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Early prediction of the occurrence of ventricular tachyarrhythmia (VTA) has a potential to
save patients’ lives. VTA includes ventricular tachycardia (VT) and ventricular fibrillation
(VF). Several studies have achieved promising performances in predicting VT and VF
using traditional heart rate variability (HRV) features. However, as VTA is a life-threatening
heart condition, its prediction performance requires further improvement. To improve
the performance of predicting VF, we used the QRS complex shape features, and
traditional HRV features were also used for comparison. We extracted features from
120-s-long HRV and electrocardiogram (ECG) signals (QRS complex signed area and
R-peak amplitude) to predict the VF onset 30 s before its occurrence. Two artificial
neural network (ANN) classifiers were trained and tested with two feature sets derived
from HRV and the QRS complex shape based on a 10-fold cross-validation. The
prediction accuracy estimated using 11 HRV features was 72%, while that estimated
using four QRS complex shape features yielded a high prediction accuracy of 98.6%.
The QRS complex shape could play a significant role in performance improvement of
predicting the occurrence of VF. Thus, the results of our study can be considered by the
researchers who are developing an application for an implantable cardiac defibrillator
(ICD) when to begin ventricular defibrillation.

Keywords: prediction accuracy, QRS complex shape, QRS complex singed area, R-peak amplitude, ventricular
fibrillation, ventricular tachyarrhythmia, ventricular tachycardia

INTRODUCTION

Ventricular tachyarrhythmia (VTA) causes a rapid heart rate and eventual death in the absence of
immediate medical intervention (Lee et al., 2016). As the majority of sudden cardiac deaths (SCD)
occur because of VTA (Lee et al., 2016), early prediction of VTA is important to save patients’
lives. VTA contains different types of arrhythmias, such as ventricular tachycardia (VT) and
ventricular fibrillation (VF). Because measuring and analyzing electrocardiogram (ECG) signals
is an efficient way to identify electrical conduction malfunctions in the heart, such as arrhythmias,
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previous studies have attempted to predict the occurrence of VT,
VF, or both by investigating electrocardiography (ECG) (Riasi
and Mohebbi, 2013; Cappiello et al., 2015; Melillo et al., 2015).

Various methods have been introduced to predict VTA (VF,
VT, or both), such as by assessing QRS (Q, R, and S waves in
ECG) duration, T wave alternans, left ventricular impairment,
QT (from the start of Q wave to the end of T wave in ECG)
dispersion, and heart rate variability (HRV) (Lane et al., 2005).
Among these, HRV is the most commonly employed signal that
provides features for isolating arrhythmia from the normal HRV
(Reed et al., 2005). HRV is a measure that indicates time variation
in consecutive heartbeats, it is also denoted as RR (Billman et al.,
2015). HRV has been analyzed to quantify its features using
three analysis methods: time domain, frequency domain, and
Poincare non-linear analyses (Bilgin et al., 2009; Joo et al., 2012;
Lee et al., 2016).

Previous studies mainly used the above-mentioned three
analysis methods to predict VT, VF, or both using HRV.
Bilgin et al. (2009) performed a sub-band frequency analysis
on HRV data and presented its feasibility on VTA prediction
as compared to the traditional frequency analysis using two
base-bands; low frequency (0.04–0.15 Hz) and high frequency
(0.15–0.4 Hz). To obtain the sub-bands, they used a wavelet
packet transform (WPT) and evaluated the sub-bands using
a multilayer perceptron (MLP) neural network. Elias et al.
used various features extracted in time and frequency domain
(Ebrahimzadeh and Pooyan, 2011) to detect SCD early in patients
with sustained VTA. They used an MLP neural network and
k-nearest neighbors (KNN) to classify the healthy subjects and
those prone to SCD, and principal component analysis (PCA)
to reduce the feature dimensions. Recently, Elias et al. used
both time-frequency and Poincare non-linear analyses to extract
HRV features (Ebrahimzadeh et al., 2014). To evaluate the
performance of their methods in the prediction of SCD in
patients with sustained VTA, the features were extracted from
different segments of HRV signals at successive 1-min intervals
(i.e., the first, second, third, and fourth minute before the event).
MLP and KNN were again used to classify healthy and VTA
(Ebrahimzadeh et al., 2014).

Joo et al. (2012) predicted VT and VF 10 s before their
occurrences using HRV features. They applied an artificial
neural network (ANN) to deal with the complexities of the
features extracted from the HRV (Joo et al., 2012). Recently,
Lee et al. (2016) used the respiratory rate variability (RRV)
features to improve the accuracy of VTA predictions using
ANN. The performance of their predictions using RRV features
outperformed HRV features.

Several studies showed promising performances of predicting
VTA using HRV, RRV, other features, and their combination
(Lee et al., 2016). However, they did not consider QRS complex
features. The QRS complex represents the electrical activation of
ventricles (Zhang et al., 1997) from which important features can
be extracted. If more emphasis is placed on feature extraction
from QRS complexes, performance of predicting VTA could be
improved significantly.

The shape of the QRS complex provides abundant information
about the pattern of the electrical propagation through

ventricular tissue (Zhang et al., 1997). In clinical applications,
the feature extraction and analysis of QRS complexes can
predict ventricular arrhythmia, e.g., VF (Bassareo and Mercuro,
2013). Therefore, we hypothesize that the features from QRS
complexes could be used to predict VTA in advance. The
aim of this study was to investigate the feasibility of using
the features extracted from QRS complexes for the early
prediction of VTA (i.e., VF), as compared to traditional
HRV features. To this end, we extracted two features such
as QRS singed area and R-peak amplitude and investigated
the prediction performance of VF using ANN, anticipating
increased prediction performance using the features from the
QRS complex. Also, four alternative machine learning algorithms
showed a similar trend as ANN with high prediction performance
using QRS shape features.

MATERIALS AND METHODS

Dataset
We used the following freely available databases in PhysioNet
(RRID:SCR_007345) (Goldberger et al., 2000): Creighton
University (CU) ventricular tachyarrhythmia (CUDB)
(Nolle et al., 1986), normal datasets from paroxysmal atrial
fibrillation (PAF) prediction challenge database (PAFDB)
(Moody et al., 2001) and the MIT-BIH normal sinus rhythm
database (NSRDB) (Goldberger et al., 2000). The sampling
frequencies were 250 Hz for the CUDB and 128 Hz the
other two databases. Although there were 35 recordings in
the CUDB, seven recordings were not considered because
some contained only VT events (not VF events) and others
were shorter than the required data length (>150 s). Thus,
a total of 27 recordings were used for data analysis. The
control group consisted of 28 subjects (22 subjects who did
not have fibrillation events from the PAFDB and 6 subjects
from the NSRDB).

Preprocessing
The databases in PhysioNet (PhysioNet, RRID:SCR_007345)
(Goldberger et al., 2000) contained raw ECG signals and
their corresponding HRV signals. The R-peak to R-peak
intervals (RR) were produced by reading the annotation files
in PhysioNet (PhysioNet, RRID:SCR_007345) (Goldberger et al.,
2000) that were annotated by Cardiologists. Figures 1A,B
show examples of ECG and HRV signals before VF occurred,
respectively. We divided the signal into two parts: required
and forecast time. The required time represents the time
period used for feature extraction between 150 and 30 s before
the VF onset time. The forecast time is the time period
between 30 and 0 s before VF onset. Using the required
time data, we could predict the occurrence of VF before
the forecast time.

Feature Extraction
Features were extracted from 27 VF and 28 control datasets.
The descriptions of the features used in this study are listed
in Table 1 (Lee et al., 2016). These features consist of 11
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FIGURE 1 | (A) ECG and (B) HRV signals of a VF subject that include two pre-VF regions. The signal 30 s before the VF onset is called the forecast time and the
signal 120 s before the forecast time is called as required time. RR represents R-peak to R-peak interval in milliseconds (ms).

HRV features (4 features in the time domain, 4 features in
the frequency domain, 3 features using Poincare non-linear
analysis) and 4 QRS complex features (in the time domain). The
desired features for the investigation were extracted from the
required time between 150 and 30 s before VF onset. The QRS
complex signed area and R-peak amplitude were computed using
a function known as ECG-derived respiratory (EDR) from the
PhysioNet (PhysioNet, RRID:SCR_007345) MATLAB toolbox
(Moody et al., 1985). The method in EDR uses the effect of
modulation of the R-peak amplitude, which is evaluated by
processing the signed area under QRS complex in the ECG
signal (Mazzanti et al., 2003). We computed the QRS complex
signed area using the weighted sum of the samples between two
boundaries: the interval from the PQ junction (the point where
P wave and Q wave meet in ECG) to J-point (beginning of
ST segment) (Moody et al., 1985). The R-peak amplitude was
also computed by selecting a sample that had maximum value
between the boundaries. The RR (in the equations) represents
the R-peak to R-peak interval. In this end, the following 4
QRS features were used for early prediction of VF: mean and
standard deviation of the QRS complex signed area and the
R-peak amplitude.

HRV Features
All HRV features were computed from successive RR intervals.

Time Domain Features
Four HRV features were computed in this category: (1) mean RR
intervals [Mean NN (RR)], (2) standard deviation of NN (RR)
intervals (SDNN), (3) square root of mean squared difference of
successive NN (RR) intervals (RMSSD), and (4) the proportion of
interval differences of successive NN (RR) intervals greater than
50 ms by the total number of NN (RR) intervals (pNN50), defined
as follows:

MeanNN = 1/N
∑

RR(i), (1)

SDNN =
√

1/N
∑

(RR(i+ 1)−MeanNN)2, (2)

RMSSD =
√

1/N
∑

(RR(i+ 1)− RR(i))2, (3)

pNN50 =
|RR(i+ 1)− RR(i)| > 50ms
TotalnumberofRRintervals

× 100. (4)

Frequency domain features
We considered three frequency bands, such as the very low
frequency (VLF) band (0–0.04 Hz), low frequency (LF) band
(0.04–0.15 Hz), high frequency (HF) band (0.15–0.4 Hz), and the
ratio of LF and HF. We computed the power spectrum density
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TABLE 1 | Features extracted from the HRV, the QRS complex singed area, and the R-peak amplitude.

Component Analysis Feature Unit Description

HRV Time domain analysis Mean NN ms Mean of normal R-peak to normal R-peak (NN) interval

SDNN ms Standard deviation of NN intervals

RMSSD ms Square root of the mean squared differences of successive NN intervals

pNN50 % Proportion of interval differences of successive NN intervals greater than 50 ms

Frequency domain analysis VLF ms2 Power in very low frequency range (0–0.04 Hz)

LF ms2 Power in low frequency range (0.04–0.15 Hz)

HF ms2 Power in high frequency range (0.15–0.4 Hz)

LF/HF Ratio of LF over HF

Poincare non-linear analysis SD1 ms Standard deviation of points perpendicular to the axis of line of identity

SD2 ms Standard deviation of points along the axis of line of identity,

SD1/SD2 Ratio of SD1 over SD2

QRS complex signed are Time domain analysis QRSaM µV Mean of the QRS complex signed area

QRSaSD µV Standard deviation of the QRS complex signed area

R-peak amplitude Time domain analysis RPampM µV Mean of the R-peak amplitude

RPampSD µV Standard deviation of the R-peak amplitude

FIGURE 2 | The architecture of our ANN using 11 HRV features. The input
features to the ANN. Mean NN: mean normal R-peak to normal R-peak
interval, SDNN: standard deviation of NN, RMSSD: square root of mean
squared difference of successive NN, pNN50: proportion of interval
differences of successive NN intervein greater than 50 ms, VLF: very low
frequency, LF: low frequency, HF: high frequency, SD1: standard deviation of
points perpendicular to the axis of line of identity, SD2: standard deviation of
points along the axis of identity, and the ratio of SD1 and SD2.

(PSD) of the bands using Welch’s periodogram with a Hanning
window (window size: 256 points with an overlap of 50%).

Poincare non-linear features
The Poincare non-linear features were dispersion of points
perpendicular and points along the axis of the line-of-identity.
The standard deviation of the successive RR intervals scaled
by 1/v2 (SD1) and the standard deviation of points along the
axis of line-of-identity (SD2) were both calculated using (5)
and (6). We considered the ratio of SD1 and SD2 as well.

SD1 =
√

1
2

Var(RR(i)− RR(i+ 1)), (5)

SD2 =
√

2SDNN2 −
1
2

SD12. (6)

QRS Complex Features
The QRS complex shape includes Q, R, and S waves from
which the signed areas and the R-peak were calculated. The
mean for QRS complex signed area and R-peak amplitude
of the ECG were calculated using (7) and (8), and their
standard deviations were calculated using (9) and (10).

QRSaM = 1/N
∑∣∣QRSsignedarea

∣∣, (7)

RPampM = 1/N
∑

Rpeak, (8)

QRSaSD =
√

1/N
∑

(
∣∣QRSsignedarea

∣∣− QRSaM)2, (9)

RPampSD =
√

1/N
∑

(Rpeak− RPampM)2. (10)

Prediction Algorithms
The architecture of our ANN was a fully connected network
structure consisting of three layers: an input layer with
nodes representing input variables to the problem, a
hidden layer containing nodes to help capture the non-
linearity of the input data, and an output layer with a
node representing the dependent variable (Figures 2, 3)
(Lippmann, 1989; Basheer and Hajmeer, 2000). The hidden
layer consisted of six neurons which were selected by
trial and error (Figures 2, 3) with rectified linear unit
(RELU) (Glorot et al., 2011) activation functions, and the
output layer used a sigmoid activation function (Narayan,
1997). Activation functions decide which neurons should
be activated or deactivated (Leshno et al., 1993). We
implemented two ANN models with two different input
parameters: 11 HRV features (Figure 2) and 4 QRS shape
features (Figure 3).

We randomly shuffled the input features, and then used
StandardScaler function from sklearn preprocessing library to
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FIGURE 3 | The architecture of our ANN using 4 QRS features. The input
features to the ANN. QRSaM: mean of QRS complex signed areas, QRSaSD:
standard deviation of QRS complex signed areas, RPampM: mean of R-peak
amplitudes, and RPampSD: standard deviation of R-peak amplitudes.

standardize the input features. The features were standardized by
removing the mean and scaling to unit variance. The standard
score Z of a feature x is calculated as:

z = (x−µ)/s, where µ is the mean and s is the standard
deviation of input features of all datasets.

Hence, the governing equations for RELU (12) and sigmoid
(15) activation functions are provided as following:

Xj =

n∑
i=1

wijxi (11)

f (Xj) =

{
0 for Xj ≤ 0
Xj for Xj ≥ 0

(12)

yj = f (Xj)+ bj (13)

Xk =

m∑
j=1

wjkyj (14)

f (Xk) =
1

1− e−Xk
(15)

yk = f (Xk)+ bk (16)

where xi is an input feature to the hidden layer, wij is a weight of
the connection between ith input and jth neuron in the hidden
layer, Xj is a weighted sum of the dot products of the input xj and
weight wij, and n is number of input features. The output from
jth neuron of the hidden layer is yj (13), which is computed by
applying RELU activation function to Xj and adding bias bj. Also,
the output yk of the output layer is computed by applying sigmoid
activation function to Xk, which is the weighted sum of the dot
products of yj and a weight of the connection between jth neuron
in the hidden layer and kth neuron in the output layer wjk, and
adding bias bk. The m is number of neurons in the hidden layer.

The ANN was trained using Adam optimizer algorithm
which updates the weights (Kingma and Ba, 2014). Adam is

an adaptive learning rate optimization algorithm that has been
designed for training neural network. Because we implemented
a binary classification model, we used binary cross-entropy
as loss function to measure the divergence between two
probabilities distribution.

Furthermore, we implemented four more machine learning
algorithms such as: support vector machine (SVM), KNN,
random forest (RF), and Gaussian Naive Bayes (NB) classifiers.
These machine learning algorithms were implemented using
sklearn library in python3.

All algorithms were evaluated 10 times with a 10-fold cross
validation, to avoid overfitting. In the 10-fold cross validation
(Weiss and Kulikowski, 1991), the dataset was randomly divided
into approximately 10 groups. One group was treated as the
testing dataset, and the remaining 9 groups were used for
training. The cross-validation was repeated 10 times.

Finally, the prediction accuracies were estimated by
calculating the means and standard deviations of each model.
To observe the statistical differences between HRV and QRS
shape accuracies, we performed two tailed t-test for each model.
Also, to check the statistical differences among the accuracies
for all the machine learning algorithms, we computed one-way
repeated-measures ANOVA with Tukey post hoc analysis for
multiple comparisons. The flowcharts of the methods used in
this study are shown in Figure 4, where Figures 4A,B are based
on 11 HRV and 4 QRS complex features, respectively.

RESULTS

Table 2 shows the comparison of the means and standard
deviations of the HRV and QRS complex shape features
between the control and VF dataset (see Supplementary
Materials for more illustration). Nine of the 15 features, SDNN,
RMSSD, pNN50, LF, SD1, SD2, QRSaSD, QRsampM, and
QRSampSD, show statistically significant differences (two tailed
t-test, p < 0.05).

Table 3 summarizes the performance of two ANNs with
different feature types; HRV vs. QRS. Eleven HRV features
achieved 72% prediction accuracy. The sensitivity and specificity
were 65.68% and 98.44%, respectively. When using 4 features
extracted from the QRS complex singed area and the R-peak
amplitude, the prediction performance improved dramatically.
The accuracy, sensitivity, and specificity were 98.6, 98.4,
and 99.04%, respectively. The result shows that the QRS
complex shape features extracted from the ECG could have an
impact in predicting VF before its occurrence in terms of its
prediction performance.

Table 4 presents the average computational times required
for training and testing ANN using HRV and QRS complex
shape features. The computational times needed for training and
testing ANN using 11 HRV parameters were 1545 and 0.72 ms,
respectively. Similarly, the computational time needed for
training and testing ANN using 4 QRS complex shape parameters
were 1505 and 0.7 ms, respectively. Although the number of
input features are different, there was no significant difference
between the two ANN models in terms of computational time.
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FIGURE 4 | Overall diagrams of the proposed approach for early prediction of VF. (A) Using 11 HRV features. (B) Using 4 QRS complex features. ECG:
electrocardiography, HRV: heart rate variability, ANN: artificial neural network.

TABLE 2 | Comparison of HRV and QRS complex shape features between control and VF dataset (see Supplementary Material for more illustration).

Features VFs dataset Control dataset p-value

Mean ± SD Mean ± SD

Mean NN (ms) 796.34 ± 366.84 756.81 ± 157.17 0.609

SDNN (ms) 150.54 ± 179.60 46.74 ± 24.74 0.0044

RMSSD (ms) 184.66 ± 219.11 49.44 ± 40.51 0.0027

pNN50 (%) 27.34 ± 29.64 7.08 ± 9.27 0.0013

VLF 17025.4 ± 72281.15 430.57 ± 497.05 0.24

LF 2386.03 ± 4842.65 422.51 ± 666.33 0.042

HF 7636.09 ± 26494.28 300.85 ± 690.3 0.16

LF/HF 1.7 ± 1.8 2.97 ± 4.82 0.203

SD1 131.13 ± 155.72 35.06 ± 28.74 0.0026

SD2 164.05 ± 203.797 53.48 ± 26.22 0.0072

SD1/SD2 0.826 ± 0.364 0.648 ± 0.381 0.087

QRSaM 2.27E + 06 ± 9.02E + 06 2.147E + 05 ± 5.75E + 05 0.243

QRSaSD 2.88E + 06 ± 2.596E + 06 9.689E + 04 ± 9.309E + 04 9.6E-07

QRSampM 5.356E + 05 ± 2.307E + 05 9.38E + 04 ± 1.186E + 05 5.63E-08

QRSampSD 1.516E + 05 ± 8.626E + 04 10778.166 ± 8717.264 6.78E-08

Note that the training time was estimated while an ANN model
was constructed, and the testing time was estimated while
one sample produced a prediction result. The training and
testing times were computed for each cross-validation step, and
they were averaged.

Figure 5 presents the receiver operating characteristic (ROC)
curve for the three models. The ANN with 11 HRV features has

the lowest area under curve (AUC) value (0.71). When using 4
QRS complex shape features, the AUC reached 0.99.

Figure 6 shows the means and standard deviations of the
accuracies evaluated 10 times using a 10-fold cross validation
for all machine algorithms we considered. The performances
of the QRS shape features statistically outperform those of the
HRV features for all machine algorithms (two tailed t-test,
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TABLE 3 | The results for the ANN in predicting VF 30 s before its occurrence.

ANN with Input Sensitivity Specificity Accuracy) AUC

parameters (%) (%) (%)

HRV 11 65.68 98.44 72 ± 18.2 0.71

QRS signed
area + R-peak
amplitude

4 98.4 99.04 98.6 ± 4.7 0.99

TABLE 4 | Computational time needed for training and testing ANN using 11 HRV
and 4 QRS shape features.

ANN with Input parameters Average computational time (ms)

Fitting (training) Prediction (testing)

HRV 11 1545.04 0.72

QRS signed
area + R-peak
amplitude

4 1505.1 0.7

FIGURE 5 | ROC AUCs (receiver operating characteristic area under curves)
of ANNs for different input features used to predict VF 30 s before the
occurrence. TPR: true positive rate, FPR: false positive rate.

p < 0.001). The accuracies of all algorithms showed statistically
significant differences when using the QRS shape features [one-
way ANOVA: F(4,485) = 4.43, p = 0.0016]. A post hoc test
showed that the ANN exhibited a statistically higher performance
than other algorithms (p < 0.05), except SVM (p = 0.95) (see
Supplementary Material for more detailed results).

DISCUSSION

In this study, we showed that the performance for predicting
VF can be improved by using features extracted from the
QRS complex shape (QRS complex signed area and R-peak

amplitude). A maximum prediction accuracy of 98.6% was
obtained using ANN when only 4 features of the QRS complex
signed area and R-peak amplitude were used. However, using
HRV features presented a significantly low performance with
a prediction accuracy of 72%. The ROC curve in Figure 5
also showed the same trend. From the result in Table 3, we
demonstrated that QRS shape features can predict VF before its
occurrence more accurately than the traditional HRV features.

As depicted in Figure 6, the prediction performance obtained
using 4 QRS shape features was statistically higher than
that was obtained using 11 HRV features for all algorithms.
Also, ANN statistically outperformed three algorithms,
such as KNN, RF, and NB, when using 4 QRS features,
and its performance was comparable with SVM. However,
ANN needed computational time more than the other
algorithms to train the model, but not for testing time; all
algorithms, including ANN, need less than 1 ms for one testing
(Supplementary Table 2).

The QRS complex of an ECG contains information about
the ventricular depolarization process. The time at which the
QRS complex is generated is the time required to complete
ventricular depolarization. The QRS amplitude is proportional to
the energy consumed for ventricular depolarization. Therefore,
if the electrical properties of the ventricular tissue remain
unchanged, the QRS shape does not change within a short
period of time (several seconds to several hours). How could we
predict the VTA shortly before using QRS shape information?
To our best knowledge, the reason is that when the ventricles
begin to make reentrant waves due to ectopic focus or other
reasons, the cardiac electrical wave pattern begins to change
(which can affect the QRS shape). In addition, when electrical
waves are different, the way in which the ventricles contract
is also different, which changes the location of the ventricular
tissue that is the source of the ECG. Changes in the location
of ventricular tissue will affect the ECGs that reflect this.
Therefore, QRS complex shape represents the depolarization
(activation) of the ventricle muscles (Zhang et al., 1997)
from which abnormalities in the electrical activation features
can be extracted for early prediction of VF. The findings
highlight the importance of the QRS complex shape features
for predicting VF.

The means and standard deviations presented in Table 2 show
the comparison between the features of VF and control datasets.
Nine features have statistically significant differences between the
VF and control groups (p < 0.05). We could use these features
to compare the VF and control groups. However, the prediction
of VF is not achievable by mere comparison of some parameters
but by classification of complex patterns of every feature based on
machine learning techniques.

Previous studies dealt with features extracted from HRV
and predicted VF, VT, or both with promising performance.
Elias et al. showed a performance with 99.73% accuracy for
features extracted from HRV 1 min just before the occurrence
of SCD early in patients with sustained VTA (Ebrahimzadeh
et al., 2014). However, they did not consider the forecast
time which is a time period before the occurrence of the
VTA. Joo et al. (2012) predicted VT and VF 10 s before the

Frontiers in Physiology | www.frontiersin.org 7 September 2019 | Volume 10 | Article 1193

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01193 September 19, 2019 Time: 18:34 # 8

Taye et al. Prediction of Ventricular Fibrillation

FIGURE 6 | Means and standard deviations of the prediction accuracies of each algorithm. Single asterisk (∗) indicates a statistically significant difference between
prediction accuracies using HRV and QRS shape features (QRS > HRV, p < 0.001), and double asterisk (∗∗) between the prediction accuracies of different
algorithms (ANN = SVM > KNN, RF, and NB, p < 0.001). HRV: heart rate variability with 11 parameters, QRS shape: QRS signed area and R-peak amplitude with 4
parameters, ANN: artificial neural network, SVM: support vector machine, KNN: k-nearest neighbors, RF: random forest, NB: Gaussian Naïve Bayes.

events occurred. They showed 76.6% accuracy for predicting
VT and 92.2% accuracy for predicting VF. Recently, Lee et al.
used RRV and HRV features to predict VT 1 h before it
occurred. They showed a prediction accuracy of 85.3%, which
is 10% better than their result when they used only HRV
features (73.5%). The performance of our ANN model based
on the QRS shape and HRV features was slightly higher
than those of Elias et al. and Joo et al.’s result. Furthermore,
we considered 30-s-long forecast time. However, Lee et al.
considered a longer forecast time (1 h). Even though they
considered longer forecast times, our ANN model showed
higher accuracy.

Results show that features extracted from HRV contain
important information for predicting the occurrence of VF
several minutes in advance. However, Lee et al. (2016)
revealed that the performance using only HRV features can
be improved by adding RRV features. We found that only
the QRS complex shape or that combined with HRV can
improve the performance of predicting VF. In our study,
we used 2-min-long signal to predict VF 30 s before its
occurrence. The signals we used for the analysis (required
time) and the prediction time gap (forecast time) were
short. However, our study showed that the features extracted
from QRS complex morphology (shape) could have effects
for predicting VF.

We compared the performance obtained using a combination
of HRV and QRS shape features with that obtained using
only QRS shape features, but little improvement in prediction
accuracy (only ∼1%) was found for the combination features.
This indicates that using QRS shape features solely would be an
efficient way to predict VF. Therefore, we decided to not include
the result for the combination features in our study.

Our algorithm could be installed in patients’ implantable
cardiac defibrillator (ICD) for real-time VF prediction as
an additional functionality to VF detection. Predicting the
occurrence of VF hours in advance would be more useful,
however, the datasets used for this paper limited to 120 s
data window and predict VF 30 s before its occurrence.

Au-Yeung et al. (2018) showed that a correct prediction could
be made when the ventricular arrhythmia occurs nearer. Thus,
our prediction accuracy of 98.6% was higher than that of
Bayasi et al. (2016) who predicted the occurrence of VF
3 h prior to the onset with an accuracy of 86%, and Lee
et al. (2016) who predicted the onset 1 h prior with an
accuracy of 85.3%.

According to the Task Force of the European Society of
Cardiology and the North American Society of Pacing and
Electrophysiology, a recording of approximately 1 min is
needed to calculate the HF component, and at least 2 min,
to calculate the LF component (Task Force of the European
Society of Cardiology the North American Society of Pacing
Electrophysiology, 1996). However, the VLF calculated from
short-term recordings (<5 min) is an uncertain measure
(Task Force of the European Society of Cardiology the North
American Society of Pacing Electrophysiology, 1996). The VF
datasets in this study were very short in length, therefore, we
had to use 120 s data window for extracting features 30 s
before VF occurs.

The limitation of our study was the small dataset (55
recordings) and the short length of the signals before the VF
occurred. To implement a study for clinical purposes, our ANN
model must be trained using more datasets.

CONCLUSION

In this study, we used an ANN to predict the VF using
features extracted from 120 s HRV signals, the QRS
complex signed area, and the R-peak amplitude 30 s
before VF occurrence. The datasets were collected from
the popular physiological archive PhysioNet. Although
the datasets utilized in this study were relatively small,
the performance of the ANN was better using QRS
shape features than that of traditional HRV features.
This was consistently observed in all machine learning
algorithms implemented in this study, which demonstrates
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the feasibility of using QRS shape features to accurately
predict VF onset. This work requires further investigation
using a greater number of datasets to confirm the clinical
feasibility of our proposed approach. Finally, the results of
this study could be used to predict when an ICD will begin
ventricular defibrillation.
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