2015, Figure 5).
Nevertheless, dim light has been shown to decrease melatonin
levels in mouse lemurs (Le Tallec et al., 2016). Indeed, when
exposed to 51.5 lux dim light, mimicking streetlight pollution,
during their active dark phase, mouse lemurs display a significant
drop of urinary 6-sulfatoxymelatonin concentrations related to
alterations of daily rhythm profiles compared to mouse lemurs
subjected to 0.1 lux full-moon-simulating light. These results
suggest that light at night confuses day length perception and
affects proper photoentrainment. These results corroborate
Aschoff’s rule (Aschoff, 1960), which originally stated that
in nocturnal animals, tau is positively correlated with light
intensity, whereas the inverse correlation is observed in diurnal
animals. Although this rule is currently challenged in diurnal
species (especially in mammals, among which humans, whose
free-running period lengthens with increasing illumination
(Wever, 1989), it remains mostly true in nocturnal mammals,
birds, fishes and reptiles (Aschoff, 1979).

The high threshold for photic entrainment in some species
may be due to an adaptive character preventing the endogenous
clock from being affected by moonlight. Surprisingly, the
mouse lemur does not display such high photic threshold of
entrainment, and one may wonder whether moonlight affects
the mouse lemur’s biological rhythms or not and to what extent
it contributes to its environment adaptation. Light is known
to exert a strong masking effect on mouse lemurs (which is
also observed in the owl monkey, Erkert and Gröber, 1986;
Fernández-Duque et al., 2010), and full-moon luminosity can
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FIGURE 5 | Body temperature and locomotor activity of 26 male mouse lemurs under free-running dark-dark (DD), dim-light (DimL), and light-light (LL).

prevent mouse lemurs from leaving their nest and, thus, being
seen and preyed upon by owls, snakes and other carnivorous
nocturnal mammals.

Effect of Nutrition on Circadian and Daily Rhythms
The circadian timing must synchronize environmental cues
to ensure maximum performance at a given time (Hasegawa
and Arita, 2014). The SCN drives activity/sleep rhythms that
determine feeding hours and metabolic activity, which are strong
entraining signals. A good illustration of the strong power
of the circadian clock in modulating metabolic rhythms is
food anticipatory activity, reflected by increases in locomotion,
corticosterone secretion, body temperature and several metabolic
outputs before food distribution in rodents (Mistlberger, 1994;
Stephan, 2002). Conversely, feeding behavior and food intake
can impact circadian clock outputs. The effects of nutrition
on circadian rhythms have been largely documented (Mendoza,
2007). When animals are submitted to precise daily feeding
schedules, they synchronize partially or completely a wide variety
of their biological rhythms. Mice show a peak of activity in their
lateral and ventromedial hypothalamic nuclei entrained to the
time of feeding (Kurumiya and Kawamura, 1991). Likewise, a
shift in the expression of Per1 and Per2 occurs in the cerebral
cortex with peaks at mealtime, differing from the nocturnal peak
in animals fed ad libitum (Wakamatsu et al., 2001).

Food intake
In the gray mouse lemur, a chronic food shortage of 80% in
summer season leads to advancement of entry into hypothermia
by 16 ± 6 min from the 16th day and increases in the
length of hypothermia bouts of 9 ± 5 min/day during the first
25 days of restriction. These effects are greater under short
days (winter season) since either 40 or 80% caloric restriction
advances the entry into hypothermia by 10 ± 3 min/day and
increases hypothermia bouts by 30 ± 6 min/day during the first
14 days (Giroud et al., 2008, 2009). In winter, the gray mouse
lemur displays a phenotype reflecting its behavioral and sexual
inactivity. Therefore, adjusting early its body temperature enables
quick energy savings, besides an autumnal fattening in order to
cope with seasonal lack of food (Perret, 1998). These responses
are greatly enhanced when restriction of food intake is associated
with low ambient temperature (Séguy and Perret, 2005b). Finally,

nest sharing by mouse lemurs may counteract the effects of
cold exposure and/or food restriction on daily Ta and LA
(Séguy and Perret, 2005b).

Nutrients
Relationships between dietary manipulation and patterns of Tb
and LA rhythms have been tested in mouse lemurs. One study
reported that resveratrol dietary supplementation significantly
shortens the free-running period in both young and old animals:
23.15 ± 0.09 h vs. 22.90 ± 0.12 h in supplemented young
animals, 23.00 ± 0.10 h vs. 22.49 ± 0.14 h in supplemented
old animals (Pifferi et al., 2011a). This effect is supported by
previous findings in rat fibroblast cells in which the expression
of circadian clock genes had been modified by resveratrol
(Oike and Kobori, 2008). A potential mechanism would involve
resveratrol-induced activation of the SIRT1 gene, whose activity
is closely linked to Clock and Bmal1 activity (Nakahata et al.,
2008). This property could be relevant in the context of some
circadian clock disruption pathologies. A second study showed
that resveratrol supplementation improved synchronization with
the light-dark cycle, inducing a reduction of LA onset and a delay
of the time from which mean Tb starts to decrease, leading to
diminution of the hypothermia duration (Pifferi et al., 2013).
Finally, polyunsaturated fatty acids (PUFAs) have been shown to
influence daily patterns of Tb, especially the implementation of
daily hypothermia. n-3 PUFA supplementation reduces the depth
and length of daily hypothermia (Vuarin et al., 2016).

Social Interactions Influence Circadian
Rhythms
Light is known to be the main zeitgeber to synchronize
the circadian clock with environmental cues. However, social
interactions can also be powerful stimuli to reset circadian
rhythms, by affecting the light input and the pattern of light
exposure, adjusting the period of circadian clock (shown in
humans, Mistlberger and Skene, 2005). In several primate species,
social synchronization of activities within a group is generally
observed (Erkert et al., 1986; Erkert and Schardt, 1991; Melo et al.,
2013). To determine whether social interactions may affect the
periodicity of circadian rhythms in the members of a group, 12
male mouse lemurs were tested to determine their free-running
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period for 15 days, then were paired for 10 days and then returned
to isolation for 5 days in darkness (Séguy, 2005).

Once paired, 4 of the 6 groups synchronized their rhythms
after 6 ± 0.4 days, manifested by the absence of a phase
difference between the two individuals, sometimes after a phase
of total asynchrony (Figure 6). Two groups did not exhibit
synchronization before the end of the experiment. This result
is similar to results found in palm squirrel and marmosets
(Erkert and Schardt, 1991; Rajaratnam and Redman, 1999). The
lack of convincing evidence of entrainment for two individuals
may lie in the difference in tau before pairing or the timing
of the endogenous cycle in which the animals were paired.
Hence, the existence of a “sensitivity window,” i.e., a precise time
range in the endogenous cycle that enables social entrainment,
might be assumed. Another reason may lie in individual
differences in the sensitivity of the circadian system to social cues
(Rajaratnam and Redman, 1999).

Further investigations were conducted to determine the nature
of the entraining signal. Visual and olfactory contacts appear to
be strong synchronizers (Séguy, 2005). Chemical signals that are
known to interfere in social relationships between individuals
(reproduction, individual recognition, social organization, etc.)
in mouse lemurs and other mammalian species (Doty, 1976;
Perret, 1986; Braune et al., 2005; Wolff and Sherman, 2007; Tobin
et al., 2010; Aglioti and Pazzaglia, 2011; Kulahci et al., 2014; Polese
et al., 2015) can therefore also affect circadian synchronization
(Erkert and Schardt, 1991; Goel and Lee, 1996; Mistlberger and
Skene, 2004; Silva et al., 2005; Favreau et al., 2009).

EVOLUTION OF THE CIRCADIAN
PACEMAKER OVER THE LIFETIME:
EFFECT OF AGE ON THE EXPRESSION
OF BIOLOGICAL RHYTHMS

In non-human primates, knowledge about rhythmic
perturbations during aging remains scarce and mainly comes
from rhesus monkeys and mouse lemurs, whose longevities
in captivity are 35–40 (Bodkin et al., 2003) and 10–12 years
(Languille et al., 2012), respectively. It is generally agreed that
age-related changes observed in biological rhythms are caused
by the deterioration of the time-keeping system (Hofman, 2000;
VanSomeren, 2000; Hofman and Swaab, 2006). These alterations
can concern the circadian clock itself or associated physiological
and behavioral processes, such as the activity-rest rhythm or
temperature patterns. The study of the effects of aging on the
characteristics of the endogenous clock and its capacity to
respond to light entrainment is particularly pertinent in the gray
mouse lemur, which has a longer life span than rodents and is
less subject to social bias than humans and other social primates.

Changes in tau With Age
The relationship between aging and the endogenous period
in the gray mouse lemur has been investigated several times,
but different studies have led to contradictory conclusions.
A longitudinal study performed by Schilling et al. (2001) on

four individuals showed no age-related changes of tau, except
that one animal displayed an increase in tau with age. By
contrast, two transverse studies comparing young (2–4.5 years)
and old (5–9 years) animals found a significant decrease in tau
between the two groups, with an average 0.75 ± 0.15 h decrease
(Cayetanot et al., 2005b; Aujard et al., 2006). Such divergent
conclusions may lie in the differences in the experimental design
of either longitudinal (Schilling et al., 2001) or transverse studies
(Cayetanot et al., 2005b; Aujard et al., 2006). Moreover, the
number of individuals varies from one study to another, as
does the photoperiodic regimen. Further longitudinal studies are
required to conclude definitely on this issue, since the evolution
of tau seems to be highly individual-dependent.

It is even more difficult to determine the age-related effects
on tau when they actually differ from one species to another.
In rodents, it is commonly accepted that tau becomes shorter
with age (Pittendrigh and Daan, 1976a; Moore-Ede et al., 1982),
but some studies indicate that tau remains stable in Syrian
hamster (Davis and Viswanathan, 1992). In humans, the same
uncertainties persist: Weitzman et al. (1982) then Monk and
Moline (1989) showed an effective decrease in temperature tau
with age in subjects from 20 to 80 years, but Czeisler et al.
(1999) revealed that tau of young and old individuals were
closely comparable, at approximately 24.18 h, as did Kendall
et al. (2001). This finding could support the hypothesis that
different underlying mechanisms control the expression of tau.
Finally, aging can be regarded as an individual process that leads
to great interindividual variations, preventing the assessment
of a clear effect at the global level. In Schilling et al. (2001),
study among the 4 old animals that survived the longitudinal
experiment, two individuals maintained stable circadian rhythms
and died at older ages, whereas the two others displayed a
shortening of tau and died soon after the experiment. This
observation could reveal that lifespan may depend on the
homeostasis of biological constants that differ considerably from
one individual to another, making it difficult to generalize the
impact of aging on the expression of the biological clock and its
underlying mechanisms.

The evolution of tau during life raises the question of
the adaptive impact of aging on an individual’s fitness.
For example, several studies have found that a diverging
tau relative to 24 h was linked with a decreased lifespan
(Pittendrigh and Minis, 1972; Hurd and Ralph, 1998; Wyse
and Coogan, 2010; Gutman et al., 2011; Libert et al.,
2012). First described by Pittendrigh and Minis (1972), this
theory, known as the theory of circadian resonance, states
that the organism fits perfectly its environment when its
circadian system oscillates with a period of 24 h (i.e.,
the circadian system, “resonates”), which enhances individual
survival and lifespan. According to this assumption, organisms
with a free-running period far from 24 h require daily
synchronization to external environmental cycles resulting in a
physiological cost corresponding to the deviation of tau from
24h, which may impact fitness. In this context, a divergent
tau at an advanced age can quickly become deleterious by
disturbing the proper entrainment of the circadian master
clock. Due to a loss of normal phase-relationships between
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FIGURE 6 | Synchronization of Tb free-running rhythms in two male individuals: phase of arrhythmia 3–4 days after grouping, followed by synchronization
characterized by the same free-running period length, and then desynchronization when the animals are isolated again.

the endogenous oscillator and the fixed environmental period,
desynchronization of behaviors such as diurnal activity or
chronic phase advances would decrease fitness and, in turn,
survival in aged mouse lemurs.

Effects of Age on Daily and Seasonal
Rhythms of LA and Tb
Compared to adult animals, aged mouse lemurs display a
decrease in LA amplitude, an advanced activity onset and
an increase in daytime activity associated with fragmentation
(Cayetanot et al., 2005b; Aujard et al., 2006). However, although
these results have been observed in humans as well as other
non-human primates and rodents (Vitiello et al., 1986; Czeisler
et al., 1992; Valentinuzzi et al., 1997; Weinert et al., 2000;
Weinert and Waterhouse, 2007; Zhdanova et al., 2011; Duffy
et al., 2015), they do not explain whether these observed age-
related alterations are due to a reduction of sensitivity to
external light factors or to changes within the clock mechanism
itself. However, a high incidence of ocular pathologies has
been identified in mouse lemurs that are older than 7 years
(Beltran et al., 2007; Alleaume et al., 2017; Dubicanac et al.,
2017). This strongly suggests a decrease in light responsiveness
through filtering of short wavelengths that are known to be
efficient in the synchronization of daily rhythms in mouse lemurs
(Gomez et al., 2012).

Aging is also associated with immune system alterations in the
gray mouse lemur. Indeed, plasma levels of interferon-γ (IFN-
γ, a cytokine regulating immune and inflammatory responses
intervening in the pathogenesis of a number of brain diseases,
Blasko et al., 2001) are correlated with age-related disturbance
of circadian rhythms and survival: high levels of IFN-γ are
associated with a short lifespan and a short free-running period
tau; IFN-γ levels also correlate with characteristic patterns of
LA and body temperature during aging (high percentage of
diurnal LA, advanced onset, delayed occurrence of minimal Tc,
Cayetanot et al., 2009).

Perturbations of Tb rhythm are particularly impacted with age
because of the modification of the daily pattern of hypothermia.
During aging, diurnal hypothermia actually tends to disappear,
consequently reducing the Tb amplitude (Perret and Aujard,
2006). These modifications of LA and Tb rhythms are related to
other age-related energetic and hormonal rhythm perturbations
that are expressed seasonally.

Seasonal alternations are characterized by changes in
daylength and temperature, among other factors, which are
of major relevance to the expression of activity patterns
and reproductive function in primates (Chik et al., 1992;
Hill et al., 2004a,b). With age, the synchronization of circadian
rhythms is altered in regard to daylength: a decrease in the
sensitivity of the circadian clock to short-term light-dark
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cycles modification (Zhang et al., 1996; Benloucif et al., 1997)
and age-related modulation of the temporal organization of
daily rhythms (Scarbrough et al., 1997; Benstaali et al., 2002;
Martin et al., 2003).

With aging, mouse lemurs display a decrease in the amplitude
of the seasonal variations in body mass, basal metabolic rate,
sexual hormones, and DHEA-S (Aujard and Perret, 1998; Aujard
et al., 2001; Perret and Aujard, 2005). In response to exposure
to a long photoperiod, old mouse lemurs show an increase in
interdaily variability and a decrease in the amplitude of LA with a
phase advance compared to younger animals (Aujard et al., 2007),
providing evidence of impairment of mechanisms involved in
both light perception and SCN activity.

Changes in Sleep During Aging
Aging has been associated with numerous and diverse changes
in sleep. In humans, these changes include an increase sleep
fragmentation, decreases in total sleep time, sleep efficiency and
SWS, and attenuation of EEG slow-wave activity (SWA, EEG
power density between 0.75–4 Hz) in NREM sleep (Landolt et al.,
1996; Carrier et al., 2002; Crowley, 2011; Luca et al., 2015). The
age-related alterations of sleep-wake rhythms in the mouse lemur
consist of decreased activity (−20%) during the active phase,
more active wakefulness (+50%) and a reduction in SWS (−40%)
during the resting phase (Pifferi et al., 2011b). Comparable
observations have been made in other mammals, such as humans.
Aged rhesus monkeys, for example, display reduced daily activity
duration, as well as high day-to-day variability in sleep quantity
and quality. This is associated with fragmentation of LA during
nighttime and daytime, with more sleep during daytime, and
shortened time spent in REM sleep and SWS (Zhdanova et al.,
2011). The results in rodents are more contradictory. Old mice
exhibit more sleep and more SWS and non-rapid eye movement
sleep (light sleep) during the resting phase, characterized by an
increased amplitude and steeper slopes, which surprisingly is
the opposite of what is found in humans and other non-human
primates (Panagiotou et al., 2017). However, several studies in
rats show that, despite more desynchronized sleep and sleep
bouts, neither active wakefulness nor SWS is altered during aging
(Zepelin et al., 1972), whereas others have shown a significant
increase in the time spent awake and a decrease in active sleep
time (van Gool et al., 1987). Mouse lemurs also display chronic
phase advances, resulting in an earlier wake-up in the morning,
as observed in older humans and rodents (Yunis et al., 1974;
Duffy et al., 1998; Monk, 2005). In this regard, the mouse lemur
exhibits age-related sleep-wake alterations similar to those found
in humans and can therefore be seen as a compelling aging model
of sleep rhythm disturbances.

Underlying Mechanisms of the Aging of
the Circadian Clock
Age-related changes in the circadian clock are linked with
anatomical and practical disruptions of the SCN (Antle and
Silver, 2005; Nakamura et al., 2011). Despite some studies in
rodents, the underlying mechanisms of the alterations of the
biological clock with age remain unclear. However, a decrease

in sensitivity to light demonstrated by reduced Fos expression
in the SCN has been described in aging rodents (Sutin et al.,
1993; Benloucif et al., 1997). Alterations of neurochemical and
electrophysiological aspects of the SCN have also been reported,
including changes in the VIP and AVP expression (Roozendaal
et al., 1987; Kawakami et al., 1997; Kalló et al., 2004), reduced
amplitude of electrical activity rhythm (Nygård et al., 2005; Biello,
2009), altered melatonin production with age and recovery of
young-like expression of certain clock genes upon melatonin
administration in rats (Manikonda and Jagota, 2012; Mattam
and Jagota, 2014). Modification of the ability of the SCN to
reset peripheral clocks can be mentioned as well when rats are
subjected to a 6-h advance or delay (Davidson et al., 2008). The
most conclusive evidence of the decisive role of the SCN in aging
is the restoration of some of these alterations after transplantation
of the SCN from fetal to aged individuals (Viswanathan and
Davis, 1995; Cai et al., 1997).

In mouse lemurs, young and old animals exhibit significant
differences in urinary sulfatoxymelatonin (aMT6s). During the
night period, the urinary aMT6s values of young individuals
increase immediately after the onset of darkness (from 40 ng/mg
Cr to 120 ng/mg Cr), whereas the urinary aMT6s of old
individuals remain low, near 30 ng/mg CR throughout the
day/night period (Aujard et al., 2001). Using the early Fos
gene response in the SCN to a light stimulus under different
irradiance levels, the density of Fos induction in the SCN has
been demonstrated to increase proportionately with increasing
irradiance in young mouse lemurs. By contrast, exposure to
low levels of irradiance fails to increase SCN Fos expression
in aged individuals. Moreover, under an identical level of
irradiance, Fos expression shows a reduction of 88% in aged
mouse lemurs compared to young ones (Aujard et al., 2001).
Finally, a decrease in Fos expression in the main olfactory bulbs
following an odorant stimulus has been described in aged mouse
lemurs, potentially explaining both the age-related decreases in
behaviors associated with olfaction and indirect effects on SCN
(Cayetanot et al., 2005b).

Changes in AVP and VIP have also been reported (Cayetanot
et al., 2005a; Aujard et al., 2006). Although the number of AVP-
positive neurons counted and the amplitude of their rhythm are
comparable in adult and aged animals, the daily oscillation of
this parameter is affected by aging, with a delay of the peak in
the number of AVP neurons by approximately 4 h with respect
to that in young animals. A similar pattern is found regarding
VIP-positive SCN neurons, whose peak also shifts by 4 h in
aged mouse lemurs. The presence of calcium-binding protein
calbindin-D28K (CalB) cells in the SCN was also revealed in the
gray mouse lemur. These CalB cells in the mid-causal region of
the SCN of hamsters express the Fos protein in response to light
pulses (Silver et al., 1996) and are related to AVP and VIP cells
(LeSauter et al., 2002). In young mouse lemurs, nuclear CalB
immunoreactivity displays large daily variations, ranging from
31.7 ± 4.0% of cells with immunopositive nuclei during daytime
to 9.3 ± 2.8% during nighttime. Such variations are significantly
reduced with aging (Cayetanot et al., 2009).

In summary, longitudinal and transverse assessments of
circadian behavioral, physiological and cellular alterations have
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revealed that mouse lemurs exhibit many similar characteristics
with human aging. These observations suggest that the mouse
lemur can be considered as an ideal system to explore the
mechanisms underlying the evolution of the circadian clock
aging, whether it is healthy or pathological. For instance, healthy
aging is associated with some physiological and behavioral
changes occurring alongside in the same age scope (IFN-γ
levels and fragmentation of LA patterns for example, Cayetanot
et al., 2009). Further longitudinal studies should be useful
for determining the dynamic evolution of circadian aging
parameters and identifying predictive biomarkers of longevity
and neuropathological aging.

EVOLUTIONARY CONSIDERATIONS: IS
THE MOUSE LEMUR A PRIMITIVE
CIRCADIAN MODEL?

A persistent view of primatology history indicates that lemurs,
especially mouse lemurs, have conserved some physiological and
behavioral characteristics of early primates, including small size,
nocturnal behavior, a frugivorous-insectivorous diet, a solitary
way of life, and altricial young individuals carried by the mouth
(Szalay, 1968; Charles-Dominique and Martin, 1970; Cartmill,
1972, 1974; Eisenberg, 1981; Rutberg, 1983; Teaford et al.,
1996; Ross, 2001; Strait, 2001). However, some studies have
demonstrated that most of these characteristics evolved recently
and appear to derive from a reduction in body size only 30
MA ago, deconstructing the myth of the primitive mouse lemur
(Gebo, 2004; Génin and Masters, 2011). Regarding circadian
characteristics, it seems that the mouse lemur’s characteristics
are highly adaptive and do not necessarily come from an
ancestral fixed state.

Mouse Lemur Nocturnality: An Ancestral
Trait?
There is much debate regarding whether mouse lemur
nocturnality can be seen as an ancestral or evolved trait.
Some evidence supports the view that nocturnal activity in
Strepsirrhini occurs as an ancestral character in comparison
to other primate suborders. Indeed, the primate ancestors
(like most mammalians ancestors) are assumed to have been
nocturnal, with primate diurnality appearing in the most recent
common ancestor of the suborder Haplorrihini during the
Mesozoic (Bininda-Emonds et al., 2007; Joffe et al., 2014).
However, this hypothesis of a unique nocturnal ancestor has
been recently challenged by several observations. First, studies
on strepsirrhinian eye structure and opsin genes encoding
retinal pigments have led to contradictory conclusions. The
tapetum lucidum, a reflective structure located behind the
retina of many nocturnal animals, is found in several diurnal
lemuriform species (Lemur catta, Indridae) but not in Eulemur
species, which are cathemeral (Peichl et al., 2017). Furthermore,
nocturnal cheirogaleids (close cousins of mouse lemurs)
possess alleles for trichromatic diurnal vision, although they
are mainly dichromatic, which suggests the recent occurrence

of nocturnality in this group (Tan and Li, 1999). Trichromatic
vision has also been detected in the nocturnal folivorous wooly
lemurs (genus Avahi) (Veilleux et al., 2014). Another study on
14 representative prosimian species provided an explanation for
the color-sensitive photoreceptor opsin gene patterns among
prosimians that suggests early loss of the middle-wavelength
and long wavelength opsin gene polymorphism, indicating an
early convergent shift from a diurnal to a nocturnal lifestyle in
prosimians and, thus, in the mouse lemur (Tan et al., 2005).
Second, reconstruction of the activity pattern of the fossil
omomyiform Teilhardina asiatica and the visual system of
adapiforms, two major Paleocene members of the earliest known
primates (Gingerich, 1976; Martin, 1993; Silcox et al., 2007),
corroborate the diurnal ancestor hypothesis. Observations
of the T. asiatica skull orbits combined with faunivory and
phylogenetically based on character analysis of activity patterns
provide support for the diurnality hypothesis (Heesy, 2009).
Ankel-Simons and Rasmussen (2008) questioned the common
assumption that ancestral primates were nocturnal on the
basis of reviewing studies focusing on the morphology and
physiology of the primate visual system (eye size, corneal
size, retinal morphology, and opsin distribution). They found
that Paleocene plesiadapiforms and Eocene euprimates fossils
observation supports the hypothesis of both diurnality and
nocturnality in early primates, without concluding with a clear
statement. Thus, the traditional view of the mouse lemur’s archaic
nocturnal character seems erroneous, or at least uncertain. The
preceding observations tend to agree with the hypothesis of
several convergent shifts to nocturnality in prosimian primates.
Finally, Ankel-Simons and Rasmussen (2008) reviewed the
morphological and physiological characteristics of the primate
visual system and stressed how rapidly and readily diurnality
may have switched to nocturnality and vice versa, highlighting
the significant recent evolutionary flexibility in the visual system
of primate lineages. In light of these statements, one might
assume that analogies between diurnal and nocturnal species
can be easily and appropriately drawn in terms of behavioral
and physiological circadian outputs, without misunderstanding
either chronotype, since molecular clock mechanisms must have
remained highly similar in both diurnal and nocturnal primates.

Highly Adaptive Daily Hypothermia
Stemming From Convergent Evolution
Since the basal metabolic rate is inversely correlated with body
mass in endotherms, important energetic demands and costs
are extremely marked in small eutherians (Gillooly et al., 2001;
Glazier, 2018). That is the reason why a lot of small species
use adaptive physiological mechanisms to reduce their energy
consumption during inactive times of the day (Martin and Yoder,
2014). Employing hypometabolism to lower Tb periodically can
save considerable amounts of energy, since thermoregulation
represents an important part of the daily energy allocation.
The use of hypothermia in many small mammals and birds
corresponds to a more apparent decrease in Tb, occurring
mostly during the resting phase of the individual (Lyman
et al., 1982; Ruf and Geiser, 2015). The mouse lemur’s daily
hypothermia is unique among primates, being restricted to
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the Cheirogaleidae, and is highly comparable to that found
in other small daily heterotherms (Lovegrove and Raman,
1998; Körtner and Geiser, 2000). As in all small heterothermic
mammals, daily hypothermia is part of the normal circadian
organization of the mouse lemur, but some external parameters
(food availability, ambient temperature, body energy reserves)
can trigger the timing of hypothermia onset, which varies
considerably, since the primary role of hypothermia turns out
to be energy conservation (Terrien et al., 2009; Vuarin et al.,
2013; Faherty et al., 2017). Although the daily hypothermia of
small eutherians was long regarded as a “primitive” or even
“imperfect” (McNab, 1978), it is currently thought to be highly
adaptive (Aujard et al., 1998; Génin and Perret, 2003). Two
conflicting hypotheses suggest two different origins of mouse
lemur daily hypothermia (Blanco et al., 2018). One states
that ancestral strepsirrhinians were heterothermic, contributing
to their survival during their oceanic trip to Madagascar.
Cheirogaleids are suggested to have conserved this trait during
their evolution, whereas other lemurs have lost it (Martin,
1993; Kappeler, 2000; Nowack and Dausmann, 2015). Another
scenario assumes that ancestral cheirogaleids experienced a
dwarfism episode during their evolution, representing a de
facto acceleration of their metabolic rates (Génin and Masters,
2016). Therefore, daily hypothermia would have helped to cope
with a more challenging environment and would have been
derived from numerous independent convergent evolutionary
events in cold or arid regions (Dausmann and Warnecke,
2016). Furthermore, one study suggests that early primates
colonizing Madagascar were large-sized and rules out the
extensive use of heterothermy by adapiforms (Masters et al.,
2007). Finally, the discovery of an active heating process, non-
shivering thermogenesis, using brown adipose tissue containing
a protein called UCP (Uncoupling protein) and the original
repartitioning of brown adipose tissue in the mouse lemur
confirm the convergent evolution hypothesis (Génin et al., 2003).

Ecology and Evolution of the Mouse
Lemur Sleep Pattern
The mouse lemur displays a very polyphasic sleep pattern close
to that of rodents. This characteristic, which is typical of small
vertebrates, must be due to energetic constraints, rather than
predation threats (Capellini et al., 2008b; Roth et al., 2010).
Indeed, fragmented sleep is present in small body-sized species
that display reduced sleep cycles: because of the more frequent
need to feed, small species are not able to consolidate sleep into
one unique bout as in other larger species. The shorter sleep
duration in monophasic animals leads to believe that one daily
bout sleep may consolidate sleep benefits in a more efficient way.
Monophasic sleep is thought to be an evolved trait, since there
is 99% support for polyphasic sleep as an ancestral character
state (Capellini et al., 2008b). However, despite its rodent-like
polyphasic sleep pattern, the mouse lemur exhibits a total sleep
duration much closer to that of humans than that of rodents.
Indeed, the total sleep duration, which is strongly influenced by
phylogeny (Capellini et al., 2008a), is significantly shorter in the
mouse lemur (approximately 10 h per day, Pifferi et al., 2012)

than in most rodents (Campbell and Tobler, 1984). The case
of the mouse lemur is therefore paradoxical because it displays
both polyphasic sleep and a reduced sleep time, which can be
detrimental in terms of sleep consolidation. We hypothesize
that the short sleep duration of the mouse lemur is offset
by SWS that is deeper than in rodents and close to that of
humans. This sleep phase (often referred to as deep sleep) is
marked by slow, high-amplitude EEG waves and may provide
the cognitive consolidation needed to counteract the fragmented
short sleep duration. Despite showing a brain size similar to rats
(Le Gros Clark, 1931), mouse lemurs exhibit a greater number of
neocortical areas, which is a characteristic of primates in general,
particularly in the parietal, temporal, and frontal regions (Halley
and Krubitzer, 2019). These characteristics might explain why
sleep patterns in mouse lemurs are similar to those in other small
mammals in their structure but are similar to those in other
primates in their electrophysiological characteristics, reflecting
the phylogenetic proximity of the mouse lemur to other primates.
All these observations make the mouse lemur an interesting
intermediate sleep model between rodents and humans.

CONCLUSION AND PERSPECTIVES

(1) The mouse lemur displays flexible biological rhythms,
allowing it to fully adapt to its changing environment. This
plastic phenotypic trait facilitates adaptation to unpredictable
environmental seasonal variations in Madagascar. The mouse
lemur expresses two completely opposite seasonal phenotypes
that are a particularity of Cheirogaleus and Microcebus, two
Malagasy cheirogaleid primates, and are only determined by
photoperiod length and driven by the plastic biological clock
(Kobbe et al., 2011). The daily hypothermia exhibited by the
mouse lemur is also highly adaptive and flexible: it enables
the lemurs to respond to a predictable cold environment or
food shortage, leading to strategic minimized energy expenditure
during the rest phase of the day. The temporal organization
of daily hypothermia in the gray mouse lemur is regulated by
endogenous circadian function and triggered by environmental
conditions. Daily hypothermia is then an adaptive endogenous
process presumed to have evolved in order to cope with
great variability of seasonal resources, such that the favorable
phenotype would be expressed at the appropriate time of year.
In addition, an influence of the light phase duration on circadian
characteristics, particularly on tau, is suspected in the mouse
lemur. Indeed, Pittendrigh and Daan (1976a) demonstrated an
influence of photoperiod duration on tau in several mammalian
and bird species, which can be seen as an influence of season. The
effect of 24 h days with short photoperiods in winter is evidently
to bring a short tau closer to 24 h, but that trend is reversed
in midsummer, when the after effect of the long photoperiod is
to shorten tau again. Their interpretation tends toward lability
of the pacemaker to minimize the “trauma” of daily phase-shift
variation with the season. This hypothesis has not yet been
verified in the mouse lemur, and further investigations on the
topic are planned to bring new insights into the seasonal plasticity
of the mouse lemur clock.
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(2) The mouse lemur can no longer be seen as a primitive
ancestral species but, rather, should be seen as a primate
intermediate species between humans and rodents and as
a functional analog in terms of biological rhythms. Several
arguments support this point of view. First, the mouse
lemur’s nocturnal behavior, long considered as an ancestral
trait (due to the first mammals’ supposed nocturnality),
is now believed, owing to morphological, anatomical and
genetic analysis, to have resulted from a convergent shift
from diurnality to nocturnality during the last 30 million
years, fitting with the mouse lemur’s anti-predatory behavior
(Génin and Masters, 2011). Second, the daily hypothermia
expressed by the mouse lemur appears to be a highly
adaptive behavior to save substantial amounts of energy
that was derived from numerous convergent shifts (Blanco
et al., 2018). Finally, the sleep structure of the mouse lemur
falls between that of humans and rodents. Despite their
rodent-like fragmented sleep pattern, mouse lemurs exhibit
SWS that is much closer to that of humans than that of
rodents, with a low frequency of SW, comparable to the
human frequency (Pifferi et al., 2012). Thus, the gray mouse
lemur, by displaying biological similarities with rodents while
retaining some primate characteristics provides a noteworthy
intermediate study organism.

(3) From a medical perspective, the mouse lemur is a
very good model in terms of circadian clock characteristics
during its life and aging in numerous regards, including
sleep structure, changes in LA amplitude, increased daytime
activity, advanced activity onset and the underlying cellular
mechanisms during aging, etc. All these parameters are very
similar in mouse lemurs and humans, except the mouse lemur’s
daily hypothermia that can be seen as a specific trait and
also as a limit for the mouse lemur as an animal model.
Nevertheless, the additional fact that the mouse lemur displays
spontaneous brain pathologies such as the formation of amyloid
plaques that resemble those of Alzheimer’s disease, show that
this species is currently seen as a new promising model for
studying circadian disruptions and, more generally, cerebral
pathologies in aging humans (Bons et al., 2006; Languille
et al., 2012). Furthermore, its small size and weight make it
an easy species to breed in laboratory conditions. However,
the primate status of the mouse lemur can be constraining in
some regards (ethical rules among other considerations), and
it therefore cannot be used as a substitute for rodent species

but as a complementary model (Fischer and Austad, 2011;
Ezran et al., 2017).

(4) Despite some molecular studies on the mouse lemur’s
biological clock, much remains to be discovered and described
in this area, especially concerning the mechanisms underlying
the alteration of the biological clock during aging, in contrast
to studies on rodents, in which much more information is
available. Nevertheless, the recently completed sequence-based
M. murinus genome provides new tools and positive perspectives
for measuring the genetic expression of circadian genes, among
others, in this species (Larsen et al., 2017; Roberts, 2019).

(5) An additional table summarizing gray mouse lemur’s
circadian characteristics in comparison with rodents, human and
other primate species is available in the Supplementary Table
S1. It highlights the domains or key questions that remain to
be explored regarding the mouse lemur’s circadian clock such
as the cellular and molecular mechanisms underlying mouse
lemur’s clock, in particular during aging. Longitudinal study
of the circadian clock would help clarifying the evolution of
circadian constants during aging as well as the study of olfactory
bulbs influence and their underlying mechanisms. Another
important future research direction would be to study the link
between behavior and circadian rhythms (cognitive responses,
social influences. . .) that might be tightly intermingled. A good
example could be the study of chronic desynchrony, for example
in the context of circadian clock’s response to shiftworking, what
has never been studied in the gray mouse lemur. Finally, special
attention should be given to the description of sleep–wake cycles
in adult and aged mouse lemurs, to confirm their intermediate
characteristics between humans and rodents.
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