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In this paper, we are investigating the interaction between different passive

material models and the mechano-electrical feedback (MEF) in cardiac modeling.

Various types of passive mechanical laws (nearly incompressible/compressible,

polynomial/exponential-type, transversally isotropic/orthotropic material models) are

integrated in a fully coupled electromechanical model in order to study their specific

influence on the overall MEF behavior. Our computational model is based on a

three-dimensional (3D) geometry of a healthy rat left ventricle reconstructed from

magnetic resonance imaging (MRI). The electromechanically coupled problem is solved

using a fully implicit finite element-based approach. The effects of different passive

material models on the MEF are studied with the help of numerical examples. It turns out

that there is a significant difference between the behavior of theMEF for compressible and

incompressible material models. Numerical results for the incompressible models exhibit

that a change in the electrophysiology can be observed such that the transmembrane

potential (TP) is unable to reach the resting state in the repolarization phase, and this

leads to non-zero relaxation deformations. The most significant and strongest effects of

the MEF on the rat cardiac muscle response are observed for the exponential passive

material law.

Keywords: electromechanics, mechano-electrical feedback, passive mechanics, compressible, incompressible,

exponential, polynomial, rat left ventricle

1. INTRODUCTION

Cardiovascular diseases remain the leading causes of death, e.g., 30% in the US and 45% in Europe
(Wilkins et al., 2017), even though the cardiovascular system has been extensively studied. A great
hope to reduce the mortality of cardiovascular diseases in the future lies in computational models.
These models can be an effective tool to study and understand the cardiovascular system and
related pathologies in a new fashion. This includes, e.g., the early recognition of heart failure, better
understanding of the cardiac function under normal and pathological conditions (Trayanova, 2011;
Gao et al., 2015), patient-specific diagnostics and treatments (Asner et al., 2017), as well as the
development of cardiac devices (Baillargeon et al., 2015).
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Computational models of the heart include an excitation-
contraction coupling representing the physiological course
of converting an electrical stimulus into an active muscle
contraction. The electrical excitation, which induces
depolarization and contraction of cardiac cells, is widely
represented by the ionic Hodgkin-Huxley model for neurons
(Hodgkin and Huxley, 1952). Based on the Hodgkin-Huxley
description, a large number of models have been derived, which
can be subdivided into physiological and phenomenological
models. On the one hand, physiological models are used from
cell to tissue level, for example drug testing of a cell drum
compromising three different cardiac stem cells (Frotscher
et al., 2016) as well as for drug investigations on a complete
human heart (Costabal et al., 2018). On the other hand,
phenomenological approaches like the Aliev-Panfilov model
and the FitzHugh-Nagumo model are also widely used to
model cardiac excitability, mostly at tissue level (Fitzhugh,
1961; Rogers and McCulloch, 1994; Aliev and Panfilov, 1996).
Compared to physiological models, the phenomenological
approach describes the TP evolution, using a significantly
smaller number of internal variables, while still capturing
the main characteristics of the cardiac electrophysiology.
Thus, it is less complex, easier to implement, reduces
computational costs (Cherubini et al., 2008) and is often
used to investigate arrhythmia.

Apart from the excitation-induced contraction of cardiac
cells, the depolarization and subsequently the contraction of
cardiomyocytes can be also initiated through the stretch-
induced opening of ion channels, commonly referred to as
the mechano-electrical feedback (MEF) (Kohl et al., 1999;
Keldermann et al., 2009). More specifically, the MEF is capable
of modifying the electrophysiology (Kamkin et al., 2005) and
might promote stretch-activated arrhythmias, which have been
commonly identified as a result of electrical disorders in
the cardiac muscle (Franz, 1996). Moreover, the MEF can
shorten the action potential (AP) duration or shorten the
time course of repolarization (Franz, 1996) and break up
spiral waves (Panfilov et al., 2007). Furthermore, it has been
shown that high strain and stretch rates can cause premature
ventricular excitation (Franz et al., 1992; Hu and Sachs, 1997).
In addition to the extensive investigations on humans, similar
findings have been observed for arterial cardiomyocytes in
rats (Kamkin et al., 2000). In particular, stretch can result in
atrial fibrillation after ventricular infarction (Kamkin et al.,
2000). Also in other mammals like rabbits, the MEF can give
rise to spontaneous arrhythmia in an acute local ischemia
(Jie et al., 2010). This phenomenon plays a key role in
interpreting the interplay between the electrophysiology and
mechanics of cardiomyocytes (Keldermann et al., 2007). In a
comprehensive computational modeling approach for cardiac
electromechanics, it is essential to account not only for the
excitation-triggered contraction of cardiac myocytes but also
for the stretch-activated excitation. To investigate the effect
of the MEF, strongly coupled electromechanical models are
used (Costabal et al., 2017). However, depending on each
specific application with different imposed goals in heart
research, weakly coupled problems are also considered and

sequentially solved (Frotscher et al., 2016; Duong et al.,
2018). On the other hand, decoupled or staggered approaches
are suitable for one-way coupling formulation (Usyk et al.,
2002; Nash and Panfilov, 2004; Baillargeon et al., 2014;
Frotscher et al., 2016). While the effects of the MEF have
been widely studied in experiments, the effects in connection
with various computational models, especially different passive
material models, remain relatively unclear. In this study, the
MEF is investigated in combination with various types of
passive mechanical laws (nearly incompressible/compressible,
polynomial/exponential-type, transversally isotropic/orthotropic
material models) in order to study their interactionwith theMEF.

Specifically, we want to focus on the interaction of the
passive mechanical model with the MEF and how different
types ofmaterial laws (compressible, incompressible, polynomial,
exponential, transversely isotropic, orthotropic) are influencing
the overall MEF characteristics. We employ a transversely
isotropic and nearly incompressible model, a transversely
isotropic compressible model (Göktepe and Kuhl, 2010) and
the orthotropic and nearly incompressible Holzapfel-Odgen
model (Holzapfel and Ogden, 2009). Our study is based on a
left ventricle of a rat heart, whose geometry is reconstructed
from high resolution MRI at the University of Erlangen-
Nuremberg (Duong et al., 2018). The phenomenological
model of Aliev-Panfilov is used to represent the electrical
excitation (Aliev and Panfilov, 1996). We investigate the
variation in TP evolution and mechanical deformation due to
the interaction between the passive mechanical models and
the MEF.

2. METHODS

We briefly introduce the basic electromechanical model and
numerical methods used to formulate and solve the boundary
value problem of the contracting ventricle. More details on
the kinematics and constitutive equations can be found in
the Appendix A.

2.1. Governing Equations for Cardiac
Electromechanics
The electromechanics of a left ventricle (LV) (see Figure 1)
can be described by two primary field variables, placement
ϕ(X, t) and AP Φ(X, t). Thus, two field equations, which govern
the state of the material point X at time t, t ∈ [t0, tf ]
(t0 and tf are the initial and final time, respectively), can be
formulated. The mechanical field equation is the balance of
linear momentum

0 = Div[F · S]+ Fϕ in �0, (1)

where F is the deformation gradient, S is the second Piola-
Kirchoff stress tensor and FΦ is the external mechanical
body force. The other differential equation describes
the spatiotemporal evolution of the AP Φ and can be
written as

Φ̇ = Div[Q]+ FΦ in �0. (2)
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FIGURE 1 | Boundary surface Ŵ0 decomposed into Ŵϕ and ŴT for the

mechanical model and ŴΦ and ŴQ for the electrical model.

The non-linear current term FΦ takes into account the electrical
excitation, Φ̇ denotes the material time derivative of the AP field,
Div[Q] represents the diffusion of the AP, whereby Q describes
the electrical flux vector. Together with the boundary conditions,
the mechanical and electrical balance equations constitute an
initial boundary value problem in the strong form for unknown
placement and AP, {ϕ(X, t),Φ(X, t)}. The boundary conditions
are Dirichlet and Neumann conditions as ϕ(X, t) = ϕ̄ on Ŵϕ ,
surface traction vector T(X, t) = T̄ on ŴT for all t ∈ [t0, tf ]
and ϕ(X, t0) = 0 in �0. For the electrical model, the boundary
conditions are Φ(X, t0) = Φ̄ on ŴΦ and Q(X, t) · N = Q̄
on ŴQ with the unit normal vector N pointing outwards of
surface ŴQ (see Figure 1). By the Cauchy stress theorem, we get
T̄ = F · S · N .

2.2. Mechanical Constitutive Models
By the active stress approach (see e.g., Smith et al., 2004;
Göktepe and Kuhl, 2010; Pathmanathan et al., 2010), the
stress response of cardiac muscles can be decomposed
into a passive and an active part. While the passive part is
only governed by the mechanical deformation, the active
part takes into account the excitation-induced contraction.
Hence, the total second Piola-Kirchhoff stress tensor S

is written as

S = Spas(C)+ Sact(f 0, s0,Φ), (3)

where C denotes the right Cauchy-Green deformation tensor,
f 0 the fiber direction and s0 the sheet direction in the
material configuration. Now, three different models for the
passive mechanical response are presented which are utilized
to investigate their interaction with the MEF. From the

strain energy function 9 , which is used to describe the
mechanics of soft tissues, the associated mechanical constitutive
equation reads

S = 2
∂9

∂C
. (4)

All further derived quantities can be decomposed into their
passive (�)pas and active part (�)act .

Transversely Isotropic Compressible Model (TIC)
The first passive material model we are utilizing is a transversally
isotropic compressible model, which is represented in the form of
a polynomial function (see Göktepe and Kuhl, 2010). The passive
material stress response is described by a modified neo-Hookean
constitutive model in which the basic neo-Hookean model is
extended by a transversely isotropic part taking into account the
dependency of the material properties in the fiber direction f 0
at each point X in the material configuration. The strain energy
function can be written as

9 = 9iso +9ani (5)

9iso =
3

2
ln2 J +

µ

2

(

I1 − 3− 2 ln J
)

(6)

9ani =
1

2
ϑη

(

I4f − 1
)2

(7)

in terms of the principal strain invariants of the symmetric right
Cauchy-Green tensor C as I1 = tr(C), det(C) = J2, and I4f (C) =
f 0 · (Cf 0), where the Jacobian J is defined as J = det(F). In
Equation (5), the two constants3 andµ in the isotropic part9iso

are the Lamé parameters, and the passive stiffness of myofibers is
denoted by η in the transversely isotropic (so-called anisotropic)
part 9ani.

Transversely Isotropic and Nearly Incompressible

Model (TII)
The second polynomial-type model is basically derived from the
above compressible modified neo-Hookean TIC model, but it is
rewritten in a form such that it is transversely isotropic and nearly
incompressible reading

9 = 9iso +9ani +9vol (8)

9iso =
µ

2

(

Ī1 − 3
)

(9)

9ani =
1

2
ϑη

(

Ī4f − 1
)2

(10)

in terms of the principal invariants of the isochoric Cauchy-
Green tensor C̄ = F̄T F̄. The principal isochoric invariants
of C̄ are defined as Ī1(C̄) = tr(C̄) and Ī4f (C̄) = f 0 ·

(C̄f 0). Further, 9vol = κ(J − 1)2 is the volumetric energy,
where κ tunes the enforcement of incompressibility (we use
κ=104 kPa). Similar as in TIC, the anisotropic part of the
free energy function 9ani only occurs if the fibers are under

tension λ̄ > 1 with λ̄ =

√

Ī4f .
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Orthotropic and Nearly Incompressible Model (HO)
The third considered model is an exponential-type strain energy
function, the Holzapfel-Ogden model (see Holzapfel and Ogden,
2009). In the field of cardiac modeling, the HO model is one of
the most suitable choices for describing the passive mechanical
response of the myocardial tissues since it can capture the
hyperelastic and orthotropic characteristics which have been
found in experiments on porcine hearts (see Dokos et al., 2002).
In contrast to the polynomial-type models TIC and TII, the HO
is based on a strain energy function which is represented by
exponentials. The orthotropy at each point X is characterized
by a right-handed set of normalized basis vectors which are
determined by the fiber direction f 0, the sheet direction s0 and
the orthogonal vector of the sheet plane n0 = f 0×s0. By applying
the incompressibility condition to the finite element setting, the
HO model is, therefore, split into its isochoric term (in terms of
the principal isochoric invariants) and a volumetric part 9vol (as
in TII). The strain energy function reads as

9 = 9iso +9ani +9vol, (11)

9iso =
a

2b
exp[b(Ī1 − 3)], (12)

9ani =
∑

i=f ,s

ai

2bi

{

exp
[

bi(Ī4i − 1)2
]

− 1
}

(13)

+
afs

2bfs

[

exp(bfs Ī
2
8fs)− 1

]

,

where i ∈ {f , s} and the variables a, b, af , bf , as, bs, afs, bfs
are material constants. While all a, af , as, afs parameters have the
dimension of stress, all b, bf , bs, bfs are dimensionless.

The active stress response is described in the Appendix A.2.

2.3. Electrophysiological Constitutive
Models
The nonlinear current source term FΦ controlling the AP in
Equation (2) is split into two parts as

FΦ = FΦ
e (Φ , r)+ FΦ

m (C,Φ) , (14)

where FΦ
e expresses the purely electrical part and FΦ

m accounts for
the MEF, i.e., a mechanically-induced excitation. The excitation-
induced purely electrical part FΦ

e characterizes the effective
current, which is generated from the inward and outward flow
of ions across the cardiac cell membrane. Meanwhile the stretch-
induced mechano-electrical part FΦ

m accounts for the opening of
ion channels due to the mechanical deformation. By introducing
the non-dimensional and normalized action potential Φ and the
non-dimensional time t̄, we derive the conversion forms as (Aliev
and Panfilov, 1996)

Φ = kφφ − δφ , t = kt t̄, (15)

where kφ and δφ relate the dimensionless action potential φ to
the physical action potentialΦ and kt the dimensionless time t̄ to

the physical time t. Consequently, the purely electrical term FΦ
e

is modeled as

FΦ
e (Φ , r) =

kφ

kt
f φe (φ, r),

f φe (φ, r) = cφ(φ − α)(1− φ)− rφ + I, (16)

where the coefficient α controls the oscillation threshold, c is a
scaling parameter, I is an external stimulus and r is the recovery
variable which controls the repolarization of the cardiac cell.

2.3.1. Potential Flux
The electrical constitutive equations are also formulated as
functions of the deformation gradient and the AP, the material
electrical flux reads

Q = D · ∇Φ (17)

with the conductivity tensor D = DisoC
−1 + Danif 0 ⊗ f 0/λ

2,
where Diso = Jdiso and Dani = Jdani. The parameter diso accounts
for the isotropic and dani for the additional faster conduction
along the fiber direction (Costabal et al., 2017).

2.4. Mechano-Electrical Feedback
As mentioned before, the electro-mechanical coupling plays
an essential role in the cardiac function. A mechanical cell
deformation induces electrical current generation. This behavior
is observed due to stretch-induced opening of ion channels which
induces AP generation. It can be described by the constitutive
equation for the electrical source term FΦ

m as

FΦ
m (C,Φ) =

kφ

kt
f φm(C,φ),

f φm(C,φ) = ϑGs (λ− 1) (φs − φ) (18)

where Gs denotes the maximum conductance, φ is given in
Equation (15), φs is the dimensionless reversal potential at which
there is no net ion flux through the stretch-activated channels, ϑ
is a switch function turning the feedback on for λ > 1 and off
else. λ =

√

I4f (see Panfilov et al., 2005; Keldermann et al., 2007).

2.5. Excitation Stimulated by Deformation
in a Plate
In this section, we refer to the benchmark problem performed on
a plate using the compressible TICmodel to study the effect of the
MEF in which excitation wavefronts are observed caused by the
deformation-induced excitation of cardiac tissue (Göktepe and
Kuhl, 2010; Dal et al., 2013; Cansiz et al., 2015). The orthotropic
conductivity is employed in the plate with diso = 1.0 mm2 ms−1
and dani = 0.1 mm2 ms−1, where according to section 2.3.1, the
latter accounts for the additional conduction in fiber direction
increased by 10% with respect to the other directions (Göktepe
and Kuhl, 2009).

To illustrate the deformation-induced excitation in the plate,
a mechanical load p(t) is applied during t ∈ [0, 10] ms as shown
in Figure 2A. The plate with the dimensions of 100 × 100 × 12
mm is meshed by 21 × 21 × 2 eight-node brick elements. The
fiber orientation f 0 and the sheet plane direction s0 are defined
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FIGURE 2 | Stretch-induced excitation in a plate; snapshots of the plate colored by the TP. (A) Plate of dimension 100 × 100 × 12 mm, diso = 1.0 mm2 ms−1 and

dani = 0.1 mm2/ms−1. (B) Plate of dimension 10 × 10 × 1.2 mm, diso = 0.1 mm2 ms−1 and dani = 0.3 mm2/ms−1.

in x- and y-direction, respectively. The compressible model TIC
is employed with parameters given in Table A1. The maximum
conductance Gs = 15 is utilized to account for the MEF effect.
Edge nodes of the plane in the middle at z = 6 mm are fixed
in z-direction. Furthermore, the node at (0, 0, 0) is fixed in x-
and y-directions and the node at (100, 0, 0) in y-direction. At
the beginning of the simulation, the cellular TP in the plate is
set to the resting value Φ = −80 mV. To trigger the MEF,
the nodes of a parallelepiped located in the center region of the
plate with a dimension of 20 × 20 × 12 mm are subject to an
impulsive cyclic loading p(t) from t = 0 to t = 10 ms. It linearly
reaches its maximum of 0.3 N at t = 5 ms and returns to 0
N at t = 10 ms.

This loading results in a stretched region in the middle of
the plate and hence gives rise to a local depolarization, which
then initiates an excitation wave traveling first elliptically (due
to orthotropic conductivity, see t = 12, 21, and 33 ms) and
then unidirectionally along the y-direction. At the same time,

the plate shortens in the fiber direction x and elongates along
the other directions orthogonal to the fibers (t = 61 and 74
ms). Since the model is compressible, the whole plate contracts
and reduces its volume. The action potential impulse travels to
the plate sides and the plate starts to repolarize with a lower
potential wave starting in the middle as an elliptical shape (t =
128 and 163 ms). While repolarizing, the plate recovers the
initial volume due to the relaxation phase of the cardiac muscles.
This illustrates the change of TP due to the MEF, which will
be discussed in more detail in the next section for different
types of mechanical models. It is worth noting that for the TIC
model, the applied mechanical load needs to be relatively large in
order to cause a visible MEF effect. The same test is performed
on a plate of the rat heart dimension (10 × 10 × 1.2 mm)
with parameters used in the later simulations (see Table A1).
We observed similar behavior; however due to the small
dimension of the plate, complete depolarization is reached at
t = 47 ms (Figure 2B).
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2.6. Rat Heart Measurements
To generate a 3D left ventricle model of a rat using
MRI data, we conducted several experiments on living
and healthy rats. More importantly, we also confirm
that the ethics committee (Tierschutzgesetz Regierung
Unterfranken) approved our experimental protocol and
procedures. Further, only the best measurement result was
used to reconstruct the 3D rat left ventricle model in the
diastolic phase.

3. RESULTS

In this section, we investigate the effect of different passive
material laws in a strongly coupled electromechanical model of
a 3D rat left ventricle.

3.1. Parameters of Cardiac Muscles of Rat
Heart
The material parameters for our simulation are obtained by
curve fitting to experimental data of a porcine heart by Dokos
et al. (2002) (see Figure 3; using a scaling factor of 0.5 for rats).
The resulting material parameters are displayed in Table A1

(Appendix A.5). The parameters for the electrical and the active
model originate partially from our parameter study and partially
from work for healthy human hearts (Aliev and Panfilov, 1996;
Göktepe and Kuhl, 2010; Baillargeon et al., 2015). We also use kT
= 0.49 kPa mV−1 in Equation (24), resulting in Tact

max = 49 kPa,
which is sufficiently close to the maximum tension value of 45
kPa as obtained in rat experiments (see Niederer et al., 2009). The
reversal potential φs in Equation (15) is set to 0.6, corresponding
to−20 mV, which is in agreement with the physiological value by
Kohl et al. (1999).

3.2. Rat Left Ventricle
In this section, the interaction of the three different passive
material models with the MEF is investigated with regard to
the influence of the maximum conductance with Gs = 10 and
Gs = 0. For the electromechanical simulation, the parameters
given in Table A1 (Appendix A.5) are used. The base of the
ventricle is mechanically fixed (see Figure 1). However, different
boundary conditions (Baillargeon et al., 2015) can be applied
such that the base of the ventricle can slightly translate or
twist when it contracts and interacts with surrounding tissues,
which greatly support and stabilize the whole heart. The mesh
of the 3D solid left ventricle model is generated using 4-node
tetrahedral elements based on a high resolution MRI from the
Universitätsklinikum Erlangen-Nürnberg. The basic workflow
from the MRI images to the finite element mesh can be seen
in Figure 4.

The fiber and sheet orientations, which are crucially
attributing to the mechanics and electrical conduction system,
are assigned for the LV by interpolating the local fiber and
sheet directions from the endocardial and epicardial surface
such that the model can account for the transmural fiber and
sheet directions (Vetter and McCulloch, 1998; Wong and Kuhl,
2014). Although the fiber angles on the endocardium and the
epicardium vary largely between different rats (Chen et al., 2003;
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FIGURE 3 | Stress-strain relation with parameters fitted using simple shear

data (modified for the rat heart) by Dokos et al. (2002).

Hales et al., 2012; Mekkaoui et al., 2012), the fiber angles are
chosen as+80◦ on the endocardium and−70◦ on the epicardium
(see Figure 5).

For simplicity, we assume a chamber pressure of zero, no
electrical flux on the boundary as well as zero surface traction.
The computational mesh of the 3D LV consists of 49,769
tetrahedral elements corresponding to the global mesh size
of 0.35mm. Initially, all 10,237 nodes are set to the resting
potential Φr = −80 mV. Seven nodes at the base are used to
trigger the depolarization in the surrounding cardiomyocytes.
They are constrained at Φ = −20 mV for a duration of 40
ms. Subsequently, we solve six fully coupled electromechanical
problems for the three different passive material models with
and without the MEF (TICGs=10, TICGs=0, TIIGs=10, TIIGs=0,
HOGs=10, HOGs=0). We performed simulation on refinedmeshes
up to a mesh size of 0.15 mm. The plot in Figure 6 illustrates
that neither the maximal, nor the residual TP show significant
changes in regime of smaller meshes. In particular, the resting
potential of−80 mV is not reached for all tested mesh sizes.

Figure 6 exemplarily shows the numerical result for the HO
model with theMEF (HOGs=10)—the location of the stimulus can
be seen at the base at t = 2 ms. From there, the electrical impulse
propagates through the ventricle, see snapshots at t = 60 and
70 ms. The entire myocardium contracts at t = 90 ms when all
ventricular cells are depolarized (in red). After the depolarization,
the repolarization follows (t = 120, 150, 176, and 300 ms), but
the ventricle is unable to return to the initial shape (light blue
shadow) even for t ≥ 300 ms. This behavior corresponds to a
second peak in the AP curve for the HO model (peak 2 above
−80 mV) after peak 1 (see Figure 7, right).

Moreover, the AP curve for the TII model with Gs =

10 in the repolarization phase reaches a minimum value of
about −78.5 mV for t ≥ 300 ms, while the AP curve for
the TIC model is able to retrieve the resting potential of −80
mV (see Figure 7, right). The same characteristic behavior can
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FIGURE 4 | Workflow from MRI images to the finite element mesh of the left ventricle. Left to right: MRI image-segmentation, NURBS model, finite element mesh.

FIGURE 5 | Rat left ventricle with fiber orientations from −70◦ on the epicardium to +80◦ on the endocardium with respect to the circumferential direction; (Left): the

linear distribution of fiber angles in colors, (Center): fibers (streamlines) on endocardium and epicardium, (Right): fibers on different layers.

be observed by plotting the apex displacement u (Figure 7,
right). On the contrary, Figure 7 (left) exhibits no peak 2 in
the AP and displacement curves for all three models without
MEF (TICGs=0, TIIGs=0, HOGs=0). The LV consequently relaxes
to its initial shape. The stretch-induced excitation changes the
AP duration, leads to a delayed repolarization and thus the
resting potential is reached more slowly. In Figure 7 (left), the
AP evolution profiles for the three models are very similar;
however, the displacement predicted by the compressible TIC
model is larger than the displacements predicted by the TII and
HO models. Compared to the AP curves, the displacement of
the apex starts before the depolarization. This is caused by the
fact that the cardiac cells between the initiated nodes at the
base and the considered node at the apex already depolarize
and start to contract and hence cause the pre-displacement
of the apex.

In summary, it can be stated that both incompressible
models yield a different electrical and mechanical response
(residual deformation and resting potential not reached at
the end of the cardiac cycle) of the LV compared to the
compressible TIC model. This raises the question, what exactly
causes the difference in the results among the three passive
mechanical models. On the one hand, the HO represents an
orthotropic material law which is represented by exponentials,
while the other two models are transversely isotropic and
formulated in terms of polynomials. On the other hand, the

HO and TII are both incompressible models, while TII is
compressible. To study this more comprehensively, we extended
the numerical investigations by performing a parameter study
on the maximum conductance Gs, which is commonly known
as the maximum stretch-activated ion channel conductance
or the sensitivity of the electrical current to deformation.
Note that diseased hearts can cause abnormal changes in
the maximum conductance (Zhang et al., 2014). Thus, this
value can be considered as a key variable to study the
MEF effects.

We performed 18 simulations, which differ in the passive
material model (TIC, TII, HO) and the maximum conductance
(Gs = 0, 10, 20, 30, 40, and 50). Instead of performing a
benchmark problem study using a simple cube, bar or beam, the
effect is directly studied in a 3D LV model. The result of the AP
evolution and the displacement are shown in Figure 8. The TIC
model shows an almost independent behavior with respect to the
strength of theMEF [see AP and displacement evolution Figure 8
(top, left, and right)]. The polynomial, transversely isotropic and
incompressible material law TII (middle, left, and right) and
the exponential, orthotropic and incompressible material law
HO (bottom, left, and right) exhibit a high sensitivity to the
strength of the MEF. The observed characteristics in Figure 7

(early depolarization, delay in the late repolarization phase,
decrease of the maximum AP) are intensified with a higher
maximum conductance.
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FIGURE 6 | Electromechanics in rat left ventricle with the HO model with MEF and Gs = 10. Material parameters are given in Table A1. Excitation by setting seven

nodes at the base to Φ = −20 mV for 40 ms. At the end of cardiac cycle (around t = 300 ms), the repolarised (resting) LV (blue) is unable to return to its initial shape

(light blue region) since the MEF affects the AP and deformation of the LV. Plot at the right bottom shows the relation of maximal and residual potential versus the

global mesh size (HO model with MEF and Gs = 50).

FIGURE 7 | Evolution of AP Φ and displacement u of apical node A in a rat left ventricle for three models, without MEF (Left) and with MEF using Gs = 10 (Right).

4. DISCUSSION

As observed in the last section, the influence of the MEF
on the overall electrophysiological and mechanical behavior

significantly depends on the passive material model. In the
following section, we want to discuss the differences and possible
sources or causes. The main differences of the three different
passive material models can be summarized as follows: (i)
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FIGURE 8 | Evolution of AP Φ (Left) and displacement u (Right) of node A with varying Gs in a rat left ventricle for the three material models.

compressible vs. incompressible, (ii) polynomial vs. exponential,
(iii) orthotropic vs. transversely isotropic. Their respective results
will be evaluated and compared here. Referring to the following
explication, we introduce the notation: �max−a and �rest−a for
values of the material a at peak 1 (e.g., the maximal value of
the AP or displacement) and at peak 2 close to the resting
potential −80 mV and zero deformation (see Figure 7, right),

respectively. We define the difference of a value at Gs = x to
that at Gs = 0 as △ �

x
i−a = |�i−a(Gs = 0) − �i−a(Gs = x)|,

where i ∈ {max, rest}.
First we note that the MEF is capable of speeding up the

electrical impulse propagating in the LV (Figure 9). For the
compressible TIC model, it is clearly observed that the MEF
has negligible effects on the electrophysiology and mechanics.
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The largest change in time for the AP peak is △ t50max−TIC =

5 ms while there is no peak 2 and thus △ txrest−TIC = 0
for all values x ∈ {0, 10, 20, 30, 40, 50} (see also peak values
in Figure 9). In contrast to that, we observe a significant effect
of the MEF (or maximum conductance) for the incompressible
models TII and HO. Figure 8 indicates that for higher value
of Gs, larger changes in AP and displacement curves can
be observed. The largest changes in peak time for AP are
△ t50max−TII = 18 ms and △ t50max−HO = 23 ms for the TII and
HO models, respectively. The conduction velocity is apparently
increased with Gs which is in good agreement with the findings
in a study by Costabal et al. (2017). Similar observations
have also been made in the numerical results by Amar et al.
(2018), in which the AP was influenced by the MEF for
different stretch levels for examples of a ventricle and a
single cardiomyocyte.

Second, depending on the material model, the MEF influences
AP Φ and displacement u in the late repolarization phase.
For the compressible model TIC, no change in peak 2 for
the AP and displacement curves (△ Φx

rest−TIC = 0 mV and

FIGURE 9 | Time points for corresponding two AP peaks for the three models.

△ uxrest−TIC = 0 mm) for all values x ∈ {0, 10, 20, 30, 40, 50} can
be observed. At the same time, there are significant changes in
peak 2, which can be observed in the curves for the TII and
HO model. For example, the largest changes are introduced by
Gs = 50 such as △ Φ50

rest−TII = 16 mV and △Φ50
rest−HO =

22 mV, whereas △ u50rest−TII = 0.45 mm and △ u50rest−HO =
0.79 mm (see Figure 10, right). The maximum value of the
AP Φ and displacement u for peak 1 for (Gs = x) for all
values x ∈ {0, 10, 20, 30, 40, 50} are depicted in Figure 10 (left).
While varying the maximum conductance Gs, the compressible
model leads to an almost unchanged electrophysiology and
mechanics, the nearly incompressible models show a stronger
effect of the MEF on the electrophysiology (early depolarization,
reduced maximum AP, increased conduction velocity, delayed
repolarization) and consequently result in a significantly higher
relaxation displacement of the LV.

Compressible vs. Incompressible
One important characteristic which influences the impact of the
MEF on the overall model behavior is the level of compressibility.
The compressible TIC model undergoes a significant volume
change (compressible medium) during the active contraction
phase, which in turn leads to a reduced overall strain/stretch. This
is visualized in Figure 11 showing the isotonic contraction of a
cube for the three different material models.

As expected, when considering the volume ratio curves for
the three models in isotonic contraction, the volume ratio during
the time course of the cardiac cycle for the compressible TIC
model decreases ineluctably, while the volume for the HO and
TII models remains constant. By plotting the fiber stretch λ of
the same apical node of the LV for the HO, TII and TIC model,
we observe the fiber stretch λ < 1 (compression) for the TIC
model and the fiber stretch λ > 1 for the HO and TII models
(see Figure 12).

This leads to the fact that in this particular region, the MEF
is active for the TII and HO models and inactive for the TIC
model (see Equation 18, λ has to be >1 for the switch function
ϑ to be non-zero). Furthermore, the fiber angles transmurally
vary and thus the local change in fiber direction leads to an

FIGURE 10 | Φmax and umax of peak 1 (Left), Φrest and urest of peak 2 (Right) for the three models (Φrest−TIC curves invisible since urest−TIC lies on top of it).
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FIGURE 11 | Volume ratio J of isotonic contraction of a cube over time for the

three models.

FIGURE 12 | Fiber stretch λ for an apical node for the three different passive

material models.

increased fiber stretch through the wall (the expansion of the
material in sheet and normal direction close to the boundaries
leads to a fiber stretch in the middle layers; see Figure 13,
left, center).

This behavior is characteristic for the incompressible TII
and HO models. The TII model compensates this phenomenon
due to the compressibility (volume change), and thus the
expansion of the material in the sheet and normal direction
is smaller, which finally induces no or insignificant stretches
to the fibers in the middle layer (see Figure 13, right). For
the TII and HO model, the high fiber stretch in the middle
layers during the repolarization phase effectively causes a strong
MEF current. In a real healthy rat left ventricle, the MEF
effect might be caused by a strong mechanical stimulus when
the AP reaches the threshold value. However, it is observed
mainly in diseased cases (Kamkin et al., 2000). The MEF
can alter the AP or shorten refractory periods in canine left
ventricle and atrium, as reported in Franz (1996). Stretch-
activated polarization and fibrillation can happen at a low

stretch in a rat atrium after the infarction of the left ventricle
(Kamkin et al., 2000). Moreover, it has been observed in our
simulation of the LV as well as for cubes, plates and other 2D
examples in Costabal et al. (2017), that the MEF is capable
of altering the AP and increasing the conduction velocity.
However, the phenomenon of the residual deformation (non-
relaxed equilibrium between the AP generation and the fiber
stretches in the late repolarization phase) is rather unrealistic in
the healthy left ventricle simulation.

Polynomial vs. Exponential
In addition to the discussed differences due to the level of
compressibility, the exponential and polynomial form of the
passivematerial law plays a significant role concerning the overall
MEF behavior. To clarify this, we performed the numerical tests
for the HO and TII models with the same bulk modulus of
κ = 104 kPa, which means that these models have the same
level of compressibility. The compressibility value is reasonable
in our simulations as it is only slightly larger compared to
the in vivo measurements by Hassaballah et al. (2013). To
compare the influence of the polynomial material law TII and
the exponential material law HO, we evaluate the differences in
Figures 8, 10, 12, 13.

In the depolarization phase, the HO and TII models
show an almost similar behavior concerning the AP and
displacement curves even if the observed phenomenon is slightly
more prominent for the HO model (see Figures 10, 8, left).
Nevertheless, in the late repolarization phase, the AP and
displacement curves significantly differ between the HO and TII
models (see Figure 10, right). It is worth noting that both models
undergo a comparablemaximum stretch level (see Figure 13, left,
center). Thus the question arises regarding where the significant
differences in the late repolarization come from.

Since the same bulkmodulus is used, bothmodels generate the
same amount of active stress and result in relatively comparable
displacements (see Figure 13, left, center). Therefore, the
difference can only be explained by the fact that the HO model
induces larger strain/stretch in the late repolarization phase and
in turn produces a higher MEF current compared to the TII
model. Figure 12 exposes that the HO model has a steeper
increase in the fiber stretch in the depolarization phase (which
explains the faster depolarization compared to the TII model)
and a slower change of the fiber stretch in the repolarization
phase (which explains the higher stretch in the late repolarization
phase). In other words, starting from the same deformation
level during the contraction for the HO and TII models, the
cardiac tissue relaxes in the repolarization phase, in which the
exponential-type stress-strain relation of the HOmodel responds
to the decreasing active fiber tension with a smaller change in
fiber stretch compared to the TII model. Finally, this leads to a
high MEF current in certain regions, which almost reached their
resting potential.

Transversely Isotropic vs. Orthotropic
As we discussed in the previous paragraph, the main difference
in the AP and displacement for the HO and TII models
originate in the representation of the material law. Nevertheless,
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FIGURE 13 | Section view of the LV during the contraction phase at t = 90 ms for the three different passive material models. The snapshots show the transmural

fiber stretch λ. The color code is limited to the maximum fiber stretch of 1 and thus all dark red regions show fiber stretch λ ≥ 1. The maximum global fiber stretch for

the three different models reads as: λmax
HO
= 1.188, λmax

TII
= 1.204, λmax

TIC
= 1.024. (Left): transmural fiber stretch—HO, (Middle): transmural fiber stretch—TII,

(Right): transmural fiber stretch—TIC.

the incompressibility condition with the associated stretches
along the sheet and sheet normal direction at the boundaries
[see Figure 13 (left, center), fiber stretch λ < 1, and thus the
compression in fiber direction has to be compensated by stretch
in the sheet and sheet normal direction] leads to a stretch
in fiber direction in the middle layers. As the fiber stretch λ

depends on the material properties in sheet and sheet normal
direction, there also exists a difference between a transversely
isotropic and an orthotropic material law concerning the MEF
behavior. To further investigate the difference, one would
have to vary the passive material properties in sheet or sheet
normal direction for the same material model (note that for
the special case of transversal isotropy, the properties in sheet
and sheet normal direction are the same) in order to eliminate
the influence of the type of material model (polynomial and
exponential). However, this goes beyond the scope of this study.
In our case, the difference between the orthotropic material
model HO and the transversely isotropic material model TII
seems to be rather small as the overall fiber stretch levels
are similar.

4.1. Limitations of the Work
In the following, we want to briefly discuss the limitations
and assumptions for this study. Firstly, we ignore the possible
influence of the right ventricle and other components which
also contribute to the overall model behavior. Secondly, the
electromechanical model uses several parameters, which are
directly adapted or come from other studies on human and
porcine hearts. Furthermore, the electrophysiological model is
an obvious simplification of the actual electrophysiology of the
heart. There exist different kinds of cardiac cells in the heart
with different contractility and conductivity. In particular, the
fast conducting Purkinje fibers need to be included in order to
improve the choreographed depolarization and repolarization
of the heart. However, the simple electrophysiological model
is to be preferred for our application whereby a complex
rat heart support system will be developed in order to
compensate the function of the pathological heart. Further,
more detailed experimental data, especially for rats, about
the electrical and active model including the determination
of the active muscle tension, transmembrane potential and
maximum conductance, Gs are required. Measurements to
identify the passive material parameters for rats would be

desired to further improve the accuracy of the model. Moreover,
the fixed base in the simulation model simplifies the actual
support of the heart in the body (e.g., connective tissue,
atria) and an advanced boundary condition should be applied
for future studies. Further investigations are necessary to
evaluate the influence of the specific morphology of the heart
(different fiber distributions). Additionally, to more precisely
describe the exact influence and differences of transversely
isotropic and orthotropic material laws concerning the MEF
behavior, a parameter study about the level of orthotropy
is necessary.

5. CONCLUSION

In this paper, we focus on the interaction of passive mechanical
models with the MEF and how different types of material
laws (compressible, incompressible, polynomial, exponential,
transversely isotropic, and orthotropic) influence the overall
MEF characteristics. We employ a transversely isotropic and
nearly incompressible model (TII), a transversely isotropic
compressible model (TIC) (Göktepe and Kuhl, 2010) and the
orthotropic and nearly incompressible Holzapfel-Odgen model
(HO) (Holzapfel and Ogden, 2009). We investigate the variation
in AP evolution and mechanical deformation due to the
interaction between the passive mechanical models and the MEF.

The interaction between the passive models and the MEF is
discussed through a computational study of a rat LV, whereby
the following findings are obtained: (i) compressibility: the
transversely isotropic material law (TIC) predicts a significantly
smaller fiber stretch (compression almost everywhere in the
LV) and thus leads to a nearly unrecognizable change in
the overall MEF behavior (change in electrophysiology and
mechanical contraction); additionally, for the incompressible
models, we observe a residual deformation caused by a non-
relaxed equilibrium; (ii) polynomial vs. exponential material
laws: due to the exponential strain energy function, the HO
model shows a faster temporal change of the fiber stretch
in the depolarization phase (leading to a faster depolarization
compared to the TII model; higher MEF current) and at
the same time slower temporal change of the fiber stretch
in the late repolarization phase; (iii) transversely isotropic vs.
orthotropic: the incompressibility condition with the associated
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stretches along the sheet and sheet normal direction on the
boundaries [see Figure 13 (left, center), fiber stretch λ < 1 and
thus the compression in fiber direction has to be compensated
by stretch in the sheet and sheet normal direction] leads to
a stretch in fiber direction in the middle layers. As the fiber
stretch λ depends on the material properties in the sheet and
sheet normal direction, there also exists a difference in the
electromechanical behavior and the MEF between a transversely
isotropic and an orthotropic material law concerning the
MEF behavior.

Obviously, the type of passive material model plays a
key role in defining the MEF behavior in a fully coupled
electromechanical model. It has to be further investigated
which of the considered models reflect the cardiac tissue best
concerning the overall MEF behavior.
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A. APPENDIX

A.1. Kinematics and Finite Element
Approximation
The deformation gradient is defined as:

F =
∂ϕ(X, t)

∂X
= ∇ϕ(X, t) with J = det F > 0, (A1)

where the determinant of the deformation gradient J is also
known as the volume ratio and has to be positive as the
body is impenetrable. Further, the right Cauchy-Green tensor
C can be introduced as C = FTF. To enforce the material
incompressibility conditions (J = 1) in a framework of a finite
element setting, the deformation gradient can be split into two
parts F = (J1/3I)F̄, where I is the identity tensor. Specifically,
J1/3I describes purely volumetric deformation whereas F̄ denotes
the purely isochoric deformation (J̄ = det(F̄) = 1).

Employing the Galerkin procedure, the residuals (2) and (1)
are multiplied with the scalar- and vector-valued test functions
δΦ and δϕ which satisfy δΦ = 0 on ŴΦ and δϕ = 0 on Ŵϕ ,
respectively. These resulting expressions are further reformulated
by using integration by parts and the Gauss theorem over the
body �0 such that the weak forms are obtained as:

∫

�0

δΦΦ̇dV +

∫

�0

∇(δΦ) · QdV

−
∫

�0
δΦFΦdV−

∫

ŴQ
δΦQ̄da =̇ 0,

∫

�0

∇(δϕ) : [F · S] dV −

∫

�0

δϕ · FϕdV −

∫

ŴT

δϕ · T̄da =̇ 0 .

(A2)

Further, the Dirichlet boundary conditions prescribe the state
of the respective surface points to be ϕ̄ and Φ̄ . The Neumann
boundary conditions prescribe the surface traction T̄ and the
surface flux term Q̄ = Q · N . FΦ . All quantities of the boundary
conditions are supposed to be given. In addition, in our problems
T̄, Q̄ and FΦ are independent of deformation and AP. In what
follows, the notations are introduced: thematerial time derivative
as {�̇} = d{�}/dt and the material divergence and gradient as
Div{�} = ∂{�}/∂X : I and ∇{�} = ∂{�}/∂X. The equation
of motion expresses the quasi-static force equilibrium and has to
hold for all points X in �0. In the following, we will review how
to derive the main terms in the (A2).

A.2. Mechanical Constitutive Models
A.2.1. Transversely Isotropic Compressible Model

(TIC)
The passive second Piola-Kirchhoff stress Spas can be derived
from the strain energy (5) as:

Spas(C) = 2
∂9

∂C
= Siso(C)+ Sani(C),

Siso(C) =
(

3 ln J − µ
)

C−1 + µI, (A3)

Sani(C) = +2ϑη(I4f − 1)f 0 ⊗ f 0.

A.2.2. Transversely Isotropic and Nearly

Incompressible Model (TII)
The passive second Piola-Kirchhoff stress Spas can be derived
from (8) as follows:

Spas(C) = 2
∂9

∂C
= Siso(C)+ Sani(C),

Siso(C) = µ

(

J−2/3I−
1

3
Ī1C
−1

)

, (A4)

Sani(C) = 2ϑη(Ī4f − 1)

(

f 0 ⊗ f 0 −
1

3
Ī4fC

−1

)

.

A.2.3. Orthotropic and Nearly Incompressible Model

(HO)
Based on (11), the passive second Piola-Kirchhoff stress is given
as Spas = Siso + Sani, where

Siso(C) =a exp
[

b(Ī1 − 3)
] (

J−2/3I− 1
3 Ī1C

−1
)

,

Sani(C) =
∑

i=f ,s

2(Ī4i−1)ai exp
[

bi(Ī4i−1)
2
]

(

i0 ⊗ i0 −
1

3
Ī4iC
−1

)

+Ī8fsafs exp
(

bfs Ī
2
8fs

)

[(

f 0 ⊗ s0+s0 ⊗ f 0
)

− 2
3 Ī8fsC

−1
]

.

(A5)

A.2.4. Transversely Isotropic Active Stress Response
Taking into account f 0 only, the active second Piola-Kirchhoff
stress is defined as follows:

Sact(f 0,Φ) = Tact(Φ)f 0 ⊗ f 0 . (A6)

The transversely isotropic characteristic is realized such that the
magnitude of the active fiber tension Tact(Φ), which is driven by
the AP, only has an effect along the material fiber orientation f 0.

A.2.5. Orthotropic Active Stress Response
When both f 0 and s0 are considered for active contraction, the
stress is written as:

Sact(f 0, s0,Φ) = Tact(Φ)

[

νff f 0 ⊗ f 0 + νsss0 ⊗ s0

]

, (A7)

where νff and νss are weighting factors. Furthermore, Tact(Φ) is

modeled via the evolution equation as Ṫact = T(Φ ,Tact) in Nash
and Panfilov (2004). According to the local ordinary differential
equation of the active muscle traction, Tact can be treated as an
internal variable and locally updated on the integration point
level. The evolution equation for the muscle traction is herein
used for both active tension models and reads:

Ṫact = ǫ(Φ)
[

kT (Φ −Φr)− Tact
]

(A8)

with its sensitivity with respect to the action potential.

∂Sact

∂Φ
= ∂ΦT

act(Φ)

[

νff f 0 ⊗ f 0 + νsss0 ⊗ s0

]

, (A9)

where kT specifies the saturated value of Tact(Φ), and Φr is the
resting potential, where no new tension is evoked. Usually for
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cardiac cells Φr = −80mV, and ǫ(Φ) represents the switch
function which creates the typical cardiac cell performance via:

ǫ(Φ) = ǫ0 + (ǫ∞ − ǫ0) exp
[

− exp
(

−ξ
(

Φ − Φ̃
))]

. (A10)

The special behavior can be adjusted by the parameters ǫ0 and
ǫ∞, which regulate the limitation values Φ̃ denoting the phase
shift and ξ controlling the transition rate from ǫ0 to ǫ∞. The
impact of the active fiber tension on the active stress along
the fiber direction and in sheet direction are controlled by νff
and νss, respectively. Equation (A8) is approximately solved for
the internal variable Tact . The temporal discretization of the

time derivative reads Ṫact ≈
Tact−Tact

n
1t . Here, Tact approximates

the active fiber tension at time tn+1, while Tact
n approximates

the active fiber tension at tn. Therefore, the residual is formed
as follows:

RT=Tact−Tact
n −1t ǫ(Φ)

[

kT (Φ−Φr)−T
act

]

=̇0. (A11)

This equation can directly be solved for Tact by restructuring into

Tact(Φ)=
1

1+1t ǫ(Φ)

[

Tact
n +1t ǫ(Φ)

[

kT (Φ−Φr)
]

]

. (A12)

The sensitivity ∂ΦT
act(Φ) of the active stress to the

transmembrane potentialΦ in (A9) results from its derivation as:

∂ΦT
act(Φ) =

1t

1+1t ǫ(Φ)

[

ǫ′(Φ)
[

(kT (Φ −Φr)− Tact
]

+ǫ(Φ)kT

]

(A13)

and the derivative of the switch function is calculated as:

ǫ′(Φ)=
∂ǫ(Φ)

∂Φ
= ξ

[

ǫ(Φ)−ǫ0
]

exp
[

−ξ
(

Φ−Φ̃
)]

. (A14)

The sensitivities of potential flux dCQ and the stress tensor with
respect to the deformation dCS can be evaluated as

dCQ = {Diso
1

2
[C−1⊗̄C−1]+ DaniI

−2
4f

(f 0 ⊗ f 0)⊗ (f 0

⊗f 0)} · ∇Φ . (A15)

A.3. Electrophysiological Model
In (16), r is the recovery variable, whose evolution is
governed by the local ordinary differential equation
known as the Aliev-Panfilov (Aliev and Panfilov, 1996)
model, which can capture all major characteristics of the
cardiac electrophysiology.

ṙ= f r =

[

γ +
µ1r

µ2 + φ

]

[−r − cφ(φ − β − 1)], (A16)

where f r is the source term for r and the variables µ1,
µ2, β and γ are additional material parameters. While

the coefficient term [γ + µ1r
µ2+φ

] is a weighting factor,

β controls the AP duration or effective refractory period
(Costabal et al., 2016).

Considering the boundary value problem (A2), r can be
also treated as an internal variable. In order to solve the
internal evolution equation (29), the implicit Euler method
is used. This requires a temporal discretization of the
time derivative ṙ ≈

r−rn
1t . Hence, the residual can be

introduced as:

Rr = r − rn −1tf r(φ, r) =̇ 0. (A17)

Using its linearization the local update equation for variable r can
be achieved as:

r← r − (∂rR
r)−1Rr

with ∂rR
r = 1+1t

[

γ +
µ1

µ2 + φ
[2r + cφ(φ − β − 1)]

]

.

(A18)

This is solved iteratively using the Newton-Raphson method.
In Figure A1 (left), we carry out a parameter study to find

the right parameter β for the rat electrophysiology and the
curves show the AP Φ (solid) evolution displayed alongside the
recovery variable r (dashed) over time t. Another way to derive
the same electrophysiological behavior for the rat is to adapt
the conversion coefficient of time kt . The obtained parameter
is then used to compute the normalized AP and the recovery
variable, which are plotted over the normalized time t̄ with
initial values (φ = 0, r = 0) in Figure A1 (right). Roughly,
the rat heart beats about four times faster than the human
heart. To trigger the AP excitation, a stimulus I is required. As
illustrated in Figure A1 (right), the AP then increases steeply
in the depolarization phase. After reaching its maximum value
of 1.0, the repolarization follows and it smoothly returns to
its resting potential φr = 0. Apart from the non-pacemaker
cells, there exist self-oscillating pacemaker cells, which can be
modeled, e.g., by the FitzHugh-Nagumo model (Fitzhugh, 1961).
In Figure A2 (left), for the choice of β = 0.55, the phase
plane of the two variables φ, r is shown with the steady state of
equilibrium at φ = φ̇ = r = ṙ = 0 (red dot •). Trajectories
of nine starting points of the model (black dot •) finally run
into the stable equilibrium point. Four dashed nullclines, which
are solutions of φ̇ = f̄ φ(φ, r) = 0 (red-dashed lines) and
ṙ = f̄ r(φ, r) = 0 (green-dashed lines), pilot the solution
trajectories of the model to the equilibrium point. This means
that the parameters yield a stable model and the potential is
only triggered by a stimulus. In Figure A2 (right), the correlation
between AP Φ and active fiber tension Tact computed using
(16) is illustrated. The two curves are similar since their relation
is linear.

A.4. Mechano-Electrical Feedback
For the electrical source term FΦ

m , its tangent terms with respect
to AP and deformation are:

∂ΦF
Φ
m =−ϑGs (λ− 1) , dCF

Φ= 1
2ϑGs (Φs −Φ)λ−1f 0 ⊗ f 0.

(A19)
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FIGURE A1 | Left: parameter study for rat electrophysiology AP (solid) and recovery variable (dashed); Right: evolution of normalized AP φ and recovery variable 0.5r

over normalized time t̄. Parameters α = 0.01, γ = 0.002, β = 0.55, c = 8, µ1 = 0.2 and µ2 = 0.3 and an external excitation I = 30 at t̄ = 30 to trigger cardiac cells.

FIGURE A2 | Left: phase plane; the nullclines f̄ r and f̄φ (dashed lines) are functions of φ and t̄ and guide all the solution trajectories (solid lines) to the equilibrium point

from different starting points (•); Right: Active fiber tension Tact (Φ). Parameters: ǫ0 = 0.1 ms−1, ǫ∞ = 1.0 ms−1, Φ̃ = 0.0 mV, ξ = 0.5 mV−1, kT = 0.40 kPa and

Φr = −80 mV. Electrical characteristics as in Figure A1.

A.5. Material Parameters

TABLE A1 | Material parameters for simulation of rat cardiac muscles.

Mechanical

Passive stress (TIC) λ = 0.5 MPa, µ = 0.2 MPa, η = 0.1 MPa (Göktepe and Kuhl, 2009)

Active stress kT = 0.005 MPa mV−1, Φr = −80 mV

Passive stress (TII) µ = 0.5 MPa, η = 0.2 MPa, κ=104 kPa (model fit)

Active stress kT = 0.005 MPa mV−1, Φr = −80 mV

Passive stress (HO) a = 0.144 kPa, b = 9.758 [-], af = 9.664 kPa, (model fit)

bf = 14.791 [-], as = 1.687 kPa, bs = 7.336 [-],

afs = 0.209 kPa, bfs = 11.089 [-], κ=104kPa

Active stress kT = 0.49 kPa mV−1, Φr = −80 mV, νff = 1.0, νss = 0.0 (Niederer et al., 2009)

Switch function ǫ0 = 0.1 mV−1, ǫ∞ = 1.0 mV−1 (Göktepe and Kuhl, 2010)

ξ = 1.0 mV−1, Φ̃ = 0 mV

Electrical

Conduction diso = 0.1 mm2/mm−1, dani = 0.3 mm2/ms−1

Excitation α = 0.01 [-], β = 0.55 [-], c = 8 [-] (parameter study)

γ = 0.002 [-], µ1 = 0.2 [-], µ2 = 0.3 [-],

Gs = 10 [-], φs = 0.6 [-]

Conversion kφ = 100 mV, δφ = 80 mV, kt = 12.9 ms (Aliev and Panfilov, 1996)
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