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Muscle fatigue is a serious problem in patients with motor neuron diseases (MNDs).
It commonly disturbs both daily life activity and rehabilitation tolerance. A particular
concern should be taken when MNDs occur in older ages. Older patients with MNDs
usually have a worse clinical presentation and a lower survival rate. This could increase
the occurrence of muscle fatigue. Muscle fatigue occurs due to a dysfunction in either
motor or sensory systems. Current exercise interventions performed to decrease the
occurrence of muscle fatigue focused only on treating motor causes of muscle fatigue. It
has been demonstrated that these interventions have a high debate in their effectiveness
on decreasing the occurrence of muscle fatigue. Also, these exercise interventions
ignored training the affected sensory part of muscle fatigue, however, the important
role of the sensory system in driving the motor system. Thus, this review aimed to
develop a novel exercise intervention by using proprioceptive training as an intervention
to decrease the occurrence of muscle fatigue in patients with MNDs particularly, older
ones. The physiological effects of proprioceptive training to decrease the occurrence
of muscle fatigue could include two effects. The first effect includes the ability of the
proprioceptive training to increase the sensitivity of muscle spindles as an attempt to
normalize the firing rate of α-motoneurons, which their abnormalities have major roles
in the occurrence of muscle fatigue. The second effect includes its ability to correct
the abnormal movement-compensations, which develop due to the biomechanical
constraints imposed on patients with MNDs.

Keywords: motor neuron diseases, muscle fatigue, older patients, proprioceptive, training

INTRODUCTION

Muscle fatigue is a common problem in patients with motor neuron diseases (MNDs) (Gibbons
et al., 2013). MNDs are defined as a group of diseases in which there is a progressive degeneration
of motor neurons (Quansah and Karikari, 2015). MNDs include three main subtypes. The first
subtype includes disorders which affect lower motor neurons, such as spinal muscular atrophy
(SMA) and spinobulbar muscular atrophy (SBMA or Kennedy’s disease). The second subtype
includes disorders which affect upper motor neurons, such as spastic paraplegias and primary
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lateral sclerosis (PLS). The last subtype includes disorders which
affect both upper and lower motor neurons, such as amyotrophic
lateral sclerosis (ALS) (Figlewicz and Orrell, 2003).

One of the common complaints in patients with MNDs is
muscle fatigue (McElhiney et al., 2009; Abraham and Drory,
2012; Gibbons et al., 2018). Muscle fatigue is defined as the time-
related reduction in the maximum force-production capacity of
the muscle. Muscle fatigue is one of the most common complaints
occur in patients with MNDs. McElhiney et al. (2009) have
demonstrated that muscle fatigue affects approximately 44% of
patients with MNDs. It has been reported that there are several
causes for the occurrence of muscle fatigue in MNDs. Most
studies have demonstrated that neurodegenerative cause is the
main cause of muscle fatigue in patients with MNDs, while
the neuromuscular transmission, and muscle metabolism are
normal in those patients (Abraham and Drory, 2012). In contrast,
other studies have stated that patients with ALS usually have
a neuromuscular junction disassembly and muscle denervation
and this abnormality of the neuromuscular junction is trademark
feature of ALS onset and progression. Other studies have shown
that there is a severe abnormality in the mitochondrial function
in patients with ALS (Bowling et al., 1993; Dupuis et al., 2005;
Vandoorne et al., 2018).

However, MNDs are common in adults, this previous debate
increases in older ages because older patients with MNDs usually
experience more complex clinical presentation and lower survival
rate (Eisen et al., 1993; Forbes et al., 2004; Broussalis et al., 2018).
It has been demonstrated that the prognosis is much worse in
older patients with MNDs than younger ones (Tysnes et al.,
1994). Older patients with MNDs usually have a higher incidence
of bulbar symptoms than younger ones and this bulbar onset
presents in at least half of all patients with MNDs over 80 years
(Eisen et al., 1993; Forbes et al., 2004; Broussalis et al., 2018). Also,
older patients with MNDs could experience more occurrence of
muscle fatigue during exercises than younger ones because aging
produces an abnormality in normal function and firing rate of
the α-motoneurons (Soderberg et al., 1991; Knight and Kamen,
2007; Watanabe et al., 2016), which is considered one of the main
causes of muscle fatigue.

Furthermore, it has been shown that elderlies usually
experience a high degree of muscle fatigue during exercise
rather than younger ones (Klass et al., 2007; Mcneil and Rice,
2007; Kent-Braun, 2009). Klass et al. (2007) investigated the
effect of aging on the fatigability of ankle dorsiflexor muscles
throughout concentric and eccentric contractions. They found
that fatigability increased progressively with aging and they
argued this increase in fatigability to peripheral alterations
occurred in Ca2+-controlled excitation-contraction coupling
process and neuromuscular propagation. Thus, the occurrence
of MNDs in older ages could cause further alteration in the
Ca2+-controlled excitation-contraction coupling process and
neuromuscular propagation.

Moreover, it has been demonstrated in the literature that
there is a change in muscle fibers with both aging and MNDs.
With aging, type I muscle fibers usually transform to type
II, which increases the occurrence of muscle fatigue during
exercises (Mcneil and Rice, 2007; Kent-Braun, 2009). Also, it

has been shown that with MNDs, there are atrophic changes in
muscle fibers with mild denervation. Thus, older patients with
MNDs could experience more changes in muscle fibers than
younger ones due to the combination of aging and MNDs effects.
Thus, older patients with MNDs should not be neglected from
future revisions.

Current exercise interventions performed to treat muscle
fatigue in patients with MNDs are few and their qualities
are very low (Gibbons et al., 2018). Thus, it is impossible
to reach strong conclusions about the effectiveness of these
interventions to reduce the occurrence of muscle fatigue in
patients with ALS/MND (Gibbons et al., 2018). Generally,
exercise interventions performed to treat muscle fatigue have
assumed that muscle fatigue occurs due to dysfunction in
motor control. This dysfunction occurs due to failure in one or
more mechanisms included in the voluntary muscle contraction.
This failure can occur in any area along the neuromuscular
system, including the motor cortex, signals from the motor
cortex to motoneurons, signals from motoneurons to muscle,
neuromuscular junction coupling in muscle, or actin-myosin
links (Light et al., 2010).

Also, current exercise interventions included either grading
exercise intensity (Wallman et al., 2004), increasing rest period
(Nogueira et al., 2012), using mild training intensity (Dennett
et al., 2016), or using massage for the fatigued muscle (Nunes
et al., 2016). The effectiveness of these exercise interventions is
still in debate. Some studies (Morriss et al., 1996; Friedberg, 2002;
Wallman et al., 2004) have demonstrated that increasing physical
activity or grading exercise intensity is beneficial in decreasing
the occurrence of muscle fatigue. In contrast, other studies (Black
et al., 2005; Oh et al., 2016) have shown that increasing physical
activity or grading exercise intensity has no effect on reducing the
occurrence of muscle fatigue.

It has been shown in the literature that muscle fatigue does
not occur due to dysfunction in the motor control only, however,
it occurs due to dysfunction in both motor and sensory systems
(Light et al., 2010). Several studies have shown that MNDs
affect sensory neurons besides motor neurons (Anagnostou et al.,
2005; Pugdahl et al., 2007; Vaughan et al., 2015). Pugdahl
et al. (2007) conducted a study to detect the presence of
any dysfunction in sensory neurons in patients with ALS.
They found that about 22.7% of the included patients had an
abnormality in the conduction time of at least one sensory
nerve. Anagnostou et al. (2005) conducted a study to detect
the presence of any dysfunction in sensory neurons in children
with SMA. They found that children with SMA had dysfunctions
in the conduction time of sensory nerves. Recently, Vaughan
et al. (2015) conducted a study to detect the presence of any
dysfunction of the proprioceptive system in mice with ALS. They
found that these mice had significant degenerations in nerve
endings of the proprioceptive system.

Also, it has been demonstrated in several studies that
muscle fatigue has sensory receptors responsible for sensing
and developing muscle fatigue (Light et al., 2010; Boyas and
Guével, 2011; Staud, 2012; Nunes et al., 2016; Kuppuswamy,
2017). However, the vital role of the sensory system in
driving motor control (Riemann and Lephart, 2002), till now
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there is no exercise intervention focused on improving the
function of the sensory element of muscle fatigue. It has been
shown in the literature that the sensory mechanism of muscle
fatigue starts from mechanoreceptors and metaboreceptors.
These receptors are responsible for generating the sensation
of muscle fatigue (St Clair Gibson et al., 2003; Light et al.,
2010). Mechanoreceptors are primary receptors of muscle
fatigue and they are sensitive to changes in muscle strain
(St Clair Gibson et al., 2003; Light et al., 2010). While
metaboreceptors are secondary receptors of muscle fatigue and
they are sensitive to changes in the number of metabolites
created by muscle contraction (St Clair Gibson et al., 2003;
Light et al., 2010).

Mechanoreceptors are also the same receptors of
the proprioception. The sensitivity and function of
mechanoreceptors can be improved both neurologically or
morphologically by performing proprioceptive training (Kaya,
2016). Thus, it is reasonable to suppose that performing a
proprioceptive training to the fatigued muscle could improve the
function of mechanoreceptors within this muscle. Consequently,
this could be an effective modality to reduce the occurrence
of muscle fatigue in patients with MNDs, particularly older
patients who have a worse clinical presentation, and a low
survival rate. Thus, this review aimed to demonstrate possible
physiological mechanisms of proprioceptive training as an
exercise intervention to treat muscle fatigue in patients with
MNDs, particularly older ones.

This review included seven subtopics, the previous
mechanisms of muscle fatigue in MNDs, the proprioception
dysfunctions in MNDs, the mechanism of the sensation of muscle
fatigue, the possible physiological effects of proprioceptive
training on decreasing muscle fatigue in MNDs, the effects of
proprioceptive training to correct the imposed biomechanical
constraints in MNDs, the effects of aging on pathological
degeneration of motor and sensory neurons in patients with
MNDs, and the physiological effects of proprioceptive training
to create theoretical bases to fight the MNDs in elderlies.

The Previous Mechanisms of Muscle
Fatigue in MNDs
It has been reported that muscle fatigue in MNDs occurs as a
result of a defect in lower motor neurons. This defect causes a
failure of motor units to provide the needed levels of activity,
consequently, peripheral muscle fatigue occurs (Abraham and
Drory, 2012). In the literature, neurodegenerative causes are the
main causes of muscle fatigue. These neurodegenerative causes
include any dysfunction of microglia, glutamate excitotoxicity,
misfolded proteins, mitochondrial dysfunction, or oxidative
stress (Abraham and Drory, 2012).

Vucic et al. (2007) investigated the alteration of axonal
excitability occurred after an induced voluntary contraction to
recognize peripheral mechanisms of muscle fatigue in patients
with ALS. They found that patients with ALS had a membrane
hyperpolarization. This membrane hyperpolarization caused an
increase in the threshold occurred after the voluntary contraction
in patients with ALS compared with controls. They argued this

membrane hyperpolarization to the abnormality in either the
Na+/K+ pump or firing rate of motor neurons. They also found
that there was a dysfunction in the Na + /K + ATPase, which
might cause a loss of motor neurons.

Sharma et al. (1995) examined possible mechanisms of muscle
fatigue in patients with ALS. They measured muscle force,
energy metabolism, and muscle activation pattern. They used
the phosphorus-3 1 magnetic resonance spectroscopy to measure
muscle force and energy metabolism, and the neurophysiological
measures and magnetic resonance imaging to measure the muscle
activation pattern. These measures were collected through a
25 min intermittent isometric contraction of the tibialis anterior
muscle. They found that both tetanic and maximum voluntary
force decayed in those patients more than controls. Also, they
found that muscular activation impaired due to small proton
signal intensities and amounts of energy metabolites. Lastly, they
found that the neuromuscular transmission was nearly normal
because amplitudes of the evoked compound of the muscle action
potential were steady throughout the contraction.

However, the common belief that the neuromuscular
transmission and muscle metabolism are normal in patients
with MNDs, several studies have demonstrated that patients
with MNDs experience abnormalities in the neuromuscular
transmission, and mitochondrial function (Bowling et al., 1993;
Dupuis et al., 2005; Rocha et al., 2013; Cappello and Francolini,
2017; Vandoorne et al., 2018). Cappello and Francolini (2017)
have stated that patients with ALS usually have a neuromuscular
junction disassembly and muscle denervation. Additionally,
Rocha et al. (2013) have demonstrated that the degeneration
of the neuromuscular junction is a trademark feature of ALS
onset and progression. Also, It has been shown in several
studies that there is a severe abnormality in the mitochondrial
function in patients with ALS (Bowling et al., 1993; Dupuis et al.,
2005; Vandoorne et al., 2018). Thus, this abnormality in the
neuromuscular transmission and mitochondrial function should
be considered as a source of muscle fatigue in patients with
MNDs in the future.

The Proprioception Dysfunctions in
MNDs
Motor neuron diseases significantly disturb the whole
proprioceptive system. Several studies have demonstrated
that MNDs usually disturb a variety of cells, such as Renshaw
and Glial cells in the spinal cord (Haidet-Phillips et al., 2011;
Mochizuki et al., 2011; Philips and Rothstein, 2014; Vaughan
et al., 2015). Some studies used neurophysiological and
neuroimaging analyses to detect the presence of any abnormality
in the sensory neurons in patients with ALS. They found that
about 20–60% of sensory neurons showed an abnormality in
those patients (Hammad et al., 2007; Pugdahl et al., 2007). Other
studies used a histological analysis to detect any abnormality in
the sensory neurons. Also, they found that there was a significant
degree of degeneration in these neurons and their axons (Dyck
et al., 1975; Hammad et al., 2007).

One of the major sensory systems which has a vital
role in driving motor control is the proprioceptive system

Frontiers in Physiology | www.frontiersin.org 3 October 2019 | Volume 10 | Article 1243

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01243 September 28, 2019 Time: 18:30 # 4

Mohamed Proprioceptive Training in Elderlies With MNDs

(Vaughan et al., 2015). The degeneration of proprioceptive
neurons, mainly Ia/II proprioceptors, would possibly
have a significant effect on increasing the deterioration of
α-motoneurons. It has been demonstrated that proprioceptive
(sensory) and α-motor neurons are structurally and
functionally connected. Proprioceptive information detected by
mechanoreceptors delivers to α-motoneurons via monosynaptic
connections to adjust their actions. Thus, any loss of the
proprioceptive mechanism could highly affect α-motoneurons
function (Vaughan et al., 2015).

Two animal studies have demonstrated that MNDs
significantly affect the proprioceptive mechanism. Mentis
et al. (2011) conducted a study to detect the presence of any
early signs of malfunction in the sensory-motor connectivity in
mice with SMA. They found that mice with SMA experienced a
decrease in proprioceptive reflexes and a decrease in function
and number of proximal dendrites and motor neuron synapses.
These abnormalities raised early through the disease and they
accompanied the affection of motor neurons. Also, Vaughan et al.
(2015) conducted a study to detect the presence of any degrees
of degeneration in nerve endings of the proprioceptive system
in mice with ALS. They found that peripheral nerve endings of
the proprioceptive system experienced a significant degree of
degeneration, particularly types Ia/II. This degeneration occurred
early prior to the presence of any neurological symptoms or loss
of any central projecting nerve branches.

To the best of our knowledge, there was no human study in the
literature demonstrated the effect of MNDs on the proprioceptive
system. Only a human study conducted by Hammad et al. (2007)
to detect the presence of any degree of sensory involvement in
patients with ALS. They found that approximately 32% of those
patients had affection in the sensory system, about 27% of those
patients had abnormalities in the amplitudes of nerve action
potentials of the sural sensory nerve, and 91% of those patients
had pathological anomalies in the sensory system. Also, they
found that large-caliber myelinated fibers got the most affection
(73%), while small-caliber myelinated fibers got the least affection
(23%). Furthermore, they found that there was a significant
degree of degeneration in both axons and myelin sheaths.

The Mechanism of the Sensation of
Muscle Fatigue
The sensation of muscle fatigue is a complex phenomenon.
It occurs on both conscious and unconscious perceptions.
The sensation of fatigue occurs in the same way by which
the body senses any change in its functions, such as the
decrease in the heart rate occurs as a consequence to any
increase in cardiac output, feeling of an elevated muscle activity
rate occurs as a consequence to any elevation in the power
generation, which occurs in response to a rise in its physical
activity levels, the breathlessness occurs in response to any
increase in the ventilation, and the sensation of warm and
gummy occurs with any increase in the temperature or sweating
(St Clair Gibson et al., 2003).

The sensation of muscle fatigue starts with a change in
a particular component during the physical activity, such as

a change in sensation of strain in working muscles and/or
joints (St Clair Gibson et al., 2003), accumulation of muscle
metabolites (Fitts, 1994; Green, 1997), or depletion of substrates
(Balsom et al., 1999; McConell et al., 1999). These peripheral
changes are sensed by either mechanoreceptors (Pandolf et al.,
1975; Mihevic, 1981) or metaboreceptors (Rotto and Kaufman,
1988; Bongiovanni and Hagbarth, 1990). Then, this sensory data
reaches the brain to inform it by the level of exertion or fatigue in
working muscles (St Clair Gibson et al., 2003).

Mihevic (1981) has demonstrated that the perception
of exertion relies on input data from both “muscle and
cardiorespiratory system.” This data includes a feedback data
about changes in the muscle strain (the primary source
for the sensation of fatigue) and a feedback data from the
cardiorespiratory system about the depletion in the number of
metabolites or substrates (the secondary source of the sensation
of fatigue). This study came in accordance with the study of
Stamford and Noble (1974), who found that the proprioceptive
feedback, precisely from the Golgi tendon organ, was the primary
mechanism of the perception of exertion.

Hutton and Nelson (Nelson and Hutton, 1985; Hutton and
Nelson, 1986) also conducted two studies to investigate the
activity of mechanoreceptors in the fatigued gastrocnemius
muscle during ramp stretch in cats. The first study (Mochizuki
et al., 2011) investigated the sensitivity of Golgi tendon organs
in fatigued gastrocnemius muscle. They found that with ramp
stretch, there was a significant decrease in response latencies of
Ib nerve types. This decrease presented regardless of any rise in
twitch tension or change in peak and static tension. Also, White
and Hall (2018) reached the same results and they added that
during muscle fatigue the Golgi tendon organs had a tendency
to preserve a fixed level of force which could be the cause of the
continuous reduction in muscle force.

The second study (Nelson and Hutton, 1985) investigated
the sensitivity of muscle spindles in the fatigued gastrocnemius
muscle. They found that during static stretching of the fatigued
muscle, there was a decline in response latency to any
displacement, a rise in the mean frequency, and an increase
in resting discharge. While at rest, the frequency of firing
to vibration significantly increased in both Ia and IIa nerve
fiber types. Also, they found that the sensitivity of cats to
different positions significantly decreased with the occurrence
of muscle fatigue.

The association between proprioceptive dysfunction and
muscle fatigue has been demonstrated in the literature (Ribeiro
et al., 2007; Gear, 2011). Ribeiro et al. (2007) investigated the
effect of induced muscle fatigue on the knee position sense
in elderlies. They performed 30 successive maximal gravity
adjusted concentric contractions to knee flexors and extensors
using an isokinetic dynamometer. They found that with muscle
fatigue, the absolute angular error significantly increased, and the
peak torque of knee muscles significantly declined. Gear (2011)
investigated the effect of various levels of muscle fatigue of the
hamstring muscle on the position sense of the knee joint. In this
study, an isokinetic exercise through an angular range of motion
used to produce muscle fatigue. Three levels of muscle fatigues
were examined, including 90% (mild fatigue), 70% (moderate
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fatigue), and 50% (maximum fatigue) of hamstring peak torque.
He found that there was a significant decrease in the position
sense of the knee joint at 90% and 50% of muscle fatigue.

The Possible Physiological Effects of
Proprioceptive Training on Muscle
Fatigue in MNDs
It has been reported in the literature that the proprioceptive
system has three functions (Jha et al., 2017). It protects
joints from excessive and injurious movements via a reflexive
mechanism in response to proprioception afferent feedback. It
assists in the stabilization of joints during a static posture. Finally,
it promotes a better performance of complex movements in
more precise coordinated manners. Several studies have stated
that proprioceptive training can achieve significant effects on
improving motor control dysfunctions in almost musculoskeletal
or neurological disorders. These improvements occurred in
balance control (Tibone et al., 2013), pain level (McCaskey
et al., 2014), motor learning (Aman et al., 2014), and walking
parameters (Yong and Lee, 2017).

However, the high value of proprioceptive training in the
field of rehabilitation, its effect on decreasing the occurrence of
muscle fatigue in patients with MNDs has not been demonstrated
yet. The main effect of proprioceptive training on reducing the
occurrence of muscle fatigue includes its ability to normalize
the firing rate of motor neurons. It has been demonstrated
that the decrease or stoppage of the firing of motor neurons
has a significant role in reducing the muscular force and
developing muscle fatigue (Wan et al., 2017). One of the
major causes of the decrease in muscle spindle activity is the
decrease in the motor neuron firing rate, which reduces the
firing rate of group Ia muscle afferents. Thus, an increase in
the presynaptic inhibition and decreasing the firing rate of
the motor neurons occur (Brerro-Saby et al., 2008; Vie et al.,
2013). Improving the muscle spindle activity by proprioceptive
training could help in renormalizing the firing rate of group
Ia muscle afferents, presynaptic inhibition and firing rate of
motor neurons (Ribot-Ciscar et al., 2000; Hospod et al., 2007;
De Luca and Kline, 2012).

Hospod et al. (2007) examined the effect of proprioceptive
training on the muscle spindle activity arising from the common
peroneal nerve. They found that Ia afferent responses changed
significantly after the performance of proprioceptive training.
The change in Ia afferent included an increase in the variability
of discharge, a decrease in depth of modulation, and a change in
spontaneous activity. Potvin and Fuglevand (2017) developed a
phenomenological model of motor unit fatigue as a controllable
resource to expect muscle fatigue for several tasks and to
demonstrate different contractile responses of motor units. This
phenomenological model demonstrated that normalization of
the firing rate of motor neurons caused an increase in muscle
performance and a decrease in the occurrence of muscle fatigue.

Normalization of the firing rate of motor neurons
consequently could help in normalizing the amount of calcium
released from calcium channels in the sarcoplasmic reticulum
and skeletal muscles. The normal release of calcium helps in

decreasing the incidence of muscle fatigue because the depletion
of calcium is considered one of the main causes of muscle fatigue
(Fryer et al., 1995). Muscle spindles activate intrafusal muscle
fibers through the activation of gamma motoneurons, which
increases strain on the sensory region. Then, through a reflex
action intermediated by muscle spindle afferents, an increase
in α-motoneurons activity, stimulation of the extrafusal muscle
fibers, and occurrence of muscle contraction occur afterward
(Edman et al., 2002).

Kuo and Ehrlich (2015) have demonstrated that the
contraction of the extrafusal muscle fibers occurs due to the
activation of α-motoneurons which stimulates the release of
the acetylcholine at the neuromuscular junction. The released
acetylcholine spreads across the synaptic cleft and activates
nicotinic acetylcholine receptors over the motor endplate. The
activation of nicotinic acetylcholine receptors causes an influx
of cations (sodium and calcium) then the depolarization of the
muscle cell membrane occurs afterward. This depolarization
triggers high numbers of voltage-gated sodium channels
over the muscle membrane and causes initiation of the
action potential.

The action potential spreads along the surface membrane and
transverse tubules. In transverse tubules, the action potential
is sensed by the dihydropyridine receptors (voltage-sensor
molecules). This mechanism sequentially opens the calcium
release channels in the sarcoplasmic reticulum and skeletal
muscles. These channels release calcium into the sarcoplasm
(Fichna et al., 2015). Then, calcium binds with the troponin
to move the tropomyosin far away of the myosin-binding area
on actin. This initiates the cross-bridge cycling and muscle
contraction (MacIntosh et al., 2012). After muscle contraction,
the calcium is removed from the cytoplasm by Ca2+ATPase
enzyme. This causes a return of tropomyosin to its blocked
location and the relaxation to occur (MacIntosh et al., 2012).
Using proprioceptive training could help in the normalization
of calcium release mechanism by increasing the muscle spindle
activity; this could assist significantly in reducing the incidence
of muscle fatigue. The pathological mechanisms responsible for
the occurrence of muscle fatigue in patients with MNDs and the
effect of proprioceptive training on the renormalization of these
mechanisms are illustrated in Figure 1.

The Effects of Proprioceptive Training to
Correct the Imposed Biomechanical
Constraints in MNDs
One of the common signs of MNDs is muscle weakness. The
pattern of weakness can be either distal to proximal (upper
motor neuron disease) or proximal to distal (lower motor neuron
disease) (Statland et al., 2015). This weakness occurs due to
the degeneration of motor units of certain muscles according
to the pattern of weakness for each type. Assuming that force
requirements are the same to keep the body erect or produce any
movement, thus the load increases in a pattern opposite to the
weakness pattern of each type. Thus, movement compensations
develop and a further increase in muscle fatigue occurs with any
small load or activity.
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FIGURE 1 | This diagram illustrates the effect of proprioceptive training on re-normalizing the pathological mechanisms responsible for the occurrence of muscle
fatigue in patients with MNDs. (A) The pathological mechanism responsible for the occurrence of muscle fatigue in patients with MNDs. (B) The effect of
proprioceptive training on renormalizing the pathological mechanisms responsible for the occurrence of muscle fatigue in patients with MNDs.

Several studies (Wu and Ng, 2010; Wu and Shi, 2011;
Radovanović et al., 2014; Witiuk et al., 2014; Grunseich and
Fischbeck, 2015; Hausdorff et al., 2019) have demonstrated that
patients with MNDs have functional movement-compensations.
Grunseich and Fischbeck (2015) have demonstrated that
patients with SMA usually have progressive leg weakness. This
weakness is symmetrical and causes more muscle fatigue in
order to keep the balance on uneven surfaces. Radovanović
et al. (2014) have demonstrated that patients with ALS have
a longer gait cycle and smaller stride length compared to
controls. Hausdorff et al. (2019) have shown also that patients
with ALS have a longer cycle time and more decrease in
cadence, stride length, and velocity compared to controls.
They also have shown that patients with ALS spend less
time on one leg (swing time) and more time on two legs
(double support time).

Functional movement-compensations present in patients
with MNDs can be improved by proprioceptive training.
Proprioceptive training can adjust the motor control and
correct these functional movement-compensations through both
increasing patient awareness about the normal movements and
correcting the abnormal ones (modulating motor control).

Proprioceptive training can modulate motor control through
either central or peripheral mechanisms (Kaya, 2016). Centrally,
Eriksson (2001) and Kaya (2016), have shown that proprioceptive
training modifies proprioceptive input by modulating muscle
spindle control and inducing plastic adjustments in the central
nervous system (Vallbo and Al-Falahe, 1990). Peripherally,

Hutton and Atwater (1992) have shown that proprioception
training causes morphological adaptations in the muscle spindles
themselves. These morphological adaptations occur due to
micro-adaptations occur to the intrafusal muscle fibers due to
some metabolic alterations. Also, these macro-adaptations can
occur due to a decline in the response latency of the stretch reflex
and a rise in its amplitude.

A study conducted by myself and others (Mohamed et al.,
2019) to correct the shrug sign which is a type of movement
compensations usually develops in patients with adhesive
capsulitis. However, adhesive capsulitis is a self-limiting disorder,
this sign can prevent its full recovery. In our study, we developed
a new proprioceptive training to correct the shrug sign. We found
that this proprioceptive training decreased the shrug sign and
helped in gaining more shoulder and scapular range of motion.
The effects of proprioceptive training on decreasing movement-
compensations responsible for increasing the occurrence of
muscle fatigue in patients with MNDs are illustrated in Figure 2.

The Effects of Aging on Pathological
Degeneration of Motor and Sensory
Neurons Occur in Patients With MNDs
Several studies have shown that the incidence of MNDs
among elderlies increases and those patients experience a worse
clinical presentation and low survival rate than younger adults
(Eisen et al., 1993; Norris et al., 1993; Forbes et al., 2004;
Terao et al., 2006; Broussalis et al., 2018). Broussalis et al. (2018)
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FIGURE 2 | This diagram illustrates the effect of proprioceptive training on decreasing movement-compensations responsible for increasing the occurrence of
muscle fatigue in patients with MNDs.

conducted a study to investigate the onset of ALS among elderlies.
They found that the majority of admitted patients were elderlies
(age of older than 70). Forbes et al. (2004) conducted another
study to investigate the clinical presentation of ALS in elderlies
over 80 years. They found that clinical presentation and survival
rate in elderlies with ALS were worse than younger adults. These
results correspond with the study of Terao et al. (2006), who
conducted a study to investigate the clinical presentation, and
survival rate of ALS among older Japanese patients. They found
older patients with ALS had worse survival rates and more
complications than younger adults.

Aging is considered one of the key risk factors for the
development of MNDs (Kurtzke, 1991; Hospital et al., 1993).
Causes of the worse survival rate among older patients with
MNDs are not clear yet. These causes might be mainly due to the
deteriorating effects of aging on musculoskeletal and neurological
systems (Kurtzke, 1991; Hospital et al., 1993). Aging usually
causes atrophic changes in extrafusal muscle fibers (McKenzie
et al., 2002; Hepple, 2003; Marzetti et al., 2012), degenerations
of neuromuscular junctions (Valdez et al., 2010; Tintignac et al.,
2015), physiological and cellular modifications in motor axons
(Apel et al., 2009; Kang and Lichtman, 2013), and changes in the
expression of genes that could critically change normal functions
of neuromuscular junctions and skeletal muscles (McKenzie
et al., 2002; Weisleder et al., 2006; Jang et al., 2011). Aging causes
a decline in both the peripheral and central nervous system
processing of sensory information (Nusbaum, 1999). Thus, these
mechanisms could significantly cause more complication and
worse survival rate among older patients with MNDs.

Furthermore, several studies (Herndon et al., 2002; Pan et al.,
2011; Sann et al., 2012; Toth et al., 2012; Li et al., 2016)

have examined the effect of age on neuronal tissues using
animal models. Understanding these animal models can offer
a vision into the bases of selective neuronal susceptibility in
neurodegenerative disorders in humans. These animal studies
have demonstrated that aging causes abnormal changes in
neural axons within the spinal cord. These changes include
swelling, waviness, defasciculation, and shrinkage of their
diameter (Herndon et al., 2002). Also, aging causes abnormal
changes in neurons. These changes include soma distortion,
development of abnormal branches, and novel neurite-like
projections from the soma (Pan et al., 2011; Tank et al.,
2011; Toth et al., 2012). Furthermore, aging causes extensive
structural changes in mechanosensory neurons and their
microtubule networks (Pan et al., 2011; Toth et al., 2012).
These structural changes can disorganize with distorted somas
(Pan et al., 2011).

Other types of neurons also exhibit age-related morphological
changes, such as dopaminergic neurons, chemosensory neurons,
interneurons, and motor neurons. Aging causes morphological
changes in the soma of the dopaminergic neuron (McCaskey
et al., 2014), axon edging of GABAergic neurons, defasciculation
of cholinergic axons in the anterior nerve cord (Pan et al.,
2011), and ectopic branches from GABAergic axons (Tank et al.,
2011). Aging causes a synaptic decline in the aged neurons,
this occurs due to the decrease in the number of synaptic
vesicles and size of presynaptic concentrations in the spinal cord
(McCaskey et al., 2014).

Aging causes proteins such as SNB-1/synaptobrevin and RAB-
3 GTPase, to ectopically collect in synaptic axonal regions and
dendrites (Li et al., 2016). Endosomal membrane compartments
in aged GABAergic motor neurons disorganize too.
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These GABAergic motor neurons are important for constructing
and reprocessing of synaptic vesicles (Sann et al., 2012). With
aging, the presynaptic release of substances decreases in motor
neurons and gradually deteriorates afterward, these substances
are important for muscle contraction (Liu et al., 2013). Aging
causes deterioration of the synaptic organization in the form of
a decrease in the number of dendritic spines and the axonal
transport, which is vital for synaptic maintenance (Chen and
Hillman, 1999; Valdez et al., 2010). With aging, there is a
malfunction in neuronal transporters released from synaptic
vesicles. The malfunction of these transporters increases the
speed of the synaptic decline and motor circuit malfunction.
This might explain the chief role of axonal transport in the
preservation of synaptic structural integrity through human life
(Li et al., 2016).

The Physiological Effects of
Proprioceptive Training to Create
Theoretical Bases to Fight the MNDs in
Elderlies
However, MNDs significantly affect human life quality
and mobility (Simmons, 2013), abnormal structural, and
morphological changes occur with aging could aggravate
these adverse effects, and speed the degeneration rate occurs
to α-motoneurons in patients with MNDs. Normalization
of α-motoneurons using proprioceptive training might be
a good intervention to fight the occurrence of MNDs in
older ages. This can be accomplished by increasing the
sensitivity of mechanoreceptors particularly, muscle spindles
and Golgi tendon organs which significantly decrease in older
ages (Kararizou et al., 2005; Liu et al., 2005; Ribeiro and
Oliveira, 2007). It has been demonstrated that increasing the
sensitivity of mechanoreceptors could normalize the firing rate
of α-motoneurons. This could decrease the disruption of the
function of α-motoneurons, the calcium release, and the ATPase
enzyme; these mechanisms mainly present with MNDs (Sharma
et al., 1995; Ellis et al., 2003; Masson et al., 2014; Nijssen et al.,
2017). Thus, using proprioceptive training could be a useful tool
to slow down the deterioration in the function of α-motoneurons.

The effectiveness of proprioceptive training on modulating the
abnormal tone and improving manual control has been shown
with other neuro-degenerative disorders (Shumaker, 1980;

Bieñkiewicz et al., 2013; Shih et al., 2016; Wang et al., 2018).
Bieñkiewicz et al. (2013) conducted a study to investigate the
effect of proprioceptive training by using visual biofeedback
on bradykinetic movements of the hand in patients with
Parkinson’s disease. They found that temporal features of hand
movements significantly moderated by using visual biofeedback.
These improvements included an improvement of muscle tone,
movement time, and peak velocity.

Shih et al. (2016) examined the effect of using proprioceptive
training in the form of game-based training with a Kinect sensor
on postural stability in patients with Parkinson’s disease. They
found that proprioceptive training-induced improvements in
both static and dynamic stability. Wang et al. (2018) studied the
effect of using proprioceptive training in the form of game-based
training on lower limb function and gait control in patients with
spinocerebellar ataxia. They found that proprioceptive training
caused an improvement in limb stability, limb-kinetic function,
and gait-posture after 4 weeks.

CONCLUSION

Proprioceptive training can be an effective method for decreasing
the incidence of muscle fatigue in patients with MNDs,
particularly elderlies. This can be accomplished through the
ability of proprioceptive training to normalize the firing rate
of the α-motoneurons and the amount of calcium released
from calcium release channels, which has a major role
in the occurrence of muscle fatigue. The normalization of
α-motoneurons and the amount of calcium released could be
helpful to decrease the incidence of development of MNDs or
to slow down the progression on presented MNDs in elderlies.
Also, proprioceptive training decreases the occurrence of muscle
fatigue by correcting the abnormal movement-compensations,
which develop due to the biomechanical constraints imposed on
patients with MNDs.
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