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The aim of this paper is to analyze muscle load-sharing in patients with Lateral
Epicondylitis during dynamic endurance contractions by means of non-linear prediction
of surface EMG signals. The proposed non-linear cross-prediction scheme was used to
predict the envelope of an EMG signal and is based on locally linear models built in a
lag-embedded Euclidean space. The results were compared with a co-activation index,
a common measure based on the activation of a muscle pair. Non-linear prediction
revealed changes in muscle coupling, that is load-sharing, over time both in a control
group and Lateral Epicondylitis (p < 0.05), even when subjects did not report pain at
the end of the exercise. These changes were more pronounced in patients, especially
in the first part of the exercise and up to 50% of the total endurance time (p < 0.05).
By contrast, the co-activation index showed no differences between groups. Results
reflect the changing nature of muscular activation strategy, presumably because of
the mechanisms triggered by fatigue. Strategies differ between controls and patients,
pointing to an altered coordination in Lateral Epicondylitis.

Keywords: surface EMG, lateral epicondylitis, non-linear prediction, co-activation, dynamic contraction,
endurance

INTRODUCTION

Muscular imbalances have been associated with the origin of different musculoskeletal conditions
like strain injuries (Yeung et al., 2009), rotator cuff (Lew et al., 2007), low back pain (Nadler et al.,
2002), or lateral epicondylitis (Alizadehkhaiyat et al., 2007b; Heales et al., 2016a). They consist in
the predominant activation of a muscle or a group of muscles, leading either to overactivation or
to disuse that can eventually cause damage to the tissues, especially when concerning repetitive
strain injuries (RSI). In this context, previous studies have shown variations in the load-sharing
of synergistic muscles associated with pain (Hirata et al., 2015) or fatigue in isometric (Stutzig
and Siebert, 2015) and dynamic contractions (Unyó et al., 2013; Smale et al., 2016), altering the
initial motor coordination and the adaptation of the control strategy in order to maintain the motor
output (Stutzig and Siebert, 2015; Smale et al., 2016).
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Lateral Epicondylitis (LE), a common RSI of the forearm,
has been associated with repetitive contractions of the extensors
in the lateral epicondyle. The pathophysiological nature of this
disorder is complex comprising at least three different factors:
the local tendon pathology, changes in the pain system and
motor system impairments. These lasts are reflected in muscular
imbalances (understood as differences in load-sharing and
fatigue) and atypical motor control when compared to healthy
subjects (Coombes et al., 2009). LE is commonly recognized
as being challenging to treat and prone to recurrent episodes
(Heales et al., 2016a), hindering the management of the condition
(Moore, 2002; Coombes et al., 2009). Thus, improving the
identification or monitoring of these muscular imbalances would
permit to evaluate patient’s progress during rehabilitation or the
design of personalized therapies (Pelletier et al., 2015).

Load sharing between muscles in patients with LE has
been studied from the agonist/antagonist strength ratio
during dynamic contractions (Unyó et al., 2013). Based on
measurements of the exerted torque, Unyó et al. found evidence
of muscular imbalances between wrist flexors and extensors
in patients with LE, both during isokinetic concentric and
eccentric contractions. In addition, when analyzing fatigue
during endurance, patients showed a faster decrease in the
exerted force compared to controls (Unyó et al., 2013). That
is, although all subjects were capable of maintaining the
isokinetic exercise at the demanded velocity, the force with
which the movement was performed decayed faster in the
LE group. Changes at the neuromuscular level, including
compensation mechanisms and muscular imbalances, can be
better described by the analysis of EMG, which reflect the muscle
activation strategy (see for example Page, 2011; Heales et al.,
2016a). As such, different studies have identified muscular
imbalances in LE during isometric contractions related to grip
(Alizadehkhaiyat et al., 2007a; Heales et al., 2016b) and wrist
extension (Rojas et al., 2007).

On the other hand, the use of dynamic contractions allows
a better insight into the behavior of muscles in normal
activities of daily life compared to that obtained from isometric
and non-dynamic conditions (Gonzalez-Izal et al., 2010). This
kind of analysis is challenging since it is well known that
the interpretation of the EMG signal is hampered by the
variability induced by the high non-stationary nature of the
signal during dynamic conditions, affecting the amplitude and
spectral parameters that can be extracted (Rogers and MacIsaac,
2013). In time, alterations in the synergistic activation of
muscles during dynamic activities may contribute to pathology
(Szucs et al., 2009). Correspondingly, Coombes et al. suggested
that management of LE should first identify the factor or
the relative expression of factors (tendon pathology, pain and
motor impairments) causing the condition so that treatment
correspond to its clinical presentation in individual subjects
(Coombes et al., 2009).

In this study, we focused on the analysis of the load-sharing
between muscles during a dynamic endurance exercise and
its relation to LE. Our main hypothesis stated that the co-
activation of different muscles would be different for controls
and patients during fatigue, as consequence of compensation

mechanisms. The identification of alterations in muscles load-
sharing may be of use to identify motor impairments, facilitating
the management of the condition.

For this purpose, we proposed the application of a non-linear
cross-prediction technique previously used by our group for the
analysis of respiratory muscles during increased ventilatory effort
(Alonso et al., 2011) and that was also validated on a small sample
of healthy subjects during dynamic isokinetic exercises (Rojas-
Martínez et al., 2013). This technique, which has also been used
in recent studies (Tolakanahalli et al., 2015; Vannini et al., 2017),
evaluates the coupling between pairs of muscles by predicting
the EMG signal of one muscle from the EMG signal of another
muscle using lag-embedding and locally linear models.

MATERIALS AND METHODS

Subjects
Twenty subjects participated in the experiment: 10 subjects with
no history of musculoskeletal disorders (control group) and
10 patients clinically diagnosed and treated for LE in the past
(patient group). Patients were actively using their upper limbs
in everyday activities and manual work for at least 6 months,
and were free of symptoms or with little discomfort by the
time of the experimental session. In this second group, pain was
assessed with a Visual Analog Scale (VAS) before and after the
experimental protocol.

In order to control for possible variability induced by gender
(Nonaka et al., 2006; Brown et al., 2010), all subjects were male,
right-handed, and were chosen among those presenting similar
age, weight, height, and body mass index in order to have a
matched design. No significant differences were found in any of
the described indices as analyzed with a Mann- Whitney’s U test
(see Table 1 for details).

The study was conducted in accordance with the Declaration
of Helsinki and subsequent amendments concerning research
in humans and was approved by the Ethics Committee of
UPC-BarcelonaTECH and the Spanish Government MINECO
in July 19th 2011 with the registration number DPI2011-
22680 (“Analysis of the dynamic interactions in non-invasive
multichannel biosignals for rehabilitation and therapy”). All
volunteers gave their written informed consent to participate.

Experimental Protocol
Subjects performed a series of concentric wrist extension/flexion
exercises on an isokinetic dynamometer (Biodex System III;

TABLE 1 | Characteristics of the subjects in the two groups (N = 10 each),
presented as mean ± standard deviation. Statistical level (p) for Mann Whitney’s
U-test is also presented.

Characteristic Controls Patients p

Age (years) 30.3 ± 3.9 33.7 ± 4.6 0.1

Height (cm) 176.1 ± 6.1 178.3 ± 0.1 0.4

Weight (kg) 77.7 ± 7.8 90.1 ± 23 0.3

BMI 25.1 ± 2.3 28.2 ± 6.1 0.2
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Biodex Medical Systems, Shirley, NY, United States) up to
exhaustion. Subjects were asked to freely perform the exercise at
a comfortable level of force, neither too high nor too low, while
the instructor gave strong motivation. In all cases, a clear decrease
in the exerted toque was observed at the end of the exercise and
the subject stopped when he could no longer continue (that is,
when fatigue was evident). Subjects were seated with the back
straight, elbow flexed at 60◦, and the forearm sustained in full
pronation. The ulnar styloid was aligned with the rotational axis
of the dynamometer and the forearm was fixed with a strap (see
Figure 1, left). The velocity of the device was set to 60◦/s in wrist
extension and 180◦/s in wrist flexion in order to emphasize the
role of wrist extensor muscles, which are commonly associated
with LE (Moore, 2002). The range of motion was 70◦ (30◦ in
dorsal flexion and 40◦ in palmar flexion measured from the
neutral position of the wrist). The weight of the hand was
measured and subtracted at the start of the experimental session
for gravity correction of measurements.

Four muscles were analyzed in the study: Extensor Carpi
Radialis (ECR), Extensor Digitorum Communis (EDC), Extensor
Carpi Ulnaris (ECU) and Flexor Carpi Radialis (FCR). A set
of EMG signals were recorded in each of them with a linear
array of 8 electrodes. The size of the electrodes in the array
was 0.1 by 0.3 mm and were separated by 5 mm (see Figure 1,
left). Considering that forearm muscles are difficult to assess
with surface EMG, the location of the electrodes was selected
according to the procedure described by Mananas et al. (2005):
first, the direction of the fibers was drawn over the skin by
connecting the origin and insertion of each of the muscles.
Then, the subject was asked to exert a selective isometric
contraction associated with the muscle under analysis (either,
ECR, EDC, ECU or FCR) (Kendall et al., 1993). Finally, the
signals were visually inspected for propagation of Motor Unit
Action Potentials by displacing a dry linear electrode over the
course of the muscle fibers and the best location for each muscle

was selected as the one where it was possible to observe the largest
and the most similar signals among the different channels of
the array. In this location, an adhesive array was fixed for the
recording of the signals.

Signals were recorded in single differential configuration, as
a voltage between two adjacent electrodes in the electrode array.
The reference electrode was located at the wrist and all the signals
were amplified, digitized, and sent to the PC for offline analysis
by using two sEMG amplifiers with synchronized sampling
(16 channel amplifier, model ASE16, LISiN-SEMA Elettronica,
Turin, Italy), bandpass filtered (−3 dB bandwidth 10–450 Hz),
Fs = 2048 Hz, 12-bit resolution). The amplifiers support only
recording in single differential mode or monopolar mode.

Additionally, the exerted torque, the angular position, and the
velocity of movement were measured and sampled at 100 Hz for
offline analysis (see Figure 1, right). A trigger signal was used to
synchronize the recording of kinematic and EMG signals.

Data Preprocessing
The obtained EMG signals were filtered between 20 and
350 Hz with a 4th order Butterworth filter following SENIAM
recommendations (Freriks and Hermens, 1999). Afterward, a
set of double differential (DD) signals were obtained offline
by applying a spatial differential filter to reduce crosstalk
(Mesin et al., 2009).

From each pair of adjacent DD signals, the cross-correlation
function was calculated. This function was used to calculate
the correlation coefficient (CC). The time delay between the
adjacent signals in the pair (recorded at a known distance
of 5 mm, see section “Experimental Protocol”) was used to
estimate the conduction velocity (CV) of the recorded motor
unit action potentials. Detailed description of the calculation
of CV can be found elsewhere (e.g., Merletti and Parker, 2004).
These indices were used to preselect a signal subset (see
Figure 2A) among those DD signals presenting a CC > 0.7

FIGURE 1 | Experimental protocol. (Left Top) Position of the subject in the isokinetic machine showing the alignment of the rotational axis with the wrist. (Left
Bottom) Location of the electrode arrays (EA) for the recording of multichannel EMG signals. Only the location in the extensor muscles can be seen. (Right)
Schematics of the collection and recording of signals.
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and a CV within the physiological range (3 < CV < 7 m/s)
(Merletti and Parker, 2004).

Then, the pre-selected signals were visually inspected by
an expert for possible movement artifacts and discarded when
needed (see Figure 2B). Finally, one DD signal per muscle (the
one with the highest CC) was selected and used for the rest of
the analysis. In this way, it was possible to guarantee a good
signal quality given that EMG signals from the forearm are
highly contaminated by crosstalk and are affected by multiple
innervation zones, and that the movement velocity (60◦/s and
180◦/s) can induce large motion artifacts.

Finally, the envelope of each selected EMG signal was obtained
by applying full-wave rectification and a 400 ms moving average
filter previously applied in cyclic EMG signals (Alonso et al.,
2007, 2011). This corresponds to a simple FIR filter with low-
pass characteristics without phase distortion. The EMG envelopes
were resampled at 20 Hz and normalized to have zero mean
and unit variance by subtracting the mean and then dividing
by their standard deviation (Alonso et al., 2007, 2011; Rojas-
Martínez et al., 2013). In this way, the posterior analysis of
their dynamics was independent from their amplitudes (see
Figure 2C). The normalization allowed avoiding the effects
of the relative location between the electrodes and the origin
of the motor unit action potentials on the signal amplitude.
In time, this allowed the posterior non-linear coupling to be
independent of the amplitude, facilitating its association with the
muscular pattern.

On the other hand, torque, angular position, and velocity were
used for the analysis of the mechanic and kinematic outputs by
estimating the average torque and velocity and the maximum and
minimum joint angle across different cycles.

The onset of each cycle (that is, extension followed by
flexion of the wrist) was calculated by the zero-crossings of
the torque signal.

Non-linear Cross-Prediction
A non-linear cross-prediction scheme, based on locally linear
models built in a lag-embedded Euclidean space (Alonso et al.,
2011), was used to assess the coupling between pairs of
demodulated EMG signals. This technique uses a delay-based
state-space reconstruction and depends on two parameters: the
embedding dimension (ED) set to 4, and the delay time (DT)
set to a quarter of the duration of a cycle (Alonso et al., 2011;
Rojas- Martínez et al., 2013). As the duration of a cycle was
approximately 2 s and DT was around 0.5 s, with a sampling
frequency of 20 Hz this gave DT values around 10 samples.

The resulting 4-dimensional signal can be expressed
as a matrix:

St =


st st+DT st+2·DT

st+1 st+1+DT st+1+2·DT
...

st+P−1

...

st+P−1+DT

...

st+P−1+2·DT

st+3·DT
st+1+3·DT

...

st+P−1+3·DT

 (1)

FIGURE 2 | (A) Example of the collected multichannel sEMG signals in the ECR muscle. It is possible to see a set of eligible signals for the analysis (ch 4–7),
displaying high similarity (i.e., high CC coefficient) and propagating Motor Unit Action Potentials with CV within physiological range (dashed lines). (B) Examples of
signals presenting movement artifacts (last channel) discarded from the analysis. (C) Normalized signal envelopes for torque, position, velocity and ECR, EDC, ECU,
and FCR EMG signals. Decrease in the exerted torque is shown in dashed lines. Segments corresponding to flexion are shown in gray shading and were obtained
from the zero crossings of the torque signal.
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where st represents a sample at time t, P is the total number of
points in each ED calculated as P = NS− 3 · DT and NS is the
number of samples. Therefore St ∈ RP×ED, with each row formed
by 4 samples spaced DT seconds in time.

Couplings between signals were evaluated with the 4-
dimensional time series model in Eq. 1 via non-linear cross-
prediction based on locally linear models (Sugihara and May,
1990). Theoretically, it is possible to obtain the future value of
a point in the embedded space, taking into account only its
closest neighbor (and its corresponding future value). In practice,
several points have to be considered to build a linear model, that
is, an estimation of the tangent hyperplane which approximates
the global non-linear dynamics at the point of interest. In this
work, 3 · ED = 12 nearest neighbors were used to obtain reliable
prediction values (Alonso et al., 2007, 2011).

Then, the models mapping the embedded signal into the
future (after a prediction horizon, PH) to predict a different
embedded signal (cross-prediction scheme) were obtained using
a leaving-one-out approach. Each model was obtained P times
for each value of PH for each EMG-EMG pair to study changes
in non-linear muscle coupling. The goodness of the prediction
was evaluated by the R2 coefficient as a function of PH: the higher
the coefficient the higher the coupling between muscles. For more
details on the actual prediction algorithm, see the Annex, or
please refer to Sugihara and May (1990) or Alonso et al. (2011).

Three different analyses were performed: The first considered
the analysis of the prediction taking into account the entire length
of the exercise, that is, NS corresponded to the total number
of signal samples.

In the second analysis the test was divided into three segments
at the beginning, middle, and final stages of the exercise,
each of them comprising 15 cycles, that is, NS = 15 · 2 s · 20
samples/s = 600 samples (Rojas- Martínez et al., 2013). Given
that subjects were asked to complete the task up to exhaustion,
the mentioned segments were overlapped in those cases where
the subject completed less than 45 cycles. In these two analyses
the area under R2 up to a PH = 10 s was used as an index
for the characterization of the PH vs. R2 curves. Then, the
cross-prediction between initial and middle, middle and final,
and initial and final segments was compared for each group
separately (controls or patients). In this context, such an index
could be considered as a measure of the average performance of
the cross-prediction up to five cycles (PH = 10 s).

The third analysis, unlike the previous two, was intended to
evaluate changes in predictability on a cycle-by-cycle basis. For
this purpose, the first 15 cycles of a signal recorded in a given
muscle were used to predict a signal segment recorded in another
muscle. This last segment corresponded to a sliding window of
15 cycles of duration that advanced one cycle at a time from the
beginning to the end of the contraction. In other words, from the
signal of a given muscle at the beginning of the contraction, it was
possible to progressively assess the prediction of the activation of
another muscle one or more cycles later. The initial segment of
the first signal was always used to predict a sliding segment of
a second one, making possible to assess the predictability course
as the exercise progresses. In this case, the short-term prediction
was characterized by the area under R2 up to 0.5 s (10 samples)

as the prediction horizon was implicitly considered in the moving
window of the second signal. In order to avoid possible bias in the
course of predictability due to different initial values of different
cross-prediction pairs, this measure was normalized with respect
to its initial value.

Co-activation Index
Couplings between muscles, estimated using non-linear cross-
prediction, were compared with a commonly used muscle
co-activation index. This index represents the common work
performed by a pair of muscles with respect to their total
activation during the execution of a given task. In this paper, the
co-activation index between muscles a and b was calculated as
(Winter, 2009; Davidson et al., 2013).

CIab = 2×
∫

tf=100%DC
to=0 min (nEMGa, nEMGb) dt

iEMGa + iEMGb
× 100 (2)

where a and b can be any of the signals belonging to the set
of muscles {ECR, EDC, ECU, FCR}, DC is the duration of each
cycle as determined by the zero crossings of the torque signal.
The term iEMG corresponded to the integrated value of the signal
calculated as:

iEMG =
tf=100% DC
∫

to=0
nEMGdt (3)

where nEMG is the envelope of the EMG signal normalized with
respect to its standard deviation for each cycle as in Davidson
et al. (2013). This normalization allows avoiding interindividual
variability and bias due to differences in signal amplitudes
caused by factors such as the distance between the recording
electrode and the source.

Statistical Analysis
Data was tested for normality with the Kolmogorov-Smirnov test
and it was found that in most cases it did not follow a normal
distribution. Besides, considering that the size of the sample was
small (N = 20), non-parametric tests were used to assess intra
or inter-group differences. Specifically, the Wilcoxon signed rank
test in the former case and the Mann-Whitney’s U test in the
latter. Differences were considered significant at p = 0.05.

RESULTS

Subjects in the group of patients scored a VAS of 1.73 ± 1.67
and 2.52 ± 2.21 before and after the experimental protocol,
respectively. No significant differences between the initial and
final VAS score were found (p = 0.07 with a Wilcoxon’s signed-
rank test).

Kinematics and Torque
Table 2 shows the velocity during extension and flexion, the range
of movement, the duration of each cycle, and the torque ratio
between initial and final cycle for the two groups in mean and
standard deviation. No significant differences in the average value
of any of these variables were observed (p > 0.1, either between
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TABLE 2 | Kinematic and mechanical output for the two groups.

Control group Patient group p
(between
subjects)

p (within
subject)

Velocityextension (º/s) 59.1 ± 2.1 58.7 ± 2.7 0.4 0.4

Velocityflexion (º/s) 181.8 ± 6.2 179.8 ± 7.3 0.003 0.02

Range (º) 70.0 ± 1.0 69.3 ± 0.7 0.3 0.8

Duration (s) 2.1 ± 0.2 2.2 ± 0.2 0.1 0.4

Torquefinal/initial 0.3 ± 0.1 0.4 ± 0.2 0.4 –

subjects or between groups). Additionally, their variability
between different cycles showed no differences between the
two groups (p > 0.4 in all cases except for velocity during
flexion in both cases).

Regarding the exerted torque, it is possible to see from variable
Torque final/initial that it decreased at least 50% of its initial value at
the end of the exercise, either for controls or patients (p < 0.002
for a Wilcoxon test).

Prediction Considering the Entire
Duration of the Exercise
The R2 coefficient as a function of PH was calculated for all
prediction models (ECR-EDC, ECR-ECU, ECR-FCR, EDC-ECU,
EDC-FCR, and ECU-FCR). The area under R2 for controls and
patients (mean ± standard deviation) is shown in Table 3. The
statistical significance obtained through a Mann-Whitney’s U
test is also presented. It is possible to observe that significant
differences between the two groups were obtained only for two of
the three models that considered the prediction from the signal
corresponding to extensor carpi radialis (ECR-ECU and ECR-
FCR). Hence, in the rest of analyses only the couplings between
ECR and other muscles (that is, ECR-ECU, ECR-FCR, ECR-EDC)
will be taken into account.

Figure 3 shows the course of R2 as a function of PH for these
pair of muscles. Results are presented as mean and standard
deviation for both groups with a resolution of 50 ms. It is possible
to observe a different behavior between groups displaying a
better prediction for controls (black traces) than for patients
(gray traces) or, in other words, controls presented a higher
predictability over the whole range of considered PH.

TABLE 3 | Area under the curve for the different cross-prediction models.

Controls Patients p

ECR-EDC 79.8 ± 7.7 74.4 ± 6.7 0.2

ECR-ECU 74.5 ± 8.1 65.3 ± 7.6 0.02∗

ECR-FCR 80.3 ± 8.4 71.2 ± 8.6 0.04∗

EDC-ECU 67.8 ± 14.3 62.7 ± 12.7 0.4

EDC-FCR 76.6 ± 7.1 70.7 ± 11.5 0.2

ECU-FCR 73.9 ± 10.3 70.3 ± 12.2 0.5

Results are presented for both groups as mean and standard deviation. The
significance value (p) for the comparison between the groups is also shown.
∗Denotes statistical significance obtained using Mann- Whitney’s U test.

Prediction at Different Stages of the
Exercise
R2 as a function of PH for the three segments at the initial,
middle and final stages of the exercise and for the different
models is shown in Figure 4. Results are presented for each
group separately. It is possible to observe that in the case
of controls, the R2 coefficient displayed higher values than in
patients at the initial segment (except for very low values of
PH in the ECR-EDC pair), displaying a low decrease with
increasing PH. In the middle and, especially at the end of the
exercise, the R2 coefficient decreased faster, showing a weaker
coupling between muscles as the exercise advanced. However,
R2 in patients showed a fast decrease right from the beginning,
displaying similar trends for each of the segments (initial, middle
or final) independently of the model (ECR-EDC, ECR-ECU or
ECR- FCR). Therefore, the cross- prediction between muscles
is weaker in patients than in controls regardless of the model,
probably because of a lack of coordination between muscle
pairs. Differences between segments for each group were assessed
quantitatively from the area under R2 with a paired-sample
Wilcoxon test. Results are displayed in Table 4 for each group
separately: for controls, the area under R2 was higher at the
initial and middle stages than at the final stage of the exercise
(p < 0.05 for all cross-prediction models). Additionally, the area
under R2 at the middle stage was lower than at the beginning
of the exercise for all cross-prediction models (p < 0.01),
except for ECR-ECU. No statistical differences were found in
the group of patients. On the other hand, coupling between
ECR (understood as the area under R2) and the other three
muscles was significantly lower in patients than in controls at
the beginning of the exercise (see Table 5). Such differences
remained at the middle stage but only for the pairs ECR-
ECU and ECR-FCR, which interestingly were the muscle pairs
that showed significant differences between the groups when
the whole exercise was taken into account (see Table 3 in the
previous section).

Cycle by Cycle Cross-Prediction
Figures 5A–C show the index describing the area under R2 (up to
PH = 0.5 s) as obtained from the cross-prediction models using
a sliding window across the Total Number of Cycles (%TNC)
for each subject. This index was normalized with respect to
its initial value at 0%TNC in order to focus on changes in
muscle cross-prediction (i.e., coupling) over time. It is possible
to observe a higher drop in patients (gray) than in controls
(black), meaning that the cross-prediction decayed faster in
patients. Such differences can be observed from the area under
the R2 curve. Figure 5D shows the significance obtained from
the quantitative comparison of the cumulative area between the
two groups every 10% TNC for each of the models (ECR- EDC,
ECR-ECU, ECR- FCR) using a Mann-Whitney’s U test. ECR-
FCR coupling decayed faster in patients for all TNC (p < 0.05).
Although the coupling between ECR and the muscles EDC and
ECU decayed more rapidly than coupling between ECR and FCR,
it was noticeable only up to the first half of the test (50% TNC),
showing no significant differences afterward.
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FIGURE 3 | R2 coefficient as function of PH for the cross- prediction models: (A) ECR-EDC, (B) ECR-ECU and (C) ECR-FCR. Each point represents the mean and
standard deviation for controls (black) and patients (gray).

Co-activation Index
The co-activation index (CI) in Eq. 2 was calculated in the same
way as in the cross-prediction analyses in order to compare the
coupling between muscles as obtained with one or the other
index. The CI between ECR and the other muscles for the entire
duration of the exercise and for both groups (mean ± standard
deviation) is presented in Table 6. Additionally, Table 7 shows
CI at the initial, middle, and final segments considering 15
extension/flexion cycles for each stage during the exercise.
Unlike for the cross-prediction analysis, no significant differences
between the groups were found in any case for CI, that
is, neither for the total duration of the exercise nor when
considering segments.

The statistical significance obtained for the comparison
between the three segments is shown in Table 8 for each group
separately where it was possible to observe differences between
segments for all muscle pairs in controls (see Table 4). CI showed
significant differences only for: 1) the ECR-EDC pair when
comparing the initial and middle segments with the final one,
and 2) the pair ECR-FCR when comparing the initial with the
final segment. Finally, changes in the CI were also assessed cycle
by cycle using a moving window of 15 cycles. Figure 6 displays
the significance for Mann-Whitney’s U test when comparing
the cumulative CI between groups every 10%TNC (from 10
to 100%TNC). CI was normalized with respect to its initial
value following the same methodology as in the cross-prediction
analysis. Contrary to the previous analysis (see Figure 5), no
significant differences using CI were obtained but for the pair
ECR-ECU at 10% TNC.

DISCUSSION

Analysis of the Total Duration of the Test
Results obtained for the entire duration of the test revealed a
lower predictability for patients than for healthy subjects only

in those pairs involving the ECR (p < 0.04, Table 3). Muscle
coupling between the ECR decreased as the prediction horizon
PH increased, and this trend was more pronounced in patients
than in controls even when no evident changes were observed
in the signals (see Figure 2C as an example and Table 3 for
differences between groups). In contrast, the co-activation index,
considered as the gold standard for the evaluation of changes
in load- sharing [see for example (Bekkers et al., 2018; Richards
et al., 2019)], did not show any significant difference between
groups (see Table 6).

In this respect, it is important to note that although the
two methods yielded different results, its comparison can be
limited by the fact that the co-activation index may not be
capable of following the dynamics of the EMG signal. Therefore,
it is important to compare the results obtained by non-linear
prediction with other signal processing techniques lacking of
this limitation, such as muscle synergy assessment based on
matrix factorization [see for example (Tresch et al., 2006;
Ebied et al., 2018)].

Analysis at Three Stages of the Test
When the exercise was divided into initial, middle and final
stages, the Mann-Whitney’s U test revealed several differences
between the two groups at the initial and medium stages for
all of the selected pairs of muscles: ECR-EDC, ECR-ECU, and
ECR-FCR (Table 5). In addition, in comparison to the control
group, patients evidenced a reduced predictability since the
beginning of the contraction, showing a similar decay across
different segments.

With respect to changes between the three stages, significant
differences between segments were found for the control group
(see Table 4), both between initial and middle segments (p < 0.05
for ECR-EDC and ECR-FCR) or initial and final segments
(p < 0.05 in all cases). This can be associated to a higher variability
in non-linear coupling throughout the duration of the endurance
test in this group. Additionally, long-term muscular predictability
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FIGURE 4 | R2 as function of PH for different segments of the exercise: initial (black), middle (dark gray) and final (light gray). Results are presented as mean and
standard deviation for: (A) controls, and (B) patients.

TABLE 4 | Statistical significance for the comparison of the area under R2

between different segments.

Initial-Middle Middle-Final Initial-Final

Controls Patients Controls Patients Controls Patients

ECR-EDC 0.01∗ 0.4 0.004∗ 0.2 0.002∗ 0.1

ECR-ECU 0.13 0.5 0.049∗ 0.5 0.01∗ 0.4

ECR-FCR 0.002∗ 0.4 0.01∗ 0.6 0.002∗ 0.1

Results are presented for each group separately. ∗Denotes statistical significance
for Wilcoxon test.

(up to 10 s, approximately 5 duty cycles) is higher for the group
of controls at the beginning of the exercise for all muscle pairs
(Table 5). As the exercise progresses, patients and controls show
a similar behavior, displaying no differences at the final segment
(see Figure 4 and Table 5). On the other hand, patients showed
reduced predictability from the beginning of the test, with a
similar trend for different stages of the exercise showing no

TABLE 5 | Statistical significance for the comparison of the area under R2

between the two groups for the different segments of the test and models.

ECR-EDC ECR-ECU ECR-FCR

Initial 0.04∗ 0.05∗ 0.01∗

Middle 0.12 0.04∗ 0.01∗

Final 0.91 0.74 0.85

∗ Denotes statistical significance for Mann- Whitney’s U test.

significant differences between segments (Table 4). Hence, the
predictability pattern is low in patients throughout the exercise
displaying a lower coupling between the ECR and the other
muscles. This can be associated with an earlier manifestation of
fatigue in this muscle.

Like the cross- prediction assessment, the co-activation index
in controls revealed significant differences between stages of
the exercise but not in all cases: only between the initial and
final or middle and final segments for the ECR-EDC pair
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FIGURE 5 | Cross-prediction during exercise. The area under R2 for three models (A–C) are displayed as function of the total number of cycles (TNC). The statistical
significance obtained after the comparison between groups is shown as function of TNC (D).

TABLE 6 | Co-activation index (%) for the entire duration of the test.

Controls Patients p

ECR-EDC 86.7 ± 2.95 87.6 ± 3.86 0.5

ECR-ECU 72 ± 9.94 73.7 ± 10.1 0.8

ECR-FCR 43.6 ± 7.56 50.8 ± 7.69 0.08

Statistical significance between groups was calculated using the Mann-Whitney’s
U test.

and between the initial and final segments for the ECR-FCR
pair (see Table 8). What is more important, contrary to the
cross-prediction analysis, the co-activation index failed to find
differences in muscle coupling between controls and patients,
independently of the stage of the test (see Tables 4, 7).

Changes During the Test
The analysis with a sliding window of 15 cycles allowed the
evaluation of short-term predictability changes (Figure 5). Unlike
the previous analyses, such evaluation did not depend on the

actual values of the studied measures (area under R2 or co-
activation index) but was rather focused on their change rate
over the total number of cycles (TNC). The non-linear cross-
prediction analysis showed differences between groups up to
50% TNC for ECR-EDC and ECR-ECU and for the total length
of the test for ECR-FCR, indicating higher drops in prediction
for patients than for healthy subjects. Therefore, in addition to
what can be interpreted as a poorer muscle balance in patients
according to results in previous sections, such imbalances were
more evident for short-term predictability. This behavior was
not observed from the rate of change of the co-activation
index (see Figure 6). Thus, the change-rate of the proposed
predictability measure on a cycle by cycle basis evidenced
different muscular patterns elicited by controls and patients,
especially at the beginning of the exercise and until approximately
half of its total duration.

In general, the load-sharing between four forearm muscles,
namely Extensor Carpi Radialis (ECR), Extensor Digitorum
Communis (EDC), Extensor Carpi Ulnaris (ECU), and Extensor
Carpi Radialis (ECR), was assessed during a dynamic endurance
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TABLE 7 | Co-activation index (%) for three test segments at the initial, middle and final stages of the test and statistical significance between segments (p) for the
Mann-Whitney’s U test.

Initial Middle Final

Controls Patients p Controls Patients p Controls Patients p

ECR-EDC 88.1 ± 3.8 88 ± 4.3 1 87 ± 3.9 87.1 ± 4.8 1 86 ± 3.9 86.8 ± 4.8 0.7

ECR-ECU 69.7 ± 15.2 71.9 ± 9.1 1 69.4 ± 12.6 72.8 ± 10.8 0.6 69.8 ± 12.6 72.1 ± 12.1 0.6

ECR-FCR 40.7 ± 10.2 50.1 ± 8.3 0.06 44.1 ± 10.1 51.7 ± 8.8 0.06 43.9 ± 8.6 51.6 ± 8.8 0.06

TABLE 8 | Statistical significance for the comparison of CI between segments of
the exercise for controls and patients.

Initial-Middle Middle-Final Initial-Final

Controls Patients Controls Patients Controls Patients

ECR-EDC 0.2 0.2 0.001∗ 0.3 0.04∗ 0.3

ECR-ECU 0.7 1 1 0.4 0.9 0.6

ECR-FCR 0.06 0.2 0.06 0.9 0.04∗ 0.2

∗Denotes statistical significance for Wilcoxon’s test.

exercise in controls and patients with lateral epicondylitis (LE).
The non-linear cross-prediction analysis allowed the assessment
of coupling between muscles at different time-scales: the higher
the R2 value, the higher the coupling between the considered
EMG signals. Given that the predictability is a measure of
correlation between data, this analysis can also be interpreted
as a way of quantifying the degree of coordination between
muscles, or, more generally, a measure of dependence between
muscular activity.

Analysis of kinematic data showed that healthy subjects were
able to maintain the target velocity and to perform the movement
of the wrist over the whole predefined range of motion up to
the end of the exercise, even after the decline of the muscular
mechanical output caused by fatigue (decrease of the initial
torque, see Table 2).

Although the kinematic output was not altered by fatigue,
the performed analysis showed differences between controls and
patients with LE. Results indicate that the coordination between
muscles during the endurance conditions was changing and,
therefore, their load-sharing. The predictability decreased over
time in both groups, reflecting the changing nature of muscular
control strategy.

The presented findings showed that activation strategies also
differ between controls and LE patients, pointing to muscle
imbalances affecting the ECR in the latter. Given that the EMG
signals were normalized, the findings cannot be attributed to
methodological differences in the amplitude of the signals, nor
can be known if the contribution of the ECR to the contraction
increased or decreased with time. However, the presented
findings are consistent with different studies. For example, Heales
et al. reported an altered activation of ECR, EDC and Flexor
Digitorum Profundus in LE patients during a low effort isometric
contraction. In that case, the ECR exhibited a lesser activation
during the contraction in the symptomatic arm. Interestingly,
altered activations were also found in the asymptomatic
arm exhibiting bilateral control changes (Heales et al., 2016b).

Similarly, a different study reported differences in the co-
activation of muscles during an isometric endurance task,
displaying a reduced activity of the ECR at the end of the
contraction (Alizadehkhaiyat et al., 2007b). In addition, Mista
et al. (2018) in concluded that there is a reorganization of force
control strategies in chronic LE patients based on the analysis of
isometric contractions. On the other hand, previous studies had
evidenced a higher fatigability of the ECR in LE during isometric
contractions (Rojas et al., 2007). Consequently, it is reasonable to
suggest that the observed alterations in muscle coupling affecting
particularly the ECR, can be attributed to fatigue although further
studies are needed.

Szucs et al. also observed changes in muscle load sharing
as consequence of a fatiguing dynamic exercise affecting the
activation of the upper trapezius (Szucs et al., 2009). As pointed
out by the authors, the identification of alterations in muscle
activation during dynamic contractions may be valuable to decide
clinical interventions directed to shoulder pathologies. The same
rationale could be applied to Lateral Epicondylitis as suggested
by Coombes et al. (2009) that proposed that therapies intended
for LE should take into account alterations in motor control. This
last is also supported by findings of cortical changes in different
musculoskeletal disorders, including LE, that need to be properly
addressed to guarantee recovery (Pelletier et al., 2015).

Lateral Epicondylitis has been assessed in literature mostly
during isometric static contractions that represent poorly the
activation of muscles in daily life activities. With this respect,
different authors have supported the use of dynamic- isokinetic
contractions, which are more representative, in order to monitor
and manage different musculo-skeletal disorders (Croisier et al.,
2007; Sahin et al., 2011; Alizadehkhaiyat and Frostick, 2015). In
this context, the methodology proposed in the present study can
provide a way to analyze muscle coupling (load sharing) during
dynamic contractions, providing deeper insight into muscle
activation compared to isometric contractions.

In summary, results in the present study are consistent with
previous studies showing that the activation of ECR is altered in
LE. What is more, findings show that coupling between ECR and
other forearm muscles rapidly decrease in LE both at short and
long-terms during dynamic tasks.

The observation of an altered activation of the ECR
could be of great value for designing personalized (namely
specific strengthening programs) rehabilitation protocols and
assess their outcomes, favoring secondary prevention. In fact,
secondary prevention is a major concern in epicondylitis since
symptom relapse is very high (8.5% in the first 2 years)
(Sanders et al., 2015), especially in work related injury patients.
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FIGURE 6 | Statistical significance for the comparison between patients and controls when analyzing changes in the CI along the exercise for the different pairs of
muscles.

FIGURE 7 | (Left) Examples of delay embedding for a time series of length N = 20. Three different embeddings with ED = 3 are depicted: DT = 1, 2, and 3. Some
samples of the time series are gray-shaded to act as reference points when looking at the embedded matrix. Reprinted from Alonso et al. (2011), with permission
from Elsevier. (Right) Graphical example of local linear prediction using ED = 2 and 2 neighbors. Five points (1–5) with known images in the future are shown,
whereas image of point 6 after a certain prediction horizon is unknown. Using images of the 2 nearest neighbors (points 2 and 3), forecast for point 6 is obtained.
Reprinted from Alonso et al. (2011), with permission from Elsevier.

Compensation mechanisms regarding the role of ECR should be
taken into account. Particularly, rehabilitation exercise strategies
should focus on maintaining a balanced activation pattern of the
ECR, taking into account not only its performance but also its
interaction with other extensors and flexors of the wrist. This
kind of monitoring can be done by providing biofeedback based
on the continuous evaluation of muscle coupling from surface
EMG. In addition, the proposed methodology can potentially
serve to detect effectively pathophysiological changes related to
epicondylitis and to assess the effectiveness of treatments based
on quantitative indexes. In addition to the probable contributions
to the design of intervention therapies, the altered activation
may be an indicator of risk factor providing highly relevant
information to ergonomists in order to organize preventive plans
in susceptible subjects. However, further longitudinal studies
should be designed to prove that.

Limitations of the study include the effect of crosstalk in the
recorded EMG and the continuous evaluation of pain. Crosstalk

presents a serious issue in the recording of EMG in the forearm
due to the activation of narrow and closely spaced muscles.
In order to address this issue, Double Differential signals were
computed and used in the analysis (Mesin et al., 2009). In
addition, the linear arrays used in this study comprised small
electrodes (0.1 × 0.3 mm) and small inter-electrode distance
(0.5 mm) as recommended to avoid crosstalk (Yung and Wells,
2013). Other techniques to suppress crosstalk, such as high-
density electromyography can be considered in future studies
(Talib et al., 2019).

Given that patients did not report significant increase in pain
after the experimental protocol, the observed changes may be
attributed to fatigue. Previous findings on alterations of motor
control in the asymptomatic limb of patients with unilateral
presentation of LE also support this statement (Heales et al.,
2016b). However, future studies should consider the evaluation
of pain during the task to confirm that the presented findings are
not correlated to this factor.
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In addition, it has also been observed that musculoskeletal
disorders like Lateral Epicondylitis induce changes in the cortical
representation of the muscles (Pelletier et al., 2015; Schabrun
et al., 2015). It has been suggested that those changes may persist
even after symptoms (pain) disappear (Pelletier et al., 2015).
Aforementioned reorganization of forearm muscles in the cortex
can explain the alterations in load-sharing during fatigue in LE,
observed in this study.

CONCLUSION

A non-linear cross-prediction scheme based on locally linear
models was used to quantify the difference in muscle co-
activation between controls and patients with lateral epicondylitis
during endurance contractions. Results showed a particularly
notable difference in co-activation between Extensor Carpi
Radialis and the other analyzed forearm muscles. This finding
suggests that control strategy of this muscle is particularly
affected by the condition, which is consistent with the findings of
other studies available in the literature. It was also demonstrated
that the proposed method is more sensitive to the slight
differences in the activation of synergistic muscles than the co-
activation index, a method commonly used in the literature.

The proposed methodology could find its application in
clinical practice, i.e., in assessment of the state of the patient
and the design and evaluation of the effectiveness of treatments
based on the derived quantitative indexes from surface
electromyography rather than in subjective feedback, such as the
evaluation of pain or functional limitations of the upper limb.

In future works, (i) more patients should be included in the
study and a longitudinal design must be adopted to confirm the
results, (ii) the relation between pain during the execution of the
tasks and its incidence in the load sharing of muscles should be
analyzed, (iii) recordings could be repeated using high-density
electromyography, as a more advanced recording technology
and, (iv) more sophisticated statistical techniques to analyze the
dynamic of the EMG signal will be applied.

ANNEX: CROSS-PREDICTION AND
DELAY-BASED STATE-SPACE
RECONSTRUCTION

In general, the dynamics of a system can be explained by several
underlying variables, which are not available from outside or are
not easily or directly measurable. These variables affect the state
of a system, which in turn reflects on some other quantities that
can be more easily recorded, such as surface EMG signals.

Delay-based state-space reconstruction, also known as delay-
embedding, allows a representation of the state of the system
based on sequences of time-lagged data points (Sugihara and
May, 1990). These sequences depend only on the embedding
dimension (ED) and the delay time (DT), and their values depend
on the application. See several examples in Figure 7 (left).

By embedding a scalar time series we obtain vector time series
of multidimensional points that represent the state of the system

along time (Takens, 1981; Kaplan and Glass, 1995). This ED-
dimensional time series can be used to predict the future of a
point after some time (prediction horizon). Theoretically, the
future image of the present nearest neighbor could be taken as
a predicted value of the point of interest, but uncertainties in
the signal recording produced by noise and quantization errors
require all nearest neighbors inside a small-enough hypersphere
to be considered. With these neighbors, a locally linear equation
system can be solved easily by least-squares to predict our point
after the prediction horizon (see a two-dimensional example
in Figure 7, right). The use of multiple locally linear models
stitched together produces a global non-linear regression model
that constitutes an estimation of the underlying non-linear
dynamics of the system.

For the analysis of EMG envelopes in the current work, the
embedding dimension was set to 4 and the delay time to a
quarter of exercising cycle, in a way that each 4-dimensional point
contains information of the whole cycle. Moreover, non-linear
prediction was performed in a leaving-one-out fashion, that is,
each global regression model was calculated as many times as
points there were, each time leaving a single data point out.
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