
fphys-10-01109 August 31, 2019 Time: 18:21 # 1

ORIGINAL RESEARCH
published: 04 September 2019

doi: 10.3389/fphys.2019.01109

Edited by:
Jing-Yan Han,

Peking University, China

Reviewed by:
Xuemei Qin,

Shanxi University, China
Jie Wang,

Guang’anmen Hospital, Academy
of Chinese Medical Sciences, China

*Correspondence:
Dong-Sheng Wang

wdsh666@126.com

Specialty section:
This article was submitted to

Vascular Physiology,
a section of the journal
Frontiers in Physiology

Received: 10 April 2019
Accepted: 12 August 2019

Published: 04 September 2019

Citation:
Zhao L-L, Qiu X-J, Wang W-B,

Li R-M and Wang D-S (2019) NMR
Metabolomics and Random Forests
Models to Identify Potential Plasma

Biomarkers of Blood Stasis Syndrome
With Coronary Heart Disease

Patients. Front. Physiol. 10:1109.
doi: 10.3389/fphys.2019.01109

NMR Metabolomics and Random
Forests Models to Identify Potential
Plasma Biomarkers of Blood Stasis
Syndrome With Coronary Heart
Disease Patients
Lin-Lin Zhao1, Xin-Jian Qiu2, Wen-Bo Wang2, Ruo-Meng Li3 and Dong-Sheng Wang2*

1 Health Management Department, The Third Xiangya Hospital, Central South University, Changsha, China, 2 Institute
of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China,
3 Traditional Chinese Medicine Department, The Third Xiangya Hospital, Central South University, Changsha, China

Background: Coronary heart disease (CHD) remains highly prevalent and is one of the
largest causes of death worldwide. Blood stasis syndrome (BSS) is the main syndrome
associated with CHD. However, the underlying biological basis of BSS with CHD is not
yet been fully understood.

Materials and Methods: We proposed a metabolomics method based on 1H-NMR
and random forest (RF) models to elucidate the underlying biological basis of BSS
with CHD. Firstly, 58 cases of CHD patients, including 27 BSS and 31 phlegm
syndrome (PS), and 26 volunteers were recruited from Xiangya Hospital affiliated to
Central South University. A 1 mL venous blood sample was collected for NMR analysis.
Secondly, principal component analysis (PCA), partial least squares discrimination
analysis (PLS-DA) and RF was applied to observe the classification of each group,
respectively. Finally, RF and multidimensional scaling (MDS) were utilized to discover
the plasma potential biomarkers in CHD patients and CHD–BSS patients.

Results: The models constructed by RF could visually discriminate BSS from PS in
CHD patients. Simultaneously, we obtained 12 characteristic metabolites, including
lysine, glutamine, taurine, tyrosine, phenylalanine, histidine, lipid, citrate, choline, lactate,
α-glucose, β-glucose related to the CHD patients, and Choline, β-glucose, α-glucose
and tyrosine were considered as potential biomarkers of CHD–BSS.

Conclusion: The combining of 1H-NMR profiling with RF models was a useful approach
to analyze complex metabolomics data (should be deleted). Choline, β-glucose,
α-glucose and tyrosine were considered as potential biomarkers of CHD–BSS.

Keywords: coronary heart disease, blood stasis syndrome, metabolomics, random forests, ZHENG types,
Systems Biology
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BACKGROUND

Coronary heart disease (CHD) is always associated with
metabolic disorder, and the metabolic risk factors, such as
hyperlipidemia and diabetes, powerfully predict the cardiac
events (Lacoste et al., 1995; Ansar et al., 2011). CHD remains
highly prevalent and is one of the largest causes of death
worldwide. Specific and sensitive diagnostic methods are critical
both for early detection and treatment of CHD (Rubin, 2013).
Metabonomics technologies have been studied to diagnose the
presence and severity of CHD (Brindle et al., 2002). It is a
newly developed platform of systems biology that allows holistic,
quantitative and qualitative determination of low molecular
endogenous metabolites in biofluids or tissues (Lindon et al.,
2004). It concerns the dynamic multivariate metabolic changes
in response to pathophysiological stimuli, genetic modification,
environmental influences or drug perturbations (Nicholson and
Lindon, 2008). Analysis of differential metabolites enables us
to obtain novel biomarkers discovery and disturbed metabolic
pathways (Sabatine et al., 2005).

Nowadays, Traditional Chinese Medicine (TCM) has
become popular worldwide. Systematic, holistic and dynamic
characteristics of TCM theory are perfectly coincident
with metabonomics (Wang et al., 2005; Sun et al., 2012).
Metabonomics technologies have been applied in study on the
essence of the syndrome (ZHENG type or pattern in TCM) and
shown the superiority and advanced nature. According to TCM
theory, a syndrome is a combination of clinical manifestations
including symptoms, signs, tongue appearances and pulse
feelings. Syndrome is not only the core of TCM theory, but also
the base of definite diagnosis and effective therapies (Xu and
Chen, 2008). It will not only improve the validity and reliability of
“syndrome differentiation” through syndrome model established
based on metabonomics, but also help to establish the clinical
curative criteria.

Blood stasis syndrome (BSS) is the most common syndrome
associated with CHD. Our previous study has shown that
the metabonomics approach based on liquid chromatography/
quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS)
was useful for interpreting the differentiation of syndrome
[phlegm syndrome (PS) and BSS] in TCM (Zhao et al., 2014).
There were 18 differential metabolites mainly involved in
amino acid metabolism, purine metabolism and pyrimidine
metabolism contributing to the clustering and discrimination
between PS and BSS in CHD patients. However, it is clear that
the two metabonomics technologies are complementary, giving
information on different sets of biomarkers and providing more
comprehensive classification and biomarker information.

Random forests (RFs) is machine learning algorithm which
uses an ensemble of classification trees and is an ideal method for
classification and feature selection. Spectral buckets are employed
as input variables. RF could be employed for both supervised
(outcome labels are used) and unsupervised (outcome labels are
not used) learning (Breiman, 2001). In this study, we proposed
a metabolomics method based on 1H-NMR and RF models to
validate the separated trend between BSS and PS in CHD patients
and acquire more potential biomarkers of BSS in CHD patients.

MATERIALS AND METHODS

Subjects Collection
A total of 58 cases CHD patients (27 BSS and 31 PS) and 26
volunteers were derived from the Xiangya Hospital affiliated
to the Central South University in Hunan Province, China
(June 1, 2013 to April 30, 2014). All selected CHD patients were
diagnosed and confirmed by coronary angiography. Diagnosis
standard of CHD refers to “nomenclature and diagnosis
criteria of ischemic heart disease” which is established by the
Joint International Society and Federation of Cardiology/World
Health Organization Task Force on Standardization of Clinical
Nomenclature (Nomenclature and criteria for diagnosis of
ischemic heart disease, 1979). The syndrome was identified
by three chief physicians, according to “criteria for TCM
syndrome differentiation of patients with coronary heart disease”
(Subcommittee of Cardiovascular Diseases of China Society of
Integrated Traditional Chinese, and Western Medicine, 1991).

Patients who suffered from diabetic cardiomyopathy, hyper-
thyroid heart disease, hypertensive heart disease, pulmonary
heart disease, anemic heart disease, systemics scleroderma heart
disease, inborn coronary abnormity and rheumatic heart disease,
who suffered from severe hypertension, malignant tumor, renal
failure, thyroid disease, pulmonary infection, who suffered from
infectious diseases, who suffered from invigorative system disease
and women in pregnant or in lactation were excluded.

All patients aged from 45 to 75 were eligible for enrollment.
The age and sex of volunteers in control group were group-
matched with the cases group. The study was approved by
the hospital ethics committee and all subjects provided written
informed consent.

Chemicals and Reagents
NaCl, K2HPO4 · 3H2O, and NaH2PO4 · 2H2O (all in analytical-
grade) were obtained from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China); NaN3 (in analytical-grade, used for
anticorrosion) was provided by the Tianjin Fu Chen Chemical
Reagent Factory. D2O (in analytical-grade) was produced from
Cambridge Isotope Laboratories Inc., United States.

Plasma Collection and Preparation
A 1 mL venous blood sample was collected in a vacutainer tubes
with ethylenediaminetetraacetic acid (EDTA) at 7 o’ clock in the
morning after 12 h of overnight fasting and then centrifuged at
10,000 rpm for 10 min at 4◦C. The supernatant was stored at
−80◦C until NMR analysis.

A total of 200 µL plasma was mixed with 400 µL of
K2HPO4/NaH2PO4 buffer (45 mM, pH 7.4) containing 50% D2O
and 0.9% NaCl in a centrifuge tube (1.5 mL), after centrifugation
(12,000 rpm) for 10 min, a total of 550 µL of the supernatant was
placed into a 5 mm NMR tubes directly for NMR analysis.

NMR Analysis
All 1H NMR spectra were measured at 298 K on a Bruker
AVIII 600 spectrometer (Bruker Biospin, Germany) equipped
with Ultra cryogenic probe operating at 600.13 MHz for 1H.
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A standard one-dimensional (1D) 1H-NMR spectra were
recorded using a NOESYPR1D pulse sequence [recycle delay
(RD)-90◦-t1-90◦-tm-90◦-acquire] (Nicholson et al., 1995) to
obtain all observed metabolites signals, CPMG pulse sequence
[RD-90◦-(τ-180◦-τ)n-acquire] (Meiboom and Gill, 1958) to
obtain small molecule metabolites signals and DIFFUSIONEDIT
[RD-90◦-G1-τ-180◦-G2-τ-90◦-M-90◦-G3-τ-180◦-G4-τ-90◦-Te-90◦-
acquire] to obtain macromolecules metabolites. The following
parameters were set for NMR detection in the experiments: 90◦

pulse length (P1) was 11.2 µs, PLW1 was 10, −10 [W, −dBW],
spectral width was 20 ppm, the sampling point was 32 k, the
acquisition time was 1.64 s. 64 scans, 8 dummy scans. In the
NOESYPR1D experiments, t1 was 4 µs, mixing time (D8) was
100 ms, relaxation decay time (D1) was 2 s, In the CPMG
experiments, total echo time: 80 ms, Echo evolution time
(d20): 350 µs, Echo cycle (L4): 100. In the DIFFUSIONEDIT
experiments, gradient recovery (D16): 150 µs, diffusion time
(D20): 0.2 s; Gradient strength (GPZ6) 85%, gradient pulse length
(P30): 1100 µs.

For resonance assignment, a range of two-dimensional
(2D) NMR spectra were acquired including 1H-1H correlation
spectroscopy (COSY), 1H-1H total correlation spectroscopy
(TOCSY) NMR spectra,1H-1H J-Resolved Spectroscopy (JRES),
1H-13C heteronuclear single quantum correlation (HSQC)
and 1H-13C heteronuclear multiple bond correlation spectra
(HMBC). Briefly, in COSY and TOCSY experiments, the
sampling point of 160 (F1) and 2048 (F2), spectral width of
10.5 ppm (F1) and 10.5 ppm (F2), 90◦pulse length (P1) of 11.87 s.
TOCSY 2D NMR spectra were acquired with MLEV as the
spin lock pulse and the spin-lock time of 80 ms. 1H-1H JRES
were acquired with the sampling point of 64 (F1) and 2048
(F2) the spectral widths were 0.1 ppm in the F1 dimension and
10.5 ppm in the F2 dimension. 1H-13C HSQC 2D NMR spectra
were acquired using composite pulse broad band decoupling
(globally alternating optimized rectangular pulses, GARP), the
sampling points were 128 (F1) and 2048 (F2), with the spectral
widths of 220 ppm (F1) and 10.5 ppm (F2). 1H-13C HMBC 2D
NMR spectra were acquired into 128 data points (F1) and 2048
data points (F2), the spectral widths were 220 ppm (F1) and
10.5 ppm (F2).

Data Pre-processing of NMR Spectra
and Multivariate Data Analysis
Baseline and phase corrections for the NMR spectra were
manually achieved using mestrenova (version 9.0.1, Mestrelab
Research, Santiago de Compostela, Spain). The peak of L-lactate
with a chemical shift at δ1.33 was used as a spectral reference
for plasma. The spectral region of δ0.5–9.5 was segmented
into 0.002 ppm (He et al., 2009) chemical shift buckets, the
region at δ4.70–5.00 and δ 5.6–6.0 were discarded to eliminate
the effects of imperfect water suppression and urea signal,
respectively. The regions of EDTA-Ca resonance (δ2.55–2.58,
δ3.07–3.17), EDTA-Mg resonance (δ2.68–2.70, δ3.23–3.26), Free-
EDTA resonance (δ3.6–3.63) were removed. The integral value
of each spectrum was used as input variables for the subsequent
statistical analysis.

Principal component analysis (PCA) and partial least squares
discrimination analysis (PLS-DA) were performed to examine
intrinsic variation of the NMR spectral data using SIMCA-
P 14.0 (Umetrics, Sweden). Each point on the scores plot is
defined by the spectrum of an individual sample. Then, RFs in
software MATLAB (2010b, The MathWorks Inc., Natick, MA,
United States) were applied to uncover the underlying structure
of this data, multidimensional scaling (MDS) was employed to
map the proximity into a lower-dimensional space.

A one-way analyses of variance (ANOVA) with a Bonferroni
correction of the SPSS 17.0 for Windows (SPSS Inc., Chicago,
IL, United States) was used for significance analysis. P-values less
than 0.05 were considered significant.

Random Forest
There are two powerful machine learning techniques advantages
with RF: bagging and random feature selection. In bagging, each
tree is trained on a bootstrap sample of the training data, and
predictions are made by majority vote of trees. Instead of using all
features, RF randomly selects a subset of features to split at each
node when growing a tree. To assess the prediction performance
of the RF algorithm, it performs a type of cross-validation in
parallel with the training step by using the so-called out-of-bag
(OOB) samples. On average, each tree is grown using about 2/3
of the training data, leaving about 1/3 as OOB. The RF algorithm
can be stated as follows (Huang et al., 2013):

Draw ntree bootstrap samples from the original data, ntree
is the number of ensemble tree in RF. The ntree is equal to
2000 in this study.

For all bootstrap samples, grow an un-pruned classification
or regression tree, with the following modification: at each node,
rather than choosing the best split among all variables, randomly
sample mtry of the variables and choose the best split from among
those variables (bagging can be thought of as the special case of
RFs obtained when mtry = p, the number of variables). In general,
mtry is simply a number (positive integer) between 1 and p.

Predict new data by aggregating the predictions of ntree (i.e.,
majority votes for classification).

Variable Importance
Random forest algorithm has the ability to estimate feature
importance. A measure of how each feature contributes to
the prediction performance of RF algorithm can be calculated
in the course of the training. The important scores can be
used to identify biomarkers. The frequently used type of RF
algorithm to measure feature importance is the mean decrease
in classification based on permutation. The prediction accuracy
after permutation is subtracted from the prediction accuracy
before permutation and averaged over all trees in the forest to give
the permutation importance value. In the current research, the
mean decrease in classification accuracy was accepted to measure
variable importance.

Proximity Measure
Proximity matrix is the important feature of RF algorithm which
can be used to identify structure in the data. RF algorithm
not only generates variable-related information such as variable

Frontiers in Physiology | www.frontiersin.org 3 September 2019 | Volume 10 | Article 1109

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01109 August 31, 2019 Time: 18:21 # 4

Zhao et al. Metabolomics and Random Forests

importance measures, but also calculates the proximities between
samples. All samples in the original data set are classified by
the forest. The proximity between two samples is calculated
as the number of times the two samples end up in the same
terminal node of a tree, divided by the number of trees in the
forest. The resulting matrix is symmetric with diagonal element
equal to 1 and off-diagonal elements ranging from 0 to 1. The
proximities between similar samples are always high. Proximity
scores may also be used to construct MDS plots. MDS plots aim to
visualize the similarity or dissimilarity (calculated as 1 proximity)
between samples.

RESULTS

Demographic and Clinical
Characteristics of the Samples
Demographic and clinical data of the subjects were summarized
in Table 1. There was no significant difference in age, gender
ratio, body mass index and other clinical feature between the
three groups (P > 0.05), as assessed by Friedman’s ANOVA.

1H NMR Spectrum of Plasma Samples
A typical 1D 1H NMR CMPG spectrum of plasma samples
from (A) control and (B) CHD group were shown in Figure 1.
Resonance assignments of metabolites were made according to
the literature and confirmed by 2D NMR spectra. 69 metabolites
were identified, covering amino acids, organic acids, lipids,
glucose, salts, choline and urea. In addition, Tricarboxylic acid
(TCA) cycle metabolites, such as succinate and citrate were
included. Visual inspection of the 1D 1H NMR CMPG spectra
showed clear differences in overall composition between CHD
patients and control (Figure 1). However, these qualitative
observations were all by visual inspection, multivariate data
analysis of NMR spectra were performed to recover the
characteristics of metabolic patterns of CHD (included BSS
and PS) and control.

Classification Using PCA,
PLS-DA, and RF
Principal component analysis on plasma CPMG spectra were
applied to observe the classification of CHD patients and

TABLE 1 | Demographic and clinical characteristics of the samples.

HC CHD–BSS CHD–PS

(n = 26) (n = 27) (n = 31) P-value

Age, mean ± SD, years 53.73 ± 11.39 53.70 ± 13.20 54.97 ± 10.88 0.896

Male, n (%) 20 (76.92) 19 (70.37) 18 (58.06) 0.298

Body mass index,
mean ± SD (kg/m2)

24.42 ± 2.57 25.59 ± 3.89 23.61 ± 2.58 0.054

Active smoking, n (%) 10 (38.46) 11 (40.74) 10 (32.26) 0.785

Diabetes mellitus, n (%) 5 (19.23) 9 (33.33) 10 (32.26) 0.445

Hypertension, n (%) 8 (30.77) 9 (33.33) 11 (35.48) 0.932

Dyslipidemia, n (%) 7 (26.92) 14 (51.85) 16 (51.61) 0.106

controls. The first two principal components were plotted to
present the distribution of the three groups (Figure 2).

As visually observed, the three groups were totally overlapped
in the PCA scores plot, suggesting that the unsupervised PCA
method could not extract useful information in the NMR CMPG
data. PLS-DA was also used to show the classification of the three
groups, as presented in Figure 2, and only the differences between
the CHD and control groups could be observed. As for BSS
and PS of CHD patients, they were completely overlapped, and
had no separation trend. PCA and PLS-DA on plasma NOESY
and BPP-LED spectra, and model verification of PLS-DA on
plasma CMPG spectra, BPP-LED spectra and NOESY spectra
were shown in Supplemetary Figures S1–S5.

Then, RF method was used to explore the underlying
characteristics of this NMR data. 2000 trees were grown, during
the trees growing, proximities were computed for the cases.
Similar cases may fall into the same terminal node or derive from
the same parent. In order to better present the differences of the
samples, MDS was employed to map the proximity into a lower
dimensional space. OOB estimate of error rate and fivefold cross
validation were used to evaluate the stability of the forest tree
model. It could be seen from Figure 3, the OOB error rate did not
decrease with the number of trees constructed, the RF algorithm
could avoid overfitting to a certain extent, and the area under
the curve of ROC was 0.96. As shown in Figure 3A, the controls
were far away from other two groups. Furthermore, an obvious
distinction between CHD–BSS and CHD–PS was observed in the
MDS plot. Figure 3B showed the OOB error rate.

It can be seen from Figure 3, the OOB error rate did not
decrease with the number of trees constructed, the RF algorithm
could avoid overfitting to a certain extent.

Discovery of Plasma 1H-NMR Potential
Biomarkers in CHD Patients and
CHD–BSS Patients
Metabolic biomarker discovery is an important aim of
metabolomics studies. In model construction, the purpose
of variable selection is to find the best combination of variables,
which provide the best classification result (Huang et al., 2013).
A measure of how each feature contributes to the prediction
performance of RF can be calculated in the course of training,
and its importance score (VIM) was obtained. VIM was used
to measure the contribution of the variable to the classification.
Figure 4 showed MDS plots and the variable importance. The
feature importance was set to 0.1, from the bar plot of variable
importance, we found that some metabolites make a contribution
to the classification of controls and CHD samples (Figure 4a),
the peak area quantitative of each spectrum were manually
achieved by segmenting into 0.002 ppm in mestrenova, then
t-test was implemented to test the significant of these metabolites
and the result was summarized in Table 2 (P < 0.05). Finally,
we obtained 12 characteristic metabolites, including lysine
(1.40 ppm), glutamine (2.45 ppm), taurine (3.28 ppm), tyrosine
(3.93 ppm), phenylalanine (3.96 ppm), histidine (4.0 ppm), lipid
(2.0 ppm), citrate (2.55 ppm), choline (3.20 ppm, 4.05 ppm),
lactate (4.11 ppm), α-Glucose (5.23 ppm, 3.39 ppm, 3.56 ppm,
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FIGURE 1 | Typical cpmgpr1d spectra (600 MHz) of (A) CHD patient, (B) control from plasma samples (the region at δ5.5–9.0 was expanded for 16 times). Key: 1,
lipid (CH3); 2, leucine and isoleucine; 3, valine; 4. isoleucine; 5, 3-hydroxybutyrate; 6, lipid (CH2); 7, lactate; 8, lysine; 9, alanine; 10, lipid (CH2CH2CO); 11, lysine and
arginine; 12, leucine; 13, lysine and arginine; 14, acetate; 15, acetic acid (CH3COOH); 16, lipid (CH2C=C); 17, N-acetyl glycoproteins (NAG) 18, glutamate; 19,
glutamine; 20, acetoacetate; 21, lipid (CH2C = O); 22, pyruvate; 23, glutamate; 24, succinate; 25, glutamine; 26, citrate; 27, Ca-EDTA; 28, citrate; 29, Mg-EDTA; 30,
lipid (C=CCH2C=C); 31, trimethylamine; 32, lysine; 33, creatine; 34, creatinine; 35, Ca-EDTA; 36, choline and GPC, glycerophosphocholine (GPC) and
phosphocholine (PC); 37, free-EDTA; 38, Mg-EDTA; 39, taurine; 40, glucose and amino acid; 41, α-glucose and taurine; 42, β-glucose; 43, α-glucose; 44,
free-EDTA; 45, choline; 46, α-glucose; 47, β-glucose; 48, α-glucose; 49, α-glucose; 50, β-glucose; 51, tyrosine; 52, phenylalanine; 53, histidine; 54, choline; 55, TG;
56, lactate; 57, TG; 58, β-glucose; 59, H2O; 60, TG; 61, α-glucose; 62, lipid (CH = CH); 63, urea; 64, tyrosine; 65, histidine; 66, tyrosine; 67, phenylalanine; 68,
histidine; 69, formate.

3.71 ppm,3.83 ppm, 3.89 ppm), and β-Glucose (3.47 ppm,
3.72 ppm) related to the CHD patients. These metabolites
involved in the key metabolic pathways are shown in Figure 5.

The variable importance measures of samples obtained by RF
models revealed that in the plasma of CHD patients contained
significantly higher levels of some amino acids, including
lysine, glutamine, taurine, tyrosine, phenylalanine and histidine
compared to the controls. Plasma lipid, lactate, α-glucose and
β-glucose in CHD patients were higher when compared with
controls (P < 0.01). However, citrate and choline of plasma from
CHD patients were lower than those from angiography normal
(controls) (P < 0.01).

In order to explore potential metabolite biomarkers of CHD–
BSS patients, RF methodology was applied to extract important
variables of the control group and CHD group. The feature
importance was enhanced to 0.2 to obtain the most important
variables. The variable importance measures of each two groups
obtained by RF models were shown in Figure 4. The important
variables (P < 0.01) of the each two groups were shown in
Table 3, we found that 72/choline, 73/β-glucose, 74/α-glucose,
75/α-glucose, 77/α-glucose, 78/tyrosine could be the potential
metabolite biomarkers of CHD–BSS patients.

DISCUSSION

The use of the analytical techniques, 1H-NMR, was feasible
to study the metabonomic differences between angiography
normal and CHD patients. 1H-NMR analysis enabled the
identification of a total of 12 metabolites as contributors to
the discrimination of controls and CHD patients. We found
that the potential biomarkers were principally correlated to
lipid metabolism dysfunction, energy metabolism dysfunction,
amino acid dysfunction and glucose metabolism dysfunction in
the pathological development of CHD. In our previous studies
using LC-MS, we found 27 potential biomarkers which were
principally involved in arachidonic acid metabolism, amino acid
metabolism, purine metabolism, pyrimidine metabolism, steroid
biosynthesis and linoleic acid metabolism that discriminated
CHD patients from healthy controls. In those potential
biomarkers, citric acid and phenylalanine were found in the
current research with NMR technology. Integration of several
metabonomics technologies could provide more comprehensive
biomarker information.

Choline is an important methyl donor, precursor of acetyl-
choline, and it is needed for lipid metabolism (Ueland, 2011).
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FIGURE 2 | PCA scores plot (A, R2X = 0.636, Q2 = 0.560) and PLS-DA scores plot (B, R2X = 0.599, Q2 = 0.318, R2Y = 0.37) derived from NMR data to compare
the metabolome of the control (triangles, red), CHD–BSS (circles, green) and CHD–PS (stars, blue).
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FIGURE 3 | The MDS plot (A) for plasma profiles derived from NMR data for control (cross, blue), CHD–BSS (circles, black) and CHD–PS (squares, red). Plot of OOB
error for RF classification of the three groups (B).

Choline can be converted to betaine in a two-step enzymatic
reaction occurring mainly in the mitochondria of liver cells.
Choline or betaine may be important for lowering plasma
homocysteine concentrations (Steenge et al., 2003), which
is associated with increased risk of cardiovascular disease
(CVD) (Homocysteine Studies Collaboration, 2002). LC-HRMS
method was applied to measure the plasma concentrations
of choline in a cohort of 339 patients undergoing coronary

angiography for the evaluation of suspected coronary
artery disease, the results show plasma levels of choline are
significantly lower in patients with a history of acute myocardial
infarction as compared to those without such history (Mueller
et al., 2015). Brindle et al. (2002) have shown that choline
contributed most strongly to the discrimination of the CHD
and control group. Choline (Oliver and Martin, 2010) are
emerging biomarkers in acute coronary syndrome. Our study
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FIGURE 4 | The MDS plot of (A) control (blue) and CHD (red), (B) control and CHD–BSS (green), (C) control and CHD–NBSS (yellow), and (D) CHD–BSS and
CHD–NBSS. The VIM plot of (a) control and CHD, (b) control and CHD–BSS, (c) control and CHD–NBSS, and (d) CHD–BSS and CHD–NBSS obtained by random
forest were shown in the right.
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TABLE 2 | The summaries of the metabolites that contributed to the clustering of CHD patients and angiography normal (controls) (P < 0.01).

Important Chemical Potential Peak area Peak area in

variables shift (ppm) biomarker in controls CHD patients P

22 1.403 Lysine 12.31 ± 9.82 39.60 ± 35.78 0.000

36 1.963 Lipid (CH2C=C) 59.58 ± 8.84 546.19 ± 440.76 0.000

48 2.443 Glutamine 69.39 ± 10.88 164.45 ± 99.36 0.000

50 2.523 Citrate 55.25 ± 10.79 35.83 ± 11.83 0.000

62 3.203 Choline 337.94 ± 55.40 208.86 ± 72.96 0.000

63 3.283 Taurine 61.80 ± 18.77 140.70 ± 38.35 0.000

64 3.323 α-glucose 8.26 ± 7.97 45.48 ± 19.54 0.000

66 3.403 α-glucose 85.09 ± 19.24 236.05 ± 126.66 0.000

67 3.443 β-glucose 111.78 ± 19.55 387.09 ± 201.84 0.000

68 3.483 β-glucose 134.09 ± 28.85 513.31 ± 292.54 0.000

69 3.523 α-glucose 132.77 ± 26.66 368.55 ± 210.79 0.000

70 3.563 α-glucose 180.07 ± 30.66 572.60 ± 332.92 0.000

71 3.643 Choline 3044.12 ± 833.95 537.74 ± 335.80 0.000

72 3.683 α-glucose 58.88 ± 41.69 709.10 ± 486.93 0.000

73 3.723 β-glucose 48.88 ± 25.24 290.72 ± 137.02 0.000

74 3.763 α-glucose 79.92 ± 17.81 260.75 ± 112.37 0.000

75 3.803 α-glucose 73.26 ± 14.69 652.03 ± 417.20 0.000

76 3.843 α-glucose 89.50 ± 20.28 241.12 ± 117.13 0.000

77 3.883 α-glucose 77.35 ± 14.27 197.34 ± 247.43 0.016

78 3.923 Tyrosine 107.86 ± 18.32 274.94 ± 117.29 0.000

79 3.963 phenylalanine 44.95 ± 14.34 143.55 ± 82.69 0.000

80 4.003 histidine 54.72 ± 14.74 106.16 ± 44.69 0.000

81 4.043 Choline 34.25 ± 15.40 253.45 ± 174.81 0.000

82 4.083 Lactate 58.42 ± 17.47 395.31 ± 295.24 0.000

103 5.243 α-glucose −33.66 ± 29.03 58.58 ± 90.43 0.000

FIGURE 5 | An overview of the metabolic pathway alterations related to CHD. Metabolite levels through color coding as follows: red, increase; green, decrease.
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TABLE 3 | The important variables (P < 0.01) of the each two groups.

Group Important variables/metabolites

Control-CHD 36/lipid, 63/taurine, 64/α-glucose, 67/β-glucose, 68/β-glucose,
71/choline, 72/choline, 73/β-glucose, 74/α-glucose,
75/α-glucose, 77/α-glucose, 78/tyrosine, 81/choline

Control-BSS 63/taurine, 64/α-glucose, 67/β-glucose, 68/β-glucose,
71/choline, 72/choline, 73/β-glucose, 74/α-glucose,
75/α-glucose, 77/α-glucose, 78/tyrosine

Control-PS 36/lipid, 64/α-glucose, 67/β-glucose, 68/β-glucose, 71/choline,
72/choline, 73/β-glucose, 75/α-glucose, 81/choline, 82/lactate

BSS–PS 71/choline

demonstrated that plasma choline levels in patients with CHD
remarkably decreased, suggesting the relationship between
choline and CHD risk.

Abnormal metabolism of the lactate and citrate were the
indications of energy metabolism abnormality. Lactate, which
is an end product of glucose anaerobic glycolysis, is reportedly
a useful indicator for ischemia according to the clinical and
scientific studies. It has been found that lactate was remarkably
increased in plasma of patients with CHD in this study which
suggested that glycolysis was activated by myocardial ischemia
and hypoxia. Previous studies (Barderas et al., 2011; Rowland
et al., 2013) have shown an obvious lactate increased in
CHD patients. The citric acid cycle plays a central role in
oxidative phosphorylation in the myocardium. In the setting of
acute ischemia, preservation of citric acid cycle intermediates
becomes of paramount importance to defend ATP production.
Sabatine et al. (2005) have demonstrated highly statistically
significant changes in circulating levels of metabolites belonging
to the citric acid pathway, including citrate. In our study, the
citrate level was also found lower in the CHD group than in
the control group.

In the metabolic processes of the amino acids, plasma lysine,
glutamine, taurine, tyrosine, phenylalanine and histidine of
the CHD patients had increased significantly in this study,
especially taurine and tyrosine. It has been found in several
metabolic studies that amino acid metabolism is frequently
abnormal in patients with CHD. The surplus amino acids
provided adequate raw materials for the synthesis of lipid, thus
abnormal lipid metabolism of CHD patients had been aggravated
at the same time.

Our study found that the level of α-glucose, β-glucose in
the plasma of CHD patients was higher than that in the
control group. Glucose, as a short-term marker for glycemic
control (Dungan, 2008), could indicate that significant disorders
of glucose metabolism were happened in CHD patients, and
CHD individuals at higher risk for developing diabetes or
insulin resistance.

Furthermore, this study showed a clear metabonomic
difference between CHD–BSS group and CHD–PS group
(Figure 4), indicating CHD–BSS and CHD–PS were different
metabolism patterns. Choline, β-glucose, α-glucose and tyrosine
were considered as potential biomarkers of CHD–BSS in this
study. Choline can prevent CVD by preventing the deposition
of TC in the inner wall of blood vessels and improving the

absorption and utilization of fat. A proteome study (Zhao et al.,
2008) found that there was lipid metabolism disorder in patients
with CHD–BSS. Apolipoproteins in plasma of patients with
CHD–BSS decreased. Apolipoproteins A IV is involved in the
reverse transport of cholesterol. In our previous studies, amino
acids, fatty acids, purine and so on were selected as a panel of
candidate biomarkers of CHD–BSS based on GC-MS (Wei et al.,
2013) and LC-MS (Zhao et al., 2014) technology, integration
of several technologies could provide more comprehensive
classification and biomarker information. It suggested that the
potential biomarkers revealed by the three techniques were
supplementary. In addition, PCA and PLS-DA method could not
extract useful information in the NMR CMPG data for pattern-
recognition analyses of biological samples. The RF method
could be used to explore more the underlying characteristics
of biological samples in this study. Therefore, it is important
to develop more efficient pattern recognition approach for the
analysis of complex metabolomics data. CHD–BSS is not exist
alone in the clinics, so one limitation is that CHD–BSS group
included in the study is also mixed with other syndromes, such
as qi deficiency, yin deficiency, etc., we will enroll patients of BSS
with different diseases and adopt targeted LC-MS/MS analysis to
verify the potential markers of BSS in future studies.

CONCLUSION

Our study demonstrated a clear metabonomic difference between
CHD–BSS group and CHD–PS group, indicating CHD–BSS and
CHD–PS were different metabolism patterns. Choline, β-glucose,
α-glucose and tyrosine were considered as potential biomarkers
of CHD–BSS. It is also worth noting that RF and MDS could be
used to explore more the underlying characteristics of biological
samples in this study, and RF could effectively mine the pattern
information hidden in the complex metabolomics data.
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