AUTHOR=Chen Yu , Kidd Jason , Bhat Owais M. , Yuan Xinxu , Hong Jinni , He Xingxiang , Li Pin-Lan TITLE=Suppression of Glucagon-Like Peptide-1 Release by Inhibition of Intestinal NLRP3 Inflammasome Activation in Asc–/– and Nlrp3–/– Mice JOURNAL=Frontiers in Physiology VOLUME=Volume 10 - 2019 YEAR=2019 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2019.01213 DOI=10.3389/fphys.2019.01213 ISSN=1664-042X ABSTRACT=The glucagon-like peptide-1 (GLP-1) is an insulinotropic hormone secreted by intestinal enteroendocrine L-cells, which plays a crucial role in glucose control, regulation and protection from different pathological conditions such as diabetes mellitus. The present study sought to test whether GLP-1 release increases gut injury with a high-fat diet (HFD) and whether this GLP-1 release is associated with NLRP3 inflammasome activation. Our results showed that the NLRP3 inflammasome is activated in the intestinal tissue of wild type mice on a HFD, accompanied by GLP-1 over-expression. The number of intestinal L-cells and the GLP-1 level in serum are increased in WT mice with HFD. However, in the Asc-/- and Nlrp3-/- mice these HFD-induced intestinal and serum GLP-1 changes was suppressed. Using confocal microscopy, the co-localization of GLP-1 and FLICA which labels activated caspase-1 in intestine was decreased in the Asc-/- and Nlrp3-/- mice compared to WT mice. Mechanistically, the inhibitor of caspase-1 or HMGB1 blocker is used to demonstrate the regulatory action of NRLP3 inflammasome in GLP-1 release. It was found that the level of GLP-1 and its co-localization with IL-1β were reduced by inhibition of the caspase-1 activity, but not altered by blockade of HMGB1 action. Our results suggest that NLRP3 inflammasome activation triggers GLP-1 production from the intestine, which is associated with IL-1β, but not with HMGB1. These findings for the first time provide evidence that the activation of NLRP3 inflammasome in the intestine increases GLP-1 release in mice, which may serve as an adaptive response to intestinal inflammation.