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Despite great advances in mechanical ventilation and surfactant administration for

the newborn infant with life-threatening respiratory failure no specific therapies are

currently established to tackle major pro-inflammatory pathways. The susceptibility of the

newborn infant with neonatal acute respiratory distress syndrome (NARDS) to exogenous

surfactant is linked with a suppression of most of the immunologic responses by the

innate immune system, however, additional corticosteroids applied in any severe pediatric

lung disease with inflammatory background do not reduce morbidity or mortality and

may even cause harm. Thus, the neonatal piglet model of acute lung injury serves as

an excellent model to study respiratory failure and is the preferred animal model for

reasons of availability, body size, similarities of porcine and human lung, robustness,

and costs. In addition, similarities to the human toll-like receptor 4, the existence of

intraalveolar macrophages, the sensitivity to lipopolysaccharide, and the production of

nitric oxide make the piglet indispensable in anti-inflammatory research. Here we present

the physiologic and immunologic data of newborn piglets from three trials involving acute

lung injury secondary to repeated airway lavage (and others), mechanical ventilation, and

a specific anti-inflammatory intervention via the intratracheal route using surfactant as

a carrier substance. The physiologic data from many organ systems of the newborn

piglet—but with preference on the lung—are presented here differentiating between

baseline data from the uninjured piglet, the impact of acute lung injury on various

parameters (24 h), and the follow up data after 72 h of mechanical ventilation. Data

from the control group and the intervention groups are listed separately or combined.

A systematic review of the newborn piglet meconium aspiration model and the repeated

airway lavage model is finally presented. While many studies assessed lung injury scores,

leukocyte infiltration, and protein/cytokine concentrations in bronchoalveolar fluid, a

systematic approach to tackle major upstream pro-inflammatory pathways of the innate
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immune system is still in the fledgling stages. For the sake of newborn infants with

life-threatening NARDS the newborn piglet model still is an unsettled promise offering

many options to conquer neonatal physiology/immunology and to establish potent

treatment modalities.

Keywords: acute lung injury, pro-inflammatory pathways, immunosuppression, surfactant, mechanical ventilation,

meconium aspiration model, lavage model, innate immunity

INTRODUCTION

Respiratory failure is the leading cause of morbidity and
mortality in newborn infants regardless of gestational age. Great
advances in the construction of neonatal ventilators (continuous-
flow) and in the development of assisted ventilation devices
(e.g., invasive pressure-limited or volume-constant ventilation,
continuous positive airway pressure breathing, nasal high-flow
therapy) permitted to push back the thread of futile respiratory
failure (Owen et al., 2017). Many years ago respiratory distress
syndrome of the premature infant (IRDS) was attributed to
a lack of surfactant production in the early stage of alveolar
development of the immature lung (Farrell and Avery, 1975).

Abbreviations: AEC, alveolar epithelial cells; Ang-2, angiopoietin 2; ANOVA,

analysis of variance; ARDS, (adult) acute respiratory distress syndrome; ASC,

apoptosis-associated speck-like protein containing a caspase recruitment domain;

aSMase, acid sphingomyelinase; AT III, antithrombin III; BALF, broncho-alveolar

lavage fluid; (S/D)BP, (systolic/diastolic) blood pressure; BPD, broncho-pulmonary

dysplasia; C, control group; CD14/18/61, cluster of differentiation 14/18/61; CI,

confidence interval; C3/5a, complement factor 3/5 activated; DOPG, dioleoyl-

phosphatidylglycerol; EMT, epithelial-to-mesenchymal transition; EVLWI, extra-

vascular lung water index; FiO2, fraction of inspired oxygen; FRC, functional

residual capacity; G-CSF, granulocyte colony stimulating factor; GBS, group B

streptococci (Streptococcus agalactiae); HC, healthy control group; piglets not

subject to lung injury; HI, heart index; HR, heart rate; HVR, hypervariable

region (of Toll-like receptor 4); IFN(-γ), interferon (γ); IL-1(α/β),−6,−8,

interleukin 1(α/β), 6, 8; IL-1 ra, interleukin 1 receptor agonist; IRDS,

respiratory distress syndrome of the premature infant; ITBI, intra-thoracic

blood volume index; KC, murine functional chemokine analog of IL-8; LPS,

lipopolysaccharide; LTB4, leukotriene B4; MAP, mean airway pressure; MCP-

1, monocyte chemotactic protein 1; MD-2, lymphocyte antigen 96; MIP-2,

macrophage inflammatory protein 2; MMP-1/2/8/9, matrix metalloproteinase

1/2/8/9; MPO, myeloperoxidase; NARDS, neonatal acute respiratory distress

syndrome; NF-κB, nuclear factor κB; NLRP(3), inflammasome nucleotide-binding

domain—leucine rich repeat- containing protein-(3); NO, nitric oxide; OI,

oxygenation index (MAP ∗ %O2/PaO2); PaCO2, partial pressure of carbon

dioxide; PAI-1, plasminogen activator inhibitor 1; PAMP, pathogen-associated

molecular pattern; PAP, pulmonary arterial pressure; PARDS, pediatric acute

respiratory distress syndrome; PC, phosphatidylcholine; PEEP, positive end-

expiratory pressure; PIM, pulmonary intravascular macrophages; PIP, peak

inspiratory pressure; PMNL, polymorpho-nuclear leukocytes; POPG, palmitoyl-

oleoyl-phosphatidylglycerol; PVRI, pulmonary vascular resistance index; rhCC10,

recombinant human Clara Cell protein 10; ROS, reactive oxygen species; Rrs,

resistance of the respiratory system; sCrs, specific compliance of the respiratory

system; SA/LA, small/large (surfactant) aggregates; sC5b-9, soluble complement

factor 5b-9, membrane attack protein; SD, standard deviation; sICAM-1,

soluble intercellular adhesion molecule 1; SP(-A/B/D), surfactant protein (-

A/B/D); sPLA2, soluble phospholipase A2; sRAGE, soluble receptor for advanced

glycation end product; SVI, stroke volume index; SVV, stroke volume variation;

SVRI, systemic vascular resistance index; T, treatment group; TAT, thrombin

antithrombin complex; TGF-β, transforming growth factor β; TLR4, Toll-like

receptor 4; TNF-α, tumor necrosis factor α; TTN, transient tachypnea of the

newborn; VEI, ventilation efficiency index (3,800/(PIP-PEEP∗f∗PaCO2)); VA,

alveolar portion of the tidal volume; VT, tidal volume; vWF, vonWillebrand factor.

However, respiratory failure of the term infant secondary to
obvious damage of the lungs in the perinatal period, such
as meconium, bile, and blood aspiration, lung hemorrhage,
pneumonia, or severe chorioamnionitis and sepsis, leading to
secondary impairment of surfactant function and surfactant
amount, has not been officially defined before 2017 when the
Montreux definition of neonatal ARDS (NARDS) was published
(De Luca et al., 2017).

The Montreux definition of NARDS requires the following
clinical conditions: respiratory failure of acute onset; exclusion
of IRDS, transient tachypnea of the newborn (TTN), and
congenital malformations of the lung; diffuse, bilateral, and
irregular opacities or infiltrates by chest-Xray; lung edema of
non-cardiac origin; and an oxygenation deficit expressed by the
oxygenation index (OI =MAP ∗ %O2/PaO2, with MAP=mean
airway pressure) being mild (OI 4–8), moderate (OI 8–16), or
severe (OI > 16).

Severe inflammation of the lung tissue in adult ARDS
(ARDS) patients prompted researchers to investigate the effect
of corticosteroids (Bernard et al., 1987; Steinberg et al., 2006;
Needham et al., 2014) without being able to proof reduced
mortality (except of the study by Meduri et al., 2007). Indeed, a
pediatric study involving ARDS patients (PARDS) being subject
to corticosteroid treatment showed increased mortality and
less ventilator-free days (Yehya et al., 2015) whereas others
(Drago et al., 2015; Kimura et al., 2016) could neither show
clinical improvements by methylprednisolone infusions nor
meaningful changes in plasma biomarker levels comparing
methylprednisolone and placebo (e.g., MMP-8, Ang-2, sICAM-1,
PAI-1, sRAGE).

In contrast to ARDS (Anzueto et al., 1996; Spragg et al., 2004;
Kesecioglu et al., 2009; Willson et al., 2015), NARDS (Lotze
et al., 1998) and PARDS (Herting et al., 2002; Möller et al.,
2003; Willson et al., 2005) patients profit from their susceptibility
to surfactant treatment. As surfactant is able to mitigate many
components of lung inflammation (Kunzmann et al., 2013)
its use may be universally indicated together with adjuncts
specifically tackling pro-inflammatory pathways being central for
lung inflammation. Thus, the pharmacologic armamentarium in
the treatment of NARDS appears to be more variable and may be
applied more individually than the classical immune-suppressive
means in respiratory disease of children (i.e., corticosteroids) (de
Benedictis and Bush, 2012).

The identification of major pro-inflammatory pathways [by
the analysis of serum or broncho-alveolar lavage fluid (BALF)]
causing respiratory failure in NARDS/PARDS has so far brought
preliminary results only: De Luca et al. identified secretory
phospholipase A2 secreted by alveolar macrophages as the
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main reason for surfactant degradation (De Luca et al., 2008)
whereas in PARDS the analysis of serum Ang-2 and vWF
yielded equivocal results (Kimura et al., 2016; Zinter et al.,
2016), and the analysis of interleukins, IFN, MCP-1, G-CSF, and
MMP-8 did not reveal any pathway-typical patterns (Kimura
et al., 2016; Schwingshackl et al., 2016). As an example of
ambiguity the study by Dahmer et al. (2018) assessing the
role of the naturally occurring IL-1 (interleukin-1) receptor
antagonist in the augmentation of PARDS is listed here which
underlines the high complexity of natural inflammation and
anti-inflammation for the disease process. As to surfactant
composition, a decrease in saturated phosphatidylcholine (PC)
and an increase in unsaturated PC combined with almost stable
concentrations of the four surfactant proteins (SP), however an
increase in SP-B as a parameter of capillary leakage, was found in
children with a maximum OI of 12 (Todd et al., 2010).

In an attempt to better characterize and tackle major
pro-inflammatory pathways in NARDS the neonatal piglet
is the animal model of choice for reasons of availability,
size, similarities of porcine and human lung, robustness,
and costs. In addition, the pig’s hypervariable region (HVR)
of the toll-like receptor 4 shows high identity (and many
nucleotide polymorphisms) with the human TLR4 HVR
(Palermo et al., 2009), they are equipped with pulmonary
intravascular macrophages, and show LPS sensitivity and NO
production comparable to humans (Matute-Bello et al., 2008).
To prove the advantages of this translational neonatal piglet
model of NARDS, the physiologic data (with emphasis on lung
function) from three experiments of our group are summarized
here. In addition, the systematic review addresses different
models of acute lung injury with respiratory failure in neonatal
piglets, describes major pro-inflammatory pathways by the
analysis of serum, BALF, and lung tissue, and highlights effective
experimental interventions by anti-inflammatory substances.

METHODS

Piglet Studies and Systematic Review:
Data Sources and Searching
A compilation of data from three NARDS studies (von Bismarck
et al., 2008; Preuß et al., 2012b; Spengler et al., 2018) was used to
describe basic physiologic parameters and major inflammatory
pathways of the neonatal porcine lung. The studies were
approved by the local Ethics Committee for Animal Research at
the Ministry of Energy, Agriculture, the Environment, Nature
and Digitalization of the federal state of Schleswig-Holstein in
accord with the current European directive on the protection of
animals used for scientific purposes. Corresponding physiologic
parameters from human neonates are provided as a comparison
if available and deemed necessary.

In addition a systematic review on major inflammatory
pathways following single-hit or multiple-hit acute lung injury
in newborn piglets was conducted using PubMed and Google
Scholar databases in search of the terms “newborn piglet”
combined with “(acute) lung injury,” “mechanical ventilation,”
“respiratory failure,” “lung inflammation,” “meconium

aspiration,” “airway lavage,” and “lipopolysaccharide/endotoxin.”
Reference lists and relevant reviews were also checked manually
to recruit potentially eligible studies. Pulmonary physiology data
and all data assessing inflammatory reactions secondary to acute
lung injury protocols or specific interventions were extracted
and reported.

Neonatal Piglets, Mechanical Ventilation,
Lung Injury Protocols, Interventions, and
Statistics
The study population was newborn piglets between day 2 and 6
of life and of either sex that were taken from their mother sows
without any period of fasting. Genetic variability was assured by
the use ofmixed country breed (descendants of Danish Landrace)
piglets. Their average weight of 2.5 kg allowed to apply the
standard equipment of an average neonatal intensive care unit for
instrumentation, maintenance and interventions. The number of
piglets included into the data analyses were 22 in study 1 (von
Bismarck et al., 2008), 29 in study 2 (Preuß et al., 2012b), and 59
in study 3 (Spengler et al., 2018).

Adequate analgesia/sedation was provided by continuous
infusions of ketamine (5 mg/kg/h), midazolam (0.5 mg/kg/h),
and vecuronium bromide (0.8 mg/kg/h) throughout the whole
study period of 24 h (study 1) or 72 h (studies 2 and 3).
Nutritional support was provided via a nasogastric tube with
6∗25 ml/kg/d specialized milk designed for piglets (Babygold,
Hamburger Leistungsfutter). Body temperature of 38–39◦C was
maintained by positioning the piglets on a homeothermic blanket
(Harvard Apparatus) and applying a rectal probe with the servo-
control mode.

All piglets received mechanical ventilation via an orally
inserted 3.5mm endotracheal double lumen tube. Continuous-
flow pressure-limited neonatal ventilators (Babylog 1, Dräger)
were used with the following initial settings: PEEP = 6
mbar, inspiratory time = 0.5 s, f = 25/min, FiO2 = 0.5, PIP
adjusted to maintain a tidal volume = 7 ml/kg as measured
by NVM-1 (Bear) throughout the study. To avoid hypo-
/hyperventilation and hypoxemia/hyperoxemia, f and FiO2 were
regularly adjusted according to the results of arterial blood gas
analyses. An oxygenation index (OI: MAP ∗ %O2/PaO2, with
MAP = mean airway pressure) and a ventilation efficiency
index (VEI: 3800/PIP-PEEP ∗ f ∗ PaCO2) were calculated from
the parameters of the ventilator and the results of the arterial
blood gas analysis. Functional residual capacity (FRC, ml/kg),
the alveolar portion of the tidal volume (VA, ml), tidal volume
(VT, ml) (specific) compliance of the respiratory system (sCrs,
ml/mbar/kg), and resistance of the respiratory system (Rrs,
mbar/l∗s) were assessed by the nitrogen washout method for
lung volumes, and the single breath least-squares method for
lung mechanics.

Hemodynamic monitoring was provided by PiCCO plus
monitors (Pulsion) yielding a continuous monitoring of heart
rate (HR), blood pressure (BP), heart index (HI), peripheral
vascular resistance (SVRI), stroke volume variation (SVV), and
extra-vascular lung water index (EVLWI).
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Urine output was monitored continuously by the insertion of
a suprapubic bladder catheter.

Two different lung injury protocols were used: in study 1,
lung injury was provided by repeated airway lavage with warmed
normal saline (30 ml/kg) until the PaO2 was ∼100 mmHg and
stayed at that level for at least 20min (single-hit lung injury).
In studies 2 and 3, three consecutive lung injury protocols were
carried out of which the first one was repeated airway lavage as
described above, followed by a 2 h period of injurious ventilation
(by the use of a VT = 15ml/kg and PEEP= 0mbar) 24 h later, and
by the endotracheal instillation of 2.5mg LPS (E. coli serotype
O127:B8; Sigma-Aldrich) 48 h later (triple-hit lung injury).

Next to the control groups (C) subject to an air bolus
only, the piglets received surfactant (poractant alfa, Curosurf,
Chiesi) at a dosage of 1∗100 mg/kg (study 1) or 3∗50
(200) mg/kg every 24 h apart (studies 2 and 3) as an
intervention. In several intervention groups the surfactant was
“fortified” by additional immune-suppressive agents: imipramine
5mg admixed to surfactant (study 1), D-myo-inositol-1,2,6-
trisphosphate 2/2.5mg (Cayman) (studies 2 and 3), myo-
inositol 40mg (Sigma-Aldrich) (study 2), phosphatidylinositol-
3,5-bisphosphate 2.5 mg(Cayman) (study 3), palmitoyl-oleoyl-
phosphatidylglycerol 7.5mg (Avanti) (study 3), and dioleoyl-
phosphatidylglycerol 7.5mg (Avanti) (study 3). In this analysis
the data of all intervention groups from one study are combined
as the treatment group (T); the combination of C and T is
reported as the total group in the tables to point out deviations
from means and to prove the stability of the model. Study 3 also
analyzed a group of piglets not being subject to sedation and
mechanical ventilation that is reported as healthy controls (HC).

Next to the assessment of physiologic parameters, a variety
of specific pulmonary parameters of the immune response to
single-hit/triple-hit lung injury were performed by the use of
lung sections (e.g., histology), lung homogenates (e.g., acid
sphingomyelinase activity), and broncho-alveolar lavage fluid
(BALF, e.g., cell differentials). For further details we refer to
the detailed description of all applied methods in the methods
sections of the referenced publications (von Bismarck et al., 2008;
Preuß et al., 2012b; Spengler et al., 2018).

For repeated-measures data the two-way mixed ANOVA
was used to determine whether there were differences of
an independent variable [between subject factor: control (C),
treatment (T), overall (O)] over time (within subject factor:
baseline, 24, 48, 72 h). A normal distribution of the independent
variable was assessed by Shapiro-Wilk’s test (p > 0.05). Equality
of error variances using Levene’s test and equality of covariance
matrices by Box’s M test was carried out for every parameter;
in case of heteroscedasticity data were transformed by the Box-
Cox transformation before analysis. Mauchly’s test of sphericity
was performed on every parameter to check for significant
two-way interaction (p < 0.05). The within subject factor
and the interaction (within subject factor ∗ between subject
factor) were calculated by Greenhouse-Geisser correction in
case the estimated epsilon was <0.75. The main effect of the
between subject factor (group) on the independent variable was
considered statistically significant in case of p < 0.05. Single
data sets were checked for deviations from normality using

the Shapiro-Wilk’s test (p > 0.05). Normally distributed data
were analyzed by unpaired t-tests, and non-parametric data by
Mann-Whitney U tests. All data are presented as means ±

SD. The analyses were performed by SPSS version 24 (IBM,
Ehningen, Germany).

Systematic Review: Study Selection, Data
Extraction, and Assessment of Risk of Bias
Two authors (DS and NR) independently screened the titles
provided by the combination of different search terms indicated
above. The inclusion criteria were: studies published in English
within the last 30 years following peer-review, studies reporting
information on NARDS in neonatal piglets following distinct
experimental lung injury protocols, studies reporting on major
inflammatory pathways and their mediators. Publications were
excluded if they did not report on a setting of invasive mechanical
ventilation with at least one acute lung injury protocol, and if
no adequate control group was presented. The quality of studies
was independently evaluated by the two authors using theQuality
Assessment Tool for Case-Control Studies by the National Heart,
Lung, and Blood Institute (NHLBI)1.

RESULTS AND DISCUSSION

Circulation
The cardiovascular stability was challenged in the context
of direct and indirect manipulations of heart, systemic, and
pulmonary circulation. In addition, the possible pharmacologic
effects of sedatives/analgetics must be taken into account. For
a sufficient stability of the circulation some drug classes, such
as barbiturates and opiods seem to be less suited because of
their negative inotropic action on the myocardium. In models
covering more than 12 h of mechanical ventilation a cumulative
effect and a progressive decline in HI and SVRI can be observed.
As sufficient analgesia is paramount in any model opioids
should be used for instrumentation and for all kinds of painful
procedures, however, for long time sedation and analgesia
ketamine (in combination with low dose benzodiazepine) seems
to be more apt because of its positive inotropic effect even in the
presence of muscular blockade.

The combined effects of the triple-hit lung injury protocol
(repeated airway lavage, injurious ventilation, and endotracheal
endotoxin installation) on cardiovascular parameters are shown
in Table 1 covering a time window of 72 h (Spengler et al.,
2018). The cardiovascular function is characterized by high
stability in heart rate (HR), systolic and diastolic blood pressure
(S/DBP), heart index (HI), systemic vascular resistances index
(SVRI), intrathoracic blood volume index (ITBI), stroke volume
index (SVI), and stroke volume variation (SVV) over 72 h of
invasive monitoring despite statistically significant changes in
DBP, SVRI, SVI, and SVV (time) and HR (time∗group) (Table 1).
However, no single parameter shows a continuously increasing
or decreasing trend. We observed progressing blood pressure

1National Heart, Lung, and Blood Institute. Study Quality Assessment Tools,

Quality of Case-Control Studies. Available online at: https://www.nhlbi.nih.gov/

health-topics/study-quality-assessment-tools.
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TABLE 1 | Circulation.

Baseline 24 h 48 h 72 h Sphericity Time Time*group Group

HR (bpm) Total 181 ± 25 175 ± 27 158 ± 24 156 ± 26 0.04 0.35 0.01 0.72

Control 177 ± 29 182 ± 31 157 ± 20 146 ± 31

Treat 182 ± 25 174 ± 26 158 ± 25 158 ± 25

SBP (mmHg) Total 99 ± 15 89 ± 12 99 ± 15 97 ± 12 0.47 0.79 0.45 0.39

Control 100 ± 15 86 ± 13 98 ± 16 92 ± 11

Treat 99 ± 15 90 ± 11 99 ± 15 98 ± 12

DBP (mmHg) Total 56 ± 8 44 ± 7 52 ± 8 49 ± 9 0.02 0.00 0.17 0.74

Control 59 ± 6 45 ± 7 51 ± 7 45 ± 6

Treat 55 ± 9 44 ± 7 52 ± 8 50 ± 10

HI (l/min/m2 ) Total 3.9 ± 0.7 3.8 ± 0.9 3.8 ± 0.8 4.0 ± 0.9 0.52 0.21 0.37 0.58

Control 4.1 ± 0.9 3.6 ± 1.0 3.9 ± 0.9 4.3 ± 1.0

Treat 3.8 ± 0.7 3.9 ± 0.8 3.8 ± 0.8 3.9 ± 0.9

SVRI (dyne*sec*cm−5*m2) Total 1,452 ± 281 1,285 ± 299 1,476 ± 271 1,362 ± 369 0.89 0.00 0.90 0.48

Control 1,425 ± 208 1,187 ± 370 1,418 ± 361 1,307 ± 367

Treat 1,472 ± 259 1,309 ± 295 1,469 ± 257 1,333 ± 340

ITBI (ml/m2 ) Total 276 ± 56 308 ± 117 295 ± 68 298 ± 81 0.00 0.49 0.88 0.46

Control 300 ± 18 323 ± 75 318 ± 58 331 ± 77

Treat 269 ± 62 305 ± 128 288 ± 71 289 ± 83

SVI (ml/m2 ) Total 23.5 ± 6.6 22.7 ± 6.2 25.0 ± 6.1 26.1 ± 7.1 0.16 0.00 0.09 0.50

Control 27.6 ± 11.1 21.5 ± 6.1 23.7 ± 6.8 28.0 ± 5.9

Treat 22.7 ± 5.6 22.7 ± 5.0 24.4 ± 5.2 25.9 ± 7.1

SVV (%) Total 12.4 ± 3.8 9.6 ± 3.1 10.1 ± 3.9 8.8 ± 3.5 0.34 0.00 0.58 0.67

Control 12.5 ± 4.2 10.6 ± 1.8 9.6 ± 4.4 7.1 ± 3.2

Treat 12.4 ± 3.9 9.4 ± 3.3 10.2 ± 3.8 9.1 ± 3.5

HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; HI, heart index; SVRI, systemic vascular resistance index; ITBI, intrathoracic blood volume index; SVI, stroke

volume index; SVV, stroke volume variation.

Data are mean ± SD. Number of piglets included: total = 51, control = 8, treat(ment) = 43. Comparisons by two-way mixed ANOVA for repeated measures data.

instability combined with increasing SVRI and decreasing HI in
only 5/67 (7.5%) piglets, a reason for drop-out in this model.

Data of circulatory parameters in the non-anesthetized piglet
have been published by Eisenhauer et al. (1994) studying
chronically instrumented neonatal piglets being individually
raised and fed. The heart rate of 187 ± 28 bpm and the mean
blood pressure of 66 ± 4mm Hg are very close to the values
obtained in our piglets at baseline being subject to anesthesia
and mechanical ventilation, suggesting only minor influences of
ketamine/midazolam/vecuronium bromide given as continuous
drips on hemodynamic function. This is supported by the
data from 5 to 7 days old piglets being subject to anesthesia
with halothane and invasive blood pressure monitoring yielding
values for SBP of 89 mmHg (CI 84–99) and DBP of 54 mmHg
(51–60) (Voss et al., 2004). Using the thermodilution technique
HI was 4.04–4.38 ± 1.23–1.42 l/min/m2, and the SVI 20.4/20.4
± 5.7–9.5 ml/m2 in 13 days old piglets (Gibson et al., 1994), and
ITBI 230± 76 ml/m2 in 1–3 days old piglets (Silvera et al., 2011).

The data of 90 healthy human neonates on day 3 of life

assessed by ultrasonic cardiac output monitoring yielded the
following results: HR 119 ± 12 bpm, SBP 73 ± 4 mmHg,
DBP 39 ± 5 mmHg, HI 3.0 ± 0.6 l/min/m2, SVRI 1,403 ±

291 dyne∗sec∗cm−5∗m2, and SVI 25.3 ± 5.1 ml/m2 (He et al.,
2011). By the thermodilution technique in human newborns

after arterial switch procedure due to transposition of the
great arteries, CI was 4.0 ± 0.6 l/min/m2, SVRI 1,150 ± 295
dyne∗sec∗cm−5∗m2, ITBI 489 ± 125 ml/m2, and SVI 33.1
± 4.3 ml/m2 (Székely et al., 2011). While these latter data
are probably not representative for healthy human newborns,
there are obvious differences in circulation between porcine and
human newborns: the porcine circulation generates a significant
higher S/DBP level due to a higher HR and HI whereas SVRI
is comparable to human values. In view of similar heart/body
weight relationships [porcine: 0.89 ± 0.06% (Miles et al., 2012),
0.69 ± 0.02% (Amdi et al., 2013), 0.70 ± 0.06 (Farmer et al.,
2016); human: 0.62–0.75 ± 0.35–0.50 (Corrèa et al., 2014)], an
important prerequisite for circulatory stability, the piglet model
excels over rodent animal models.

Electrolytes and Renal Function
We observed significant (however clinically irrelevant) time-
dependent changes in electrolytes, creatinine, and GOT
(Table 2). Plasma Na (143± 5 mmol/l, 138± 3) and K (4.4± 0.8
mmol/l, 4.2 ± 0.4) concentrations in 2–5 days old piglets were
comparable to our results (Parker and Aherne, 1980; Eisenhauer
et al., 1994). The rather low K concentrations in our study (3.2
± 0.7 mmol/l) suggest that the phase of increased newborn
hemolysis yielding higher K serum concentrations is almost
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TABLE 2 | Electrolytes, renal function, and GOT.

Baseline 24 h 48 h 72 h Sphericity Time Time*group Group

Sodium (mmol/l) Total 141 ± 2 141 ± 2 143 ± 4 144 ± 4 0.00 0.00 0.86 0.94

Control 142 ± 2 141 ± 2 143 ± 2 144 ± 2

Treat 141 ± 2 141 ± 3 143 ± 4 145 ± 4

Potassium (mmol/l) Total 3.2 ± 0.7 4.5 ± 0.7 3.9 ± 0.4 3.8 ± 0.3 0.00 0.00 0.30 0.22

Control 2.8 ± 0.8 4.7 ± 0.6 3.7 ± 0.1 3.7 ± 0.2

Treat 3.3 ± 0.7 4.5 ± 0.7 3.9 ± 0.5 3.8 ± 0.3

Calcium (mmol/l) Total 2.6 ± 0.1 2.4 ± 0.1 2.5 ± 0.1 2.5 ± 0.1 0.10 0.00 0.29 0.98

Control 2.6 ± 0.1 2.5 ± 0.1 2.5 ± 0.1 2.5 ± 0.1

Treat 2.6 ± 0.1 2.4 ± 0.1 2.5 ± 0.1 2.5 ± 0.1

Chloride (mmol/l) Total 103 ± 3 106 ± 3 106 ± 4 107 ± 5 0.00 0.00 0.62 0.76

Control 104 ± 3 107 ± 3 106 ± 3 108 ± 5

Treat 103 ± 3 106 ± 3 107 ± 4 107 ± 5

Creatinine (mg/dl) Total 0.53 ± 0.09 0.60 ± 0.21 0.51 ± 0.12 0.42 ± 0.08 0.00 0.00 0.69 0.26

Control 0.54 ± 0.08 0.66 ± 0.16 0.53 ± 0.12 0.45 ± 0.07

Treat 0.53 ± 0.09 0.59 ± 0.22 0.50 ± 0.13 0.41 ± 0.08

Urine output (ml/kg/h) 2.2 ± 0.8

GOT (AST) (IU/l) Total 31 ± 6 51 ± 27 53 ± 37 39 ± 32 0.00 0.00 0.85 0.74

Control 31 ± 6 46 ± 26 54 ± 45 35 ± 28

Treat 31 ± 7 52 ± 27 52 ± 35 40 ± 33

GOT (AST), glutamic oxaloacetic aminotransferase (aspartate aminotransferase).

Data are mean ± SD. Number of piglets included: total = 51, control = 8, treat(ment) = 43. Comparisons by two-way mixed ANOVA for repeated measures data.

completed at the time of baseline measurements. GOT and
creatinine in 18 three days old piglets were 36 ± 6 U/l and 0.47
± 0.03 mg/dl at baseline in a cecal ligation model (Goto et al.,
2012). Data on urine production dependent on body weight
have not yet been published to the best of our knowledge. Urine
production depends on fluid intake and post-natal age and
averages in the human infant between 2 and 5 ml/kg/h. The fluid
intake in our protocol followed accepted guidelines (Petersen
et al., 2003) and consisted of ∼200 ml/kg/d consisting of ¾
enteral nutrition fluids and ¼ intravenous fluids.

Blood Cell Differentials
We observed time-dependent changes in all blood cell lines
(monocytes excepted) and a significant interaction for
thrombocytes (time∗group). Most of the cell lines did not
show a clear trend, the administration of LPS at 48 h included
(Table 3). The hematocrit of 2–5 days old piglets was 27 ± 2%
(equivalent to a hemoglobin concentration of 9.0 ± 0.6 g/dl)
(Eisenhauer et al., 1994) and 8.5 ± 3.2 g/dl in piglets on day 1
and 2 (Park and Chang, 2000).

Clearly, the hematocrit of term newborns at 48 h of age
is higher [17.7 g/dl ± 1.8 to 19.5 ± 2.1 depending on the
mode of cord clamping (Mercer et al., 2017)] thus doubling the
oxygen transport capacity and making the human newborn less
vulnerable to an impaired gas exchange in the transitional period.

Lung Function
The determination of EVLWI has been performed by the
thermodilution method in newborn piglets yielding a value of
20 ± 1 ml/kg (Silvera et al., 2011) and in human neonates

following arterial switch operation due to transposition of the
great arteries yielding 20 ± 7 ml/kg after extubation (Székely
et al., 2011), however data in well babies do not exist because of
the invasiveness of the technique. In (adult) humans a value of
3–7 ml/kg is considered normal, however neonates tend to have
higher values because of incomplete resorption of lung fluids in
the post-natal transitional process and of shunting via a patent
ductus arteriosus and foramen ovale. Our baseline data of “total”
(13.2 ± 5.5 ml/kg, Table 4) are close to the values of newborn
neonatal lambs assessed by multiple indicator dilution methods
showing an EVLWI of 10.7± 1.4 ml/kg (Sundell et al., 1987).

Baseline sCrs in mechanically ventilated neonatal piglets has
been determined by many researchers with values of 1.34 ± 0.11
ml/mbar/kg (Sood et al., 1996a), 0.79 ± 0.15 (Khan et al., 1999),
1.5 ± 0.3 (Tølløfsrud et al., 2002), 0.95 ± 0.05 (Dargaville et al.,
2003), 1.03± 0.33 (Meister et al., 2004), 1.38± 0.15 (Chada et al.,
2008), and 1.07 ± 0.17 (Yang et al., 2010). These data are close
to our “total” value of 1.14 ± 0.51 ml/mbar/kg, in contrast to
Rrs values (“total”: 59 ± 11 mbar/l∗s) showing greater variations
which occur due to differences in body weight, endotracheal tube
size and leakage, amount of continuous flow in the ventilator
tubings, and medication: 32 ± 3 mbar/l∗s (Sood et al., 1996a),
88 ± 9 (Tølløfsrud et al., 2002), 74 ± 4 (Dargaville et al., 2003),
and 64 ± 8 (Meister et al., 2004). FRC is considered the main
determinant of oxygenation and is deemed to be significantly
reduced by any lung injury protocol (“control”: from 28.7 ± 6.3
ml/kg to 18.4± 5.4 after 24 h of mechanical ventilation following
repeated airway lavage); FRC was 21.8 ± 2.4 ml/kg in three days
old piglets (Standaert et al., 1991) and 21 ± 2 in 5–7 days old
piglets (Meister et al., 2004). To the best of our knowledge, data
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TABLE 3 | Blood cell differentials.

Baseline 24 h 48 h 72 h Sphericity Time Time*group Group

Hemoglobin (g/dl) Total 8.0 ± 1.1 7.8 ± 1.1 7.5 ± 0.9 7.5 ± 0.8 0.00 0.00 0.31 0.53

Control 8.2 ± 0.8 8.2 ± 0.9 7.5 ± 0.6 7.6 ± 0.8

Treat 7.9 ± 1.2 7.7 ± 1.1 7.5 ± 0.9 7.5 ± 0.8

Leukocytes (cells/nl) Total 15.0 ± 6.6 21.3 ± 8.7 15.5 ± 6.6 12.4 ± 5.7 0.20 0.00 0.31 0.06

Control 16.1 ± 9.2 26.3 ± 13.2 18.4 ± 10.4 15.2 ± 7.0

Treat 14.8 ± 5.9 20.1 ± 7.1 14.8 ± 5.3 11.8 ± 5.2

Thrombocytes (cells/nl) Total 443 ± 97 459 ± 92 414 ± 132 396 ± 143 0.00 0.00 0.01 0.69

Control 494 ± 141 464 ± 109 372 ± 160 340 ± 161

Treat 431 ± 82 457 ± 89 424 ± 124 410 ± 138

Bands (%) Total 12 ± 8 12 ± 9 7 ± 6 13 ± 8 0.15 0.00 0.31 0.67

Control 12 ± 7 16 ± 15 5 ± 7 15 ± 10

Treat 12 ± 8 11 ± 6 7 ± 5 13 ± 8

PMNL (%) Total 68 ± 10 72 ± 11 69 ± 11 57 ± 14 0.07 0.00 0.42 0.70

Control 68 ± 10 69 ± 16 72 ± 11 61 ± 14

Treat 67 ± 10 72 ± 10 68 ± 12 56 ± 14

Lymphocytes (%) Total 16 ± 7 13 ± 6 20 ± 11 25 ± 11 0.00 0.00 0.62 0.55

Control 17 ± 9 12 ± 5 20 ± 12 21 ± 10

Treat 16 ± 6 14 ± 6 21 ± 10 26 ± 11

Monocytes (%) Total 2 ± 1 1 ± 1 1 ± 2 1 ± 2 0.13 0.67 0.34 0.62

Control 1 ± 1 1 ± 1 1 ± 1 2 ± 2

Treat 2 ± 1 1 ± 1 1 ± 2 1 ± 2

PMNL, polymorphonuclear leukocytes.

Data are mean ± SD. Number of piglets included: total = 51, control = 8, treat(ment) = 43. Comparisons by two-way mixed ANOVA for repeated measures data.

on VA have not been published by other investigators but were
measured with 4.8 ± 0.3 ml/kg in a previous study of our group
(Krause et al., 2001).

Impairment of oxygenation is a prerequisite of P/NARDS and
is usually defined by the OI which is an equation composed of
the degree of respiratory support (mean airway pressure, MAP),
the oxygen concentration in respiratory gas mixtures, and the
partial pressure of O2 in blood as a measure of gas exchange
(MAP∗%O2/PaO2). By the Montreux definition of NARDS (De
Luca et al., 2017), the control group experienced severe NARDS
expressed by an OI of 16.1± 6.1 at 72 h of mechanical ventilation
(Table 4). Baseline values in our study (“total”: 2.3± 0.7) are close
to those from other investigators: 1.5 ± 0.5 ml/mbar/kg (Khan
et al., 1999), 1.4 ± 0.3 (Tølløfsrud et al., 2002), and 1.3 ± 0.3
(Renesme et al., 2013). The VEI in “total” (0.38 ± 0.19) is close
to the value of 6 days old piglets at baseline (0.30 ± 0.02) in the
lavage study by Sood et al. (1996a) and to the value of 5 days old
piglets (0.33 ± 0.08) in the meconium aspiration study by Khan
et al. (1999).

Bacteria in Airways
A plentitude of different bacteria in the airways was cultured
with the initial lavage mainly belonging to the three groups
of (lacto)bacillales, enterobacteriaceae, and soil-based bacteria
(Table 5). Given the relative dominance of soil-based bacteria
in the airways of our piglets (Bacillus cereus, Rothia, aerobic
spore builder, Corynebacterium sp.) inhalation of these
microorganisms due to the use of the piglets’ nose for foraging

and consecutive colonization of upper and lower airways must be
considered. The high frequency in bacillus cereus colonization
(in 8/52 cultures from the final lavages) demonstrates the
natural resistance to beta-lactams, e.g., ampicillin ± sulbactam
as given in our study (Glasset et al., 2018). The increasing
prevalence of colonization by multidrug resistant Gram-negative
bacteria, such as E. coli and Klebsiella sp. in neonatal intensive
care units (NICU) are correlated with length of NICU stay,
and—indeed—exposure to ampicillin/sulbactam (Giuffrè et al.,
2016).

Lung and Body Weights
We determined a lung/body weight relation of 1.6 ± 0.2%
(Table 6) which is in line with the findings in 6 three days old
piglets [1.5 ± 0.2 (Standaert et al., 1991)], of 1.0 ± 0.1 in 8
fourteen days old piglets (Dargaville et al., 2003), 3.0 ± 0.3 in 13
three days old piglets (van Kaam et al., 2004b), and 1.7 ± 0.1 in
27 one day old piglets (Miles et al., 2012). The applicability of
the neonatal piglet lung model for studying severe lung diseases
is also expressed by the similarities to term human lung/body
relations of 1.7 ± 0.4% (De Paepe et al., 2005) and 1.9 ± 0.3 (De
Paepe et al., 2014).

Cells in BALF and Apoptosis
There is currently no reliable indicator to assess the amount
of epithelial lining fluid recovered by broncho-alveolar lavage
(de Blic et al., 2000). Most commonly urea and albumen
have been used as reference substances, however, lower serum
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TABLE 4 | Lung function.

Baseline 24 h 48 h 72 h Sphericity Time Time*group Group

EVLWI (ml/kg) Total 13.2 ± 5.5 18.1 ± 9.4 18.4 ± 7.9 23.3 ± 8.4 0.01 0.00 0.16 0.00

Control 15.5 ± 5.4 25.0 ± 5.5 25.0 ± 5.3 30.6 ± 5.7

Treat 12.7 ± 5.5 16.8 ± 9.5 17.2 ± 7.7 22.0 ± 8.1

Crs (ml/mbar/kg) Total 1.14 ± 0.51 0.72 ± 0.30 0.60 ± 0.23 0.57 ± 0.19 0.00 0.00 0.50 0.22

Control 1.14 ± 0.40 0.69 ± 0.25 0.51 ± 0.09 0.42 ± 0.12

Treat 1.14 ± 0.53 0.73 ± 0.31 0.62 ± 0.25 0.61 ± 0.19

Rrs (mbar/l*s) Total 59 ± 11 81 ± 30 98 ± 40 97 ± 36 0.00 0.00 0.00 0.00

Control 57 ± 13 80 ± 25 125 ± 55 141 ± 57

Treat 60 ± 10 82 ± 31 92 ± 33 87 ± 20

FRC (ml/kg) Total 28.7 ± 6.0 19.5 ± 6.2 – – – 0.00 0.04 0.18

Control 28.7 ± 6.3 18.4 ± 5.4

Treat 28.7 ± 6.3 23.8 ± 7.5

VA (ml/kg) Total 2.3 ± 0.9 2.0 ± 0.9 – – – 0.08 0.20 0.12

Control 2.1 ± 0.8 1.4 ± 0.8

Treat 2.4 ± 0.9 2.3 ± 0.9

OI (MAP*%O2/PaO2 ) Total 2.3 ± 0.7 5.8 ± 3.4 7.2 ± 3.8 8.7 ± 4.9 0.03 0.00 0.00 0.14

Control 2.0 ± 0.6 5.0 ± 2.7 6.9 ± 3.0 16.1 ± 6.1

Treat 2.4 ± 0.6 6.0 ± 3.5 7.2 ± 4.0 7.5 ± 3.7

VEI (3,800/(PIP-PEEP*f*PaCO2)) Total 0.38 ± 0.19 0.17 ± 0.09 0.19 ± 0.10 0.15 ± 0.07 0.00 0.00 0.00 0.13

Control 0.53 ± 0.23 0.18 ± 0.09 0.19 ± 0.08 0.14 ± 0.09

Treat 0.35 ± 0.17 0.17 ± 0.09 0.19 ± 0.11 0.15 ± 0.06

EVLWI, extra-vascular lung water index; sCrs, specific compliance of the respiratory system; Rrs, resistance of the respiratory system; FRC, functional residual capacity; VA, alveolar

ventilation; OI, oxygenation index; VEI, ventilation efficiency index.

Data are mean ± SD. Number of piglets included: total = 51, control = 8, treat = 43 (FRC/VA: total = 22, control = 7, treat = 15). Comparisons by two-way mixed ANOVA for repeated

measures data.

concentrations of both substances in the smallest children bedevil
the interpretation of cellular and non-cellular concentrations
in BALF, as do the size of the lungs, the region of interest
within the lung (in the context of bronchoscopic BALF
recovery), the amount of lavage fluid used, the aspiration
technique, and the processing of cellular and non-cellular
components. The lavage protocol used in our studies consisted
of the instillation and aspiration of 30 ml/kg of warmed
normal saline by a syringe hooked up to the adaptor of the
endotracheal tube.

An increased BALF total cell count >150 cells/µl is a
common characteristic of many lung diseases in infants and
children (Riedler et al., 1995). Thus, the total cell count of
633 ± 336/µl (Table 7) in our study at baseline suggests an
important impact of bacterial colonization in the majority of the
piglets (43/51 = 84%). The dominance of alveolar macrophages
in newborns/young infants with ∼98% in cell differentials
changes over time and reaches ∼90% at an age of 7 years
(Grigg and Riedler, 2000), linked with an appropriate increase
of the lymphocyte counts. Not surprisingly the PMNL count
of 32 ± 14% in our study is much higher than in human
newborns. Following meconium instillation in one lung lobe and
mechanical ventilation of 12 h the total cell count was 1,400 ±

1,100/µl in 17 piglets at day 0–2 of life (Korhonen et al., 2004).
Likewise PMNL was the dominating cell line (1,000± 900/ml) as
also seen in our model (80± 4%) (Figure 1).

PMNL, monocytes, and lung macrophages express CD14
implicated in the cellular response to LPS (given intratracheally as
part of the triple-hit lung injury protocol applied here) together
with a plasma LPS-binding protein. MD-2 and the intracellular
part of TLR4 are necessary for the transduction of the signal
activating cytokine and chemokine genes. The β2-integrin CD18
is also expressed by both, PMNL and monocytes/macrophages,
and plays an important role in the migration of cells to areas of
the lung containing high concentrations of chemokines, such as
C5a.Monocytes recruited into the alveolar space keep phenotypic
features of blood monocytes but upregulate CD14 resulting
in enhanced responsiveness to LPS with increased cytokine
expression (Maus et al., 2001). 28± 15% of the cells harvested by
BALF (Table 7) are CD14+/18+ and belong to either population;
their response to LPS and the concomitant (overwhelming)
production of TNF-α, IL-1α and IL-1β, IL-6, IL-8, C3a, and
C5a (Billman Thorgersen et al., 2009) represents a major pro-
inflammatory pathway in the ARDS lung (Dentener et al., 1993).
An important difference in physiologic response of the porcine
lung to a variety of agents, such as particulates, bacteria, fibrin,
cellular debris, and immune cells are constitutive pulmonary
intravascular macrophages (PIM) that express a β3 integrin
subunit (CD61) for the clearance of all kinds of proteins from the
circulation (Schneberger et al., 2012). The heavy accumulation
of PIM in lung tissue is linked with an increase in vascular
permeability, edema, hemorrhage, and alveolar septal thickening
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TABLE 5 | Bacteria in airways.

Initial lavage (0 h) Final lavage (72h)

+ ++ + + + + ++ + + +

(Lacto)bacillales Staphylococcus aureus 2 1 0

Staphylococcus hemolyticus 1 0 0

S. aureus 0 0 1

Streptococcus 8 4 0

Streptococcus suis 3 6 0

Enterococcus 5 0 1 1 1 1

Enterobacteriaceae Escherichia coli 6 2 0 5 16 11

Proteus sp. 1 0 0 0 1 0

Klebsiella 1 1 5

Pasteurella 0 1 0

Oligella 1 0 0

Moraxella 1 1 0

Diverse Pharyngeal flora 6 3 0

Soil-based bacteria Bacillus cereus 1 0 0 1 3 4

Rothia 1 1 0

Aerobic spore builder 2 0 0 3 4 1

Corynebacterium sp. 0 1 0

N = 51 at both times. Bacterial growth from BALF on Agar plates: single colonies on plate (+), sparse growth (++), intermediate growth (+ + +). Piglets with heavy growth were

excluded from the final data analysis [n = 3; E. coli (2), Klebsiella]. More than one bacterium was grown in some of the BALFs. All piglets received ampicillin/sulbactam at a dosage of

100 mg/kg twice a day. Overgrowth of E. coli, Klebsiella, Bacillus cereus, and aerobic spore builders due to natural or acquired resistance.

TABLE 6 | Lung and body weights.

HC0 C72 T72 HC0 vs. C72 C72 vs. T72

Lung weight (g) 40 ± 4 75 ± 8 69 ± 9 <0.0001 0.13

Body weight (kg) 2.4 ± 0.2 2.3 ± 0.1 2.3 ± 0.1 0.29 0.38

Body weight gain (kg) – 0.15 ± 0.04 0.11 ± 0.05 – 0.05

Lung/body weight (%) 1.6 ± 0.2 3.2 ± 0.4 2.9 ± 0.4 <0.0001 0.07

HC0, healthy controls at 0 h; C72, controls at 72 h; T72, treated at 72 h; body weight gain, weight gain within 72 h of mechanical ventilation including triple-hit lung injury.

Data are mean ± SD. Number of piglets included: HC0 = 8, control = 8, treat(ment) = 43. Comparison by t-tests.

(Figure 1) in a piglet model of classical swine fever (Núnez et al.,
2018).

Alveolar epithelial apoptosis is a typical feature of the ARDS
lung (15.0 ± 5.8%, Table 7) and is linked with impairment
of oxygenation and ventilation and abrogated barrier functions
(Matute-Bello andMartin, 2003). In pediatric patients dying from
PARDS the extent of cleaved caspase-3 in alveolar epithelial cells
as a surrogate parameter of apoptosis has been quantified by
Bern et al. (2010) yielding a percentage of 6.4 ± 1.2 (range 1.0–
18.1)%. Apoptosis in severe lung disease must be differentiated
from apoptosis during the process of alveolarization and
differentiation which continues after birth until the second year
of life; thus background apoptosis of 1–2% of AEC must be
considered in neonatal organisms when evaluating lung disease
(del Riccio et al., 2004). In ARDS the percentage of apoptotic
PMNL obtained by lavage was 3 (0–7.3)% in patients who died
(Matute-Bello et al., 1997), and 10–20% in a murine ARDSmodel
of intraperitoneal LPS (data on human or porcine neonates
unknown) (Wang et al., 2014). Data on macrophage apoptosis

are scarce and increase from 10.1 ± 1.1% to 20.2 ± 1.7 following
LPS challenge in murine cell cultures (Li et al., 2018).

Surfactant Surface Tension and
Alveolo-Capillary Leakage
Regardless of the kind of acute lung injury the surfactant
surface tension (Table 8) will increase considerably due to
either a loss of the surfactant pool (repeated airway lavage)
or disturbances in surfactant function (meconium instillation,
LPS instillation, hyperoxia). In a meconium aspiration model
minimum surfactant surface tension increased from 17.8 ±

4.8 mN/m to 23.3 ± 4.8 (Wiswell et al., 1994), and in a
repeated airway lavage model from 11.1 ± 5.2 to 21.8 ± 2.1
(von Bismarck et al., 2007). Albumen has been identified as a
major factor of surfactant inhibition (Seeger et al., 1993) and
simultaneously reflects the degree of capillary-alveolar leakage
as part of the inflammation of lung tissue and pulmonary
capillaries. Albumen concentrations in BALF have been assessed
in a hyperoxia model with baseline values of 56 ± 19µg/ml
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TABLE 7 | Cells in BALF and apoptosis.

Total0 C72 T72 Total0 vs. C72 C72 vs. T72

Total cells (cells/µl) 633 ± 336 1,624 ± 1,003 1,059 ± 786 <0.0001 0.07

PMNL (%) 32 ± 14 80 ± 4 79 ± 7 <0.0001 0.95

Lymphocytes (%) 3.2 ± 3.2 1.9 ± 1.0 1.9 ± 0.9 0.13 0.97

Monocytes/macrophages (%) 64 ± 15 17 ± 4 18 ± 7 <0.0001 0.89

CD14+/18+ (%) 28 ± 15 64 ± 15 59 ± 25 0.003 0.94

Apoptotic PMNL (%) 10.2 ± 8.3 16.2 ± 6.6 11.2 ± 5.9 0.04 0.08

Apoptotic macrophages (%) 10.5 ± 11.1 54.8 ± 24.6 48.3 ± 20.8 0.0004 0.44

Apoptotic AEC (%) 15.0 ± 5.8 15.0 ± 5.6 13.9 ± 5.7 1.00 0.68

BALF, broncho-alveolar lavage fluid; PMNL, polymorpho-nuclear leukocytes; AEC, alveolar epithelial cells.

Total0, all piglets at 0 h; C72, controls at 72 h; T72, treated piglets at 72 h.

Data are mean ± SD. Number of piglets included: Total0 = 51, control = 8, treat(ment) = 43. Comparison by t-test for total cells, and by Mann-Whitney tests for all other parameters.

and a 3-fold increase following lung injury (Davis et al., 1989).
SP-D serum concentrations in ARDS increased 3- to 4-fold
[from 1.9µg/ml (0.6–4.4) to 5.9 (2.5–22.7) (Yang et al., 2017);
and from 83 ± 33 ng/ml to 476 ± 391 (Endo et al., 2002)].
SPLA2 has been blamed to play a major role in surfactant
degradation in NARDS lungs (De Luca et al., 2017) as evidenced
in 10 neonates with severe sepsis/pneumonia [control: 0.5 IU/ml
(0.1–3.1), nARDS: 4.0 (2.1–8.5)] (De Luca et al., 2008). Not
surprisingly, sPLA2 also plays an important role in PARDS
(infants between 2 and 10 months of age) with activities being
increased by factor three compared to control groups and with
significant correlation of sPLA2 changes and changes in free fatty
acid concentrations in BALF; in addition, TNF-α concentrations,
surfactant phospholipids, and surface tension from epithelial
lining fluid were correlated to sPLA2 variations (De Luca et al.,
2011, 2013). BALF SP-A levels remained almost constant in
a piglet model of repeated airway lavage and the installation
of group B streptococci into the airways [healthy: 80 ± 43
pg/ml, treat 74 ± 34 (van Kaam et al., 2004b)], as there were
no significant differences in SP-A gene expression in alveolar
epithelial cells between aARDS and control patients (Pires-Neto
et al., 2013).

NF-κB, Inflammasome, and Ceramide
Pathway
In an experimental pneumonia model with E. coli instilled into
the airways of 3–4 weeks old piglets the NF-κB concentration
in lung tissue homogenates increased from 0.25 to 0.4 arbitrary
units and could be reduced by the application of inhaled nitric
oxide or the instillation of surfactant (Zhu et al., 2005). The
selective topical inhibition of NF-κB by IKK-NBD peptide via
instillation into the airways using surfactant as a carrier substance
improved FRC, VA, Crs, Rrs, and EVLWI in a newborn piglet
lavage model (Ankermann et al., 2005a; von Bismarck et al.,
2007). Of note, the reduction of NF-κB activity in the nucleus of
pulmonary cells from 100 ± 2% to 32 ± 2 by IKK-NBD peptide
was more pronounced than the effect of dexamethasone reaching
an activity of only 55± 4% (von Bismarck et al., 2009).

In porcine alveolarmacrophages swine influenza virus induces
massive IL-1β production secondary to an increased expression
of inflammasome components (NLRP3, ASC, procaspase-1)

(Park et al., 2018). In C57BL/6 mice the application of a two-
hit lung injury by mechanical ventilation and LPS induces IL-1β
and KC (a murine functional analog of IL-8), and cell migration
into the alveolar space, all of which may be considerably reduced
by the administration of the IL-1 antibody anakinra (Jones
et al., 2014). NLRP−/− mice exposed to hyperoxia showed
significantly lower IL-1β, TNF-α, and MIP-2 concentrations
in BALF (Fukumoto et al., 2013). The mutual dependency
of the ceramide pathway and the inflammasome NLRP3 has
been shown by Kolliputi and our group in alveolar epithelial
cells (Kolliputi et al., 2012) and in porcine lung homogenates
(Spengler et al., 2018) (Table 9). In tracheal aspirates from
preterm infants prone to bronchopulmonary dysplasia (BPD)
high IL-1β and IL-1ra concentrations were linked with more
severe grades of BPD or death (Liao et al., 2018). In adult
patients subject to overventilation (VT = 12 ml/kg) ASC-
upregulation in alveolar epithelial cells was ∼10-fold compared
to normoventilation, the expression of NLRP3 and ASC in
alveolar macrophages doubled (Kuipers et al., 2012). The NLRP-
dependent cytokine IL-1β was treated with either aerosolized or
intravenous anakinra in a lavage model of surfactant depletion
yielding moderately improved oxygenation, ventilation, Crs, and
neutrophil migration into lung tissue (Chada et al., 2008). The
IL-1β/β-actin ratio in lung tissue was reduced from 4.9 ± 2.4
(control) to 0.9 ± 0.3 (aerosolized) and 0.8 ± 0.1 (intravenous),
respectively. A comparable reduction in the IL-8/β-actin ratio
could be demonstrated. In an E. coli LPS model of ARDS
treating 4–6 weeks old piglets by the intravenous route, IL-1β
concentrations rose from 29 ± 2 pg/ml to 89 ± 18, IL-6 from
18 ± 8 pg/ml to 22 ± 7, and IL-8 from 80 ± 7 pg/ml to 118 ± 10
(Wang et al., 2016).

“Ceramide lances the lungs,” as pointed out by P. Barnes
(Barnes, 2004) describes the impact of the activated ceramide
pathway on impairment of alveolo-capillary barrier functions
in lung inflammation (Göggel et al., 2004). More than 30 years
ago high concentrations of galactosylceramide (20- to 40-fold
normal) were found in the lavage fluid of mechanically ventilated
ARDS patients (Rauvala and Hallman, 1984). In (adult) patients
suffering from cystic fibrosis the application of amitriptyline
normalizes pulmonary ceramide and improves lung function
including susceptibility to infection (Teichgräber et al., 2008).
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FIGURE 1 | Microscopic findings of a control piglet after 24 h of mechanical ventilation following repeated airway lavage. (A) Diffuse alveolar collapse next to

overdistention, severely thickened alveolar septae. Some hyaline membrane formation and alveolar basement denudation is evident. Abundant cellular infiltration with

PMNL and macrophages in the pulmonary interstitium and in the alveolar spaces. Infiltrations with red blood cells as sign of diffuse pulmonary hemorrhage and

coagulation activation. (B) Lobuli with alveolar collapse adjacent to overdistention containing proteinaceous alveolar edema. Hematoxylin and eosin staining, oil ×

1,200 (A), ×300 (B).
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TABLE 8 | Surfactant surface tension and alveolar-capillary leakage.

Total0 C72 T72 Total0 vs. C72 C72 vs. T72

Surfactant surface tension (m/Nm) 21 ± 2 41 ± 14 28 ± 8 0.0004 0.001

sPLA2 in BALF (ng/ml) 20 ± 10 28 ± 11 14 ± 10 0.06 0.006

Albumen in BALF (µg/ml) 111 ± 25 378 ± 36 275 ± 115 <0.0001 0.015

SP-A in BALF (%) 100 ± 3 68 ± 35 82 ± 35 <0.0001 0.285

SP-D in serum (ng/ml) 56 ± 3 326 ± 19 220 ± 101 <0.0001 0.005

Surfactant surface tension, minimum surface tension of 10mg surfactant in 1ml BALF measured by a Wilhelmy balance; sPLA2, secretory phospholipase A2; SP-D, surfactant protein D.

Data are mean ± SD. Total0, all piglets at 0 h; C72, controls at 72 h; T72, treated piglets at 72 h. Number of piglets included: total0 = 51, control = 8, treat(ment) = 43. Comparisons by

t-tests (SP-A by Mann-Whitney test).

TABLE 9 | NF-κB, inflammasome, and ceramide pathways.

HC0 C72 T72 Total0 vs. C72 C72 vs. T72

Iκ-Bα (%) 96 ± 4 8 ± 4 35 ± 22 0.0002 0.0002

IκBkinase (%) 23 ± 9 99 ± 4 55 ± 27 0.0002 < 0.0001

NF-κB (aU) 1.00 ± 0.28 0.69 ± 0.24 0.0012

NLRP3 (%) 29 ± 6 100 ± 7 77 ± 23 0.0022 0.0037

ASC (%) 27 ± 7 99 ± 7 72 ± 28 0.0022 0.0096

Cathepsin D (%) 33 ± 9 100 ± 7 74 ± 24 0.0002 0.0007

Caspase-1 (%) 27 ± 7 100 ± 5 81 ± 29 0.0002 0.0581

IL-1β (%) 31 ± 14 98 ± 11 77 ± 29 0.0002 0.0659

IL-18 (%) 27 ± 8 100 ± 12 83 ± 28 0.0012 0.1159

aSMase activity lung (nmol/mg/h) 18 ± 2 49 ± 4 35 ± 9 <0.0001 0.0001

Ceramide C16/18 lung (pmol) 537 ± 93 1,294 ± 189 987 ± 216 <0.0001 0.0005

aSMase activity liver (nmol/mg/h) 15 ± 4 53 ± 4 41 ± 11 <0.0001 0.0059

Ceramide C16/18 liver (pmol) 628 ± 129 1,446 ± 165 1,224 ± 240 <0.0001 0.0166

Iκ-Bα, inhibitor of NF-κB release and translocation; IκBkinase, kinase of Iκ-Bα; aU, arbitrary units for C24 and T24; NLRP3, inflammasome nucleotide-binding domain–leucine-rich

repeat-containing protein-3; ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; aSMase, acid sphingomyelinase.

HC0, healthy controls at 0 h; C72, controls at 72 h; T72, treated piglets at 72 h.

Data are mean ± SD. Number of piglets included: total = 51, control = 8, treat = 43 (NF-κB: C72 = 7, T72 = 15). Comparisons by Mann-Whitney tests for NF-κB and inflammasome

parameters, by unpaired t-tests for ceramide parameters.

As it is well-known for many years that the porcine organism
displays all kinds of glycolipids, such as galactosylceramide,
glucosylceramide, ganglioside, and globoside (Kyogashima et al.,
1989) there is unfortunately no data for comparing our results
with regard to the impact of the acid sphingomyelinase/ceramide
pathway on lung function. For the rat it has been shown
that sphingomyelin content, sphingosine concentrations, and
ceramide concentrations are highest in neonatal compared
to fetal or adult lungs (Longo et al., 1997) underlining the
important role of the ceramide pathway in neonatal lung
physiology. In the newborn rat (Husari et al., 2006) and newborn
mice (Tibboel et al., 2013) hyperoxia models, ceramide and
sphingomyelin concentrations are increased 2- to 4-fold. In
addition stretch applied to alveolar epithelial cells from newborn
rat lungs by mechanical ventilation induces autophagy, acid
sphingomyelinase activity, and ceramide generation (Yeganeh
et al., 2018).

Pro-fibrotic and Pro-inflammatory
Parameters
TNF-α in BALF (Table 10) increased from 21 ± 4 pg/ml to
42 ± 22 following meconium instillation into the lungs of 1–
2 days old piglets (Korhonen et al., 2004), from 0.03 ± 0.02

U/ml to 0.34 ± 0.58 in a newborn piglet lavage model (Krause
et al., 2005), and from 80 ± 84 pg/ml to 1,357 ± 676 in a
meconium model with 1–3 days old piglets (Angert et al., 2007).
Depending on the kind of acute lung injury the increasing pre-
/post-injury factor varies largely between 1:2 and 1: 60 (Table 10).
IL-8 concentrations rose from 51 ± 34 pg/ml to 429 ± 259 in
a lavage model (Ankermann et al., 2005b), and from 406 ± 364
pg/ml to 4,837± 1,951 in anmeconium aspirationmodel (Angert
et al., 2007), whereas IL-6 from BALF came up from 0.4 ± 1.0
U/ml to 29 ± 28 following repeated airway lavage (Krause et al.,

2005). LTB4 as an important chemokine in the inflamed lung and

increased from 2.6 ± 1.9 pg/ml to 9.3 ± 7.8 in a newborn lavage
model (Ankermann et al., 2005a).

Data from other authors on fibrosis in (newborn and

adult) piglets subject to induced acute lung injury are missing

probably due to the observation interval of at least 24–72 h
before changes in pro-fibrotic parameters may be quantified

as demonstrated in ARDS patients (Fahy et al., 2003; Fligiel

et al., 2006). A 72 h model of clinical observation as presented

here (Preuß et al., 2012b; Spengler et al., 2018) is expensive
and requires detailed knowledge of neonatal physiology and

intervention skills. However, as an exception, von der Hardt
et al. presented TGF-β mRNA expression data in a piglet lavage
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TABLE 10 | Pro-fibrotic and pro-inflammatory parameters.

Total0 C72 T72 Total0 vs. C72 C72 vs. T72

TGF-β (%) 20 ± 15 103 ± 2 84 ± 31 0.0079 0.0747

IFN-γ (%) 26 ± 14 100 ± 13 76 ± 29 0.0022 0.0571

Elastin (%) 48 ± 7 101 ± 5 74 ± 21 0.0002 0.0004

MMP-1 (%) 45 ± 7 101 ± 6 68 ± 22 0.0002 0.0003

IL-8 in BALF (pg/ml)* 455 ± 320 90 ± 101 0.0018

IL-6 in BALF (pg/ml)* 56 ± 14 19 ± 3 <0.0001

LTB4 in BALF (pg/ml)* 95 ± 72 45 ± 21 0.0267

TNF-α in BALF (pg/ml) 2 ± 6 117 ± 119 70 ± 66 <0.0001 0.1425

TGF-β, transforming growth factor-β; IFN-γ, interferon-γ; MMP-1, matrix metalloproteinase 1; LTB4, leukotriene B4.

Data are mean ± SD. Number of piglets included: total0 = 51, C72 = 8, T72 = 43 (*parameters: C24 = 7, T24 = 15). Comparisons by Mann-Whitney tests, BALF parameters by unpaired

t-tests. *Parameters measured at C24 and T24.

model unfortunately not yielding an adequate control group
(von der Hardt et al., 2002). The variation of TGF-β between
the four intervention groups in this study was not surprisingly
very small (1.30 ± 0.11 to 1.79 ± 0.20 relative units) suggesting
an inadequate observation time of 8 h only. TGF-β1 and its
isoforms is constitutively stored by mammalian cells, may be
released upon integrin signaling, and induce alveolar epithelial
cell differentiation into (myo)fibroblasts which avidly produce
collagen and elastin as part of the intermediate fibrotic stage
in ARDS. Next to TGF-β1 and IFN-γ signaling the matrix
metalloproteinase MMP-1 (in contrast to MMP-2, MMP-8, and
MMP-9) plays a distinct role in fibrosis as high concentrations
in BALF may discriminate patients surviving or not surviving
ARDS (Fligiel et al., 2006).

Systematic Review
The systematic review (flowsheets in Figure 2) highlights two
major acute direct lung injury models with the need of
mechanical ventilation in term newborn piglets <14 days of
age. Thus, gradually developing lung injury models, such as
hyperoxia application or lung injury models without mechanical
ventilation are not covered here. For a better understanding
of NARDS immunologic outcome parameters and the effect of
specific interventions are displayed.

Meconium Aspiration Model
The meconium aspiration model is a frequently used model
of direct lung injury by the installation of (human) diluted
meconium into the airways. Within 2 h following meconium
instillation, an increase in OI and Rrs and a decrease in sCrs

by ∼50% can be observed (Kuo and Chen, 1999; Tølløfsrud
et al., 2002). BP, CI and SVRI do not change significantly
compared to control groups whereas the pulmonary arterial
pressure (PAP) and the pulmonary vascular resistance index
(PVRI) differ beyond a 2 hmargin (Trindade et al., 1985; Kuo and
Chen, 1999; Ryhammer et al., 2007). Of note, the deteriorations
in lung mechanics and gas exchange are not sustained evaluating
studies with longer observation periods (i.e., 12–48 h) when
inflammatory parameters start to gradually decline again (Davey
et al., 1993; Korhonen et al., 2004).

Meconium is composed of a myriad of substances essentially
containing gastrointestinal secretions, bile, bile acids, pancreatic
juice, mucus, swallowed vernix caseosa, lanugo hair, cellular
debris, and blood (van Ierland and de Beaufort, 2009).
As meconium is located “extracorporally” (i.e., hidden in
the intestinal tract) its content normally is not recognized
by the fetal immune system (Lindenskov et al., 2015).
However, once meconium enters the airways the innate
immunity senses a “damaged self ” and reacts with “chemical
pneumonitis” including increased airway responsiveness,
pulmonary hypertension, cellular infiltration, impairment of gas
exchange, PMNL infiltration of airways and lung tissue, alveolar
epithelial cell apoptosis, and a cytokine storm (Lindenskov et al.,
2005).

Therefore, aspects most often studied in the newborn piglet
meconium aspiration model are cytokines/chemokines, PMNL
infiltration (by the quantification of myeloperoxidase (MPO) in
BALF and in lung tissue by immunohistochemistry), reactive
oxygen species (ROS), pulmonary hypertension, arachidonic acid
metabolites (notably sPLA2), and changes of the complement
system (membrane attack protein sC5b-9).

Many studies quantified cytokines/chemokines, such as IL-1β,
IL-6, IL-8, and TNF-α (Table 11) all of which largely depend on
pattern recognition by the Toll-like receptor family (especially
TLR4/MD-2, CD14, and C5a) (Salvesen et al., 2010). Specific
therapy assessment to influence e.g., CD14 (Thomas et al.,
2018) and downstream NF-κB by broad-acting glucocorticoids
(Holopainen et al., 2001; Lin et al., 2016, 2017) or more specific
inhibitors of NF-κB are scarce and deserve further evaluation.

ROS are inflammatory mediators protecting the host from
external damage, however, they simultaneously inherit a
strong potential to harm the host in case of overwhelming
activation. The complement system is linked with C5a-mediated
leukocyte oxidative burst (Castellheim et al., 2005) and plays
an important role by the supply of C5b-9 which has the
potential to also directly attack alveolar epithelial cells. While
the combined application of C5a- and CD14-inhibitors resulted
in a pronounced attenuation of inflammatory parameters
(particularly IL-1β and MPO), the clinical course of the
intervention group was not different from the control group
(Thomas et al., 2018).
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FIGURE 2 | Flow sheets of the systematic review of the meconium aspiration

model (A) and the lavage model (B).

Meconium has high concentrations of phospholipase A2

(sPLA2), a family of ubiquitous enzymes that release arachidonic
acid by the cleavage of membrane phospholipids or surfactant
(Holopainen et al., 1999a; De Luca et al., 2009). The
administration of dexamethasone which reduces a stimulated
sPLA2 synthesis (Hoeck et al., 1993), does not contain sPLA2

activity nor reduce inflammation in the newborn piglet model
(Holopainen et al., 2001).

By far the majority of the studies (Table 11) focus on the effect
of surfactant substitution for improvements in lung mechanics
and gas exchange. While surfactant is known to protect the
lungs from inflammation modulating peroxidation, formation
of nitric oxide, sPLA2, eicosanoids, and cytokines (Wright,

2003), some surfactant fractions, such as palmitoyl-oleoyl-
phosphatidylglycerol (POPG) (Numata et al., 2010; Spengler
et al., 2018) and dioleoyl-phosphatidylglycerol (DOPG) (Preuß
et al., 2014) exert potent anti-inflammatory action and deserve
further research (Salvesen et al., 2014). The administration of
a POPG-based synthetic surfactant (CHF5633), however, did
not improve the clinical outcome in the newborn piglet model
not reflecting somemarked inflammatory mediator attenuations,
such as reductions in IL-1β and lipid peroxidation (Salvesen et al.,
2014).

Lavage Model
The lavage model (Table 12) excels by the fine-tuning of
impairment of gas exchange (oxygenation index, ventilation
efficiency index), lung mechanics (compliance and resistance
of the respiratory system), and lung volumes (alveolar volume,
functional residual capacity). Once an appropriate lung injury
has been set (mostly monitored by reductions of oxygenation
and compliance) the piglet remains stable with regard to
circulation and other organ system function. By the use of
continuous sedation/analgesia, mechanical ventilation can be
perpetuated for several days allowing further injury to the lungs
(double-/triple hit injury models) or specific interventions.
That way, the requirements for NARDS by the Montreux
definition (acute onset; diffuse, bilateral, irregular opacities;
edema; oxygenation deficit) can be completely satisfied (De Luca
et al., 2017). In addition, as an animal model of acute lung injury,
physiologic changes (decreased compliance, reduced functional
residual capacity, V/Q-abnormalities, impaired alveolar fluid
clearance), biological changes (increased endothelial and
epithelial permeability, increased cytokine concentrations
in BALF or lung tissue, protease activation, coagulation
abnormalities), and pathological changes (infiltration by PMNL,
fibrin deposition and augmented intra-alveolar coagulation,
denudation of the basement membrane) can be observed
(Matute-Bello et al., 2008).

The washout of endogenous surfactant by the use of warmed
normal saline with a volume exceeding FRC (i.e., >25 ml/kg)
ensures—in contrast to other models—acute onset of NARDS
which is sustained by secondary damage to the remaining
surfactant within the lung and the triggering of a marked
inflammatory response which primarily activates all mechanisms
of the innate immunity. Thus, the saline for lavage may be
considered as a pathogen-associated molecular pattern (PAMP)
being recognized by the collectin, ficolin, and pentraxin families
which can act as opsonins either directly or by activating the
complement system (as also shown in the meconium aspiration
model) (Male, 2006). The innate immunity’s response brings
leukocytes and plasma proteins to the site of (lung) tissue
damage. The arrival of leukocytes in the lung depends on
chemokines and adhesion molecules expressed by the pulmonary
vasculature endothelium, by the alveolar epithelium, and by the
activity of local macrophages. Notably TNF-α, which is primarily
produced by macrophages, induces the expression of adhesion
molecules and chemokines, and may elicit the activation of NF-
κB and apoptosis. Next to TNF-α, IL-1β plays an important part
in the induction of adhesion molecules on the endothelium.
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In this context it is surprising that many aspects of dampening
the innate immune system in the overwhelming response
of the neonatal lung secondary to repeated airway lavage
have not been studied yet (Table 12). While the early studies
considering immunologic aspects measured protein content in
BALF, histopathology scores, and the concentrations of TNF-α,
LTB4, IL-1β, and MPO as a surrogate parameter for neutrophil
infiltration (Sood et al., 1996a; Merz et al., 2002; van Kaam et al.,
2005), more recent studies put light on the selective inhibition
of NF-κB (von Bismarck et al., 2007), IL-1β metabolism (Chada
et al., 2008), general immune suppression by dexamethasone
or budenoside (von Bismarck et al., 2009; Yang et al., 2010),
eicosanoid suppression (Ankermann et al., 2006), and blockade
of IL-8 (Ankermann et al., 2005b). The impact of the ceramide
metabolism in nARDS has been investigated (Barnes, 2004; von
Bismarck et al., 2008; Spengler et al., 2018), and the important
role of NLRP3 (nucleotide-binding domain, leucine-rich repeat-
containing protein-3) in a triple-hit lung injury model has been
studied (Dos Santos et al., 2012; Spengler et al., 2018).

Miscellaneous Models
NARDS-like severe pneumonia has been established by few
authors, however, the maintenance of HR and BP as prerequisite
for a stable model of primary lung injury—in contrast to
e.g., the rabbit model—can also be demonstrated in direct
GBS instillation into the airways (van Kaam et al., 2004b).
The selective inoculation of GBS into the lower lobes of
newborn piglets resulted in widespread alveolar atelectasis,
loss of hyaluronan, and an increased systemic uptake of the
microorganisms into the circulation (Juul et al., 1996). Using
isolated selectively perfused piglet lungs, an increase in total
pulmonary resistance is observed following GBS-instillation into
the pulmonary circulation (Aziz et al., 1993). Intravenous E.
coli endotoxin has been used to induce a moderate impairment
in oxygenation and lung mechanics without experiencing any
positive changes by surfactant application (Sood et al., 1996b).

Moderately acute lung injury models involving mechanical
ventilation have been established testing the effects of
overventilation with and without the application of 100%
O2 (Davis et al., 1989, 1991; Ehlert et al., 2006). Dexamethasone
(Davis et al., 1995), G-CSF (Wolkoff et al., 2002), recombinant
human Clara Cell protein 10 (rhCC10) intratracheally for
hyperoxia (Chandra et al., 2003), and nitric oxide (NO) (Youssef
et al., 1999) have been assessed using increased observation times
for several days prior to mechanical ventilation.

An exceptional model of wood smoke inhalation treated with
surfactant and partial liquid ventilation has been set up by Jeng
et al. (2003).

Perspective: Newborn Animal Models of
NARDS Involving Mechanical Ventilation
Many more newborn animal models from different species
and subject to a variety of acute lung injury protocols
have been set up (Table 13). While the clinical relevance
varies considerably among species with regard to body size
(piglets and lambs 70–80% of human size, rodents 0.1–1.6%),
availability, and similarities with the human innate immunity,

models with rodents have been used abundantly for low
costs and genetic similarity among animals despite of their
limitations in comparability with human newborns. Ethical
considerations and very high costs limit the availability of
newborn baboons which have been studied almost exclusively
in preterm models of infant respiratory distress syndrome
(IRDS). Thus, piglet and lamb models clearly head the
list of established newborn animal models of NARDS also
considering the wide variety of direct and of only one
direct-to-indirect lung injury protocol (i.e., intraamniotic LPS
administration, Table 13). With a body size being 70–80% of
human newborns, a gravidity length of 40%, a thoracic-to-
abdominal relationship of 1:1 as in humans (compared to a
relationship of 1:2–3 in rodents), and a lung:body weight ratio
of 1.6 (porcine) vs. 1.8 (human), the piglet model excels also
taking into account the similarities of the innate immunity,
such as an 80% accordance of the hypervariable region of
the Toll-like receptor 4, LPS response, and production of
nitric oxide.

As we know that pathophysiologic peculiarities in ARDS of
different age groups show considerable overlap in animal models
(Schouten et al., 2015) as well as in human kind (Schouten et al.,
2019), it is of uttermost importance to describe and to tackle
the numerous facets of innate immunity in the various animal
models. With age-dependent changes in lung morphology, cell
integrity, and above all wide variations in severity of acute lung
injury, most of the direct (e.g., lavage, MAS) or direct-to-indirect
acute lung injury protocols are able to elicit at least some of
these responses which may be even more pronounced and more
diverse in multiple-hit models.

Direct lung injury in newborn animals aims at alveolar
epithelial damage, alveolar edema, generation of hyaline
membranes, disruption of the alveolar basal membrane,
epithelial-to-mesenchymal transition, PMNLmigration, induced
macrophage activity, cytokine storm, protease and phospholipase
activation, coagulation abnormalities, oxidative stress, and
increased production of antioxidants. As prognostic biomarkers
indicating increased mortality in human ARDS patients do not
differentiate direct and indirect forms of ARDS [SP-D in serum
excepted (Calfee et al., 2015)] it is important to acknowledge
that existing neonatal lung injury models almost exclusively
represent direct lung injury for reasons of achievement of
acuity, stability of the model, and indispensable characteristics
of acute lung injury involving clinical features, physiological
changes, biological changes, and pathological changes (Matute-
Bello et al., 2008). From a practical point of view newborn
models of NARDS may therefore profit more from surfactant
therapy than the lungs from indirect models as demonstrated
in clinical studies with children (Khemani et al., 2019) and
adults (Taut et al., 2008). Finally, newborn animal models of
NARDS profit from small body sizes/weights in order to evaluate
specific therapy modalities, such as surfactant administration
in escalating doses, antibody therapies, or modulation of major
pro-inflammatory pathways, all of which are subject to R and D
and may be extremely expensive. In this regard it is important
to be aware of the similarities in NARDS, PARDS, and ARDS
(De Luca, 2019), of the impact of the innate immunity, and of
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TABLE 11 | Meconium aspiration model.

References Age

(days)

Meconium

(%)

Volume

(ml/kg)

PIP/PEEP*

(mbar)

V#
T

(ml/kg)

Study

l.$ (h)

Crs/R
§
rs

(ml/mbar/kg)

(mbar/l*sec)

PAP/PVR(I)¶

(mmHg)

(mmHg/ml/kg/min

a.o.†)

Intervention Immunologic response

Davey et al. (1993) 1–2 20 3 13/3 11 ± 1 48 1.5 ± 0.2 →

1.6 ± 0.4

– None Albumin: 20 ± 5 → 105 ± 35 µg/ml

Protein: 1.1 ± 0.3→ 2.2 ± 0.3 mg/ml

41 ± 5 →

162 ± 27

–

Wiswell et al. (1994) 1–5 33 3 15/4 → 23/5 – 6 – – Beractant, poractatant Protein: 1.1 ± 0.4 vs. 1.1 ± 0.2 mg/ml

– – Phospholipids: 3.8 ± 1.5 vs. 6.2 ± 3.0

µg/ml

Holopainen et al. (1999a) 10–12 2, 6.5 3 /2–3 16–20 6 – – None MPO: 9 ± 1 vs. 53 ± 13 U/g protein

PLA2: 0.02 ± 0.01 vs. 0.16 ± 0.03 U/g

protein

AEC apoptosis: 7 ± 2 vs. 16 ± 2

cells/mm2

Holopainen et al. (1999b) 10–12 6.5 3 /2–3 16–20 6 – – NO 1, 10 ppm MPO: 53 ± 13 vs. 57 ± 11 mU/mg protein

– 11 ± 1 → 28 ± 2

mmHg/l/min

PLA2: 0.16 ± 0.03 vs. 0.11 ± 0.04 U/g

AEC apoptosis: 16 ± 2 vs. 6 ± 3

cells/mm2

Kuo and Chen (1999) <8 20 3 12 → 29/4 – 4 1.2 ± 0.4 →

0.3 ± 0.1

19 ± 3 → 31 ± 4 None Blood endothelin-1: 1.6 ± 0.2 vs.

2.2 ± 0.4 pg/ml

23 ± 5 →

35 ± 9

960 ± 290 →

2,620 ± 490

Holopainen et al. (2001) 10–12 6.5 3 /2–3 16–20 6 – 13 ± 3 → 26 ± 7 Dexamethasone

0.5mg

PLA2: 0.16 ± 0.07 vs. 0.23 ± 0.14 U/l

– 11 ± 4 → 29 ± 7

mmHg/l/min

AEC apoptosis: 14 ± 3 vs. 6 ± 1

cells/mm2

Kuo and Liao (2001) 1–7 20 3 12 → 24/4 4 – 22 ± 2 → 33 ± 4 –

1,210 ± 240 →

2,650 ± 450

dyne*s*cm−5

Kuo (2001) 1–7 20 3 12 → 24/4 – 4 – 22 ± 3 → 33 ± 3 BQ-123 8mg iv
∫

Blood endothelin-1: no difference (?)

– 1,246 ± 274 →

2,591 ± 545

dyne*s*cm−5

Tollofsrud et al. (2001) 4–12 11 3 18/3 → 23 ± 3 10–15 2 1.2 ± 0.2 →

0.8 ± 0.1

17 ± 3 → 26 ± 3 FiO2: 0.21 vs. 1.0 Blood hypoxanthin: 56 ± 20 vs. 38 ± 10

µmol/l

73 ± 2 →

104 ± 12

0.02 ± 0.02 →

0.04 ± 0.02

(Continued)
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TABLE 11 | Continued

References Age

(days)

Meconium

(%)

Volume

(ml/kg)

PIP/PEEP*

(mbar)

V#
T

(ml/kg)

Study

l.$ (h)

Crs/R
§
rs

(ml/mbar/kg)

(mbar/l*sec)

PAP/PVR(I)¶

(mmHg)

(mmHg/ml/kg/min

a.o.†)

Intervention Immunologic response

Tølløfsrud et al. (2002) 0–2 11 3 20/3 10–15 8 1.4 ± 0.2 →

0.9 ± 0.3

23 ± 4 → 33 ± 6 FiO2, albumin Endothelin-1: 2.4 ± 1.0 vs. 2.1 ± 0.7 ng/l

88 ± 5 →

110 ± 40

0.10 ± 0.05 →

0.18 ± 0.08

Dargaville et al. (2003) 14 20 4 15–20/4 – 5 0.9 ± 0.1 →

0.4 ± 0.1

– Surfactant and

perfluorocarbon

Protein: 7.1 ± 3.2 vs. 4.7 ± 1.9 vs.

8.2 ± 3.8 mg/ml

75 ± 3 →

122 ± 8

– Albumin: 3.3 ± 2.3 vs. 1.9 ± 1.1 vs.

4.1 ± 2.9 mg/ml

DPPC: 0.6 ± 0.5 vs. 1.0 ± 0.3 vs.

1.1 ± 0.5 mg/ml

Hilgendorff et al. (2003) 1–11 20 5 15 → 25/2 →

4

? 5.5 – – rSP-C surfactant Tissue IL-1β: 1.0 ± 0.3 vs. 0.2 ± 0.3 aU‡

Tissue IL-6: 1.0 ± 0.3 vs. 2.1 ± 0.4 aU

Tissue IL-8: 1.0 ± 0.2 vs. 0.4 ± 0.2 aU

Tissue TGF-β: 1.0 ± 0.4 vs. 1.0 ± 0.2 aU

Tissue IL-10: 1.0 ± 0.6 vs. 3.5 ± 0.5 aU

Korhonen et al. (2003) 1–3 6.5 1.5 20/4 – 12 – – Surfactant MPO: 0.5 ± 0.2 vs. 0.8 ± 0.2 U/mg

protein

Protein: 1.4 ± 0.7 vs. 2.6 ± 0.4 mg/ml

TNF-α: 121 ± 20 vs. 157 ± 33 pg/ml

PLA2: 8 ± 6 vs. 401 ± 91 U/l

Castellheim et al. (2004) 0–2 13.5 4 – – 5 – – None Blood C5b-9: 0.3 vs. 1.5–2.4 U/ml

Korhonen et al. (2004) 0–2 6.5 1.5 20/4 – 12 – – Pentoxifylline 20 mg/kg

iv

TNF-α: 42 ± 22 vs. 17 ± 5 pg/ml

Protein 1.1 ± 0.3 vs. 0.6 ± 0.2 mg/ml

Tissue MPO: 1.6 ± 1.0 vs. 1.5 ± 0.2

Lindenskov et al. (2004) 0–2 13.5 5 /5 13–15 5 2.2 ± 0.1 →

1.2 ± 0.1

– None Blood C5b-9: +82 ± 34%

Blood IL-1β: 25 ± 48 → 112 ± 50 pg/ml

Blood TNF-α: 55 ± 28 → 128 ± 15%

increase

Shekerdemian et al.

(2004)

? 20 3 ? – 6 – 18 ± 1 → 24 ± 1 BQ-123 1 mg/kg iv
∫

Blood endothelin-1: 2.2 ± 0.4 vs.

2.9 ± 0.3 pg/ml

– 65 ± 5 → 106 ± 10

mU/kg

(Continued)
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TABLE 11 | Continued

References Age

(days)

Meconium

(%)

Volume

(ml/kg)

PIP/PEEP*

(mbar)

V#
T

(ml/kg)

Study

l.$ (h)

Crs/R
§
rs

(ml/mbar/kg)

(mbar/l*sec)

PAP/PVR(I)¶

(mmHg)

(mmHg/ml/kg/min

a.o.†)

Intervention Immunologic response

Tølløfsrud et al. (2004) 0–2 11 3 – – 8 – – Albumin it IL-8: 17 ± 13 vs. 94 ± 57 pg/ml

van Kaam et al. (2004a) 35± 15 h 14 10 8–10/2→

15–22/4

– 6 – – CV vs. HFOπ MPO: 0.7 ± 0.1 vs. 0.5 ± 0.1 U/ml

Castellheim et al. (2005) 0–2 13.5 4 <45/? 12 ± 4 7 2.2 ± 0.4 →

1.0 ± 0.3

– None Blood C5b-9: 0.2 ± 0.1 vs. 3.8 ± 1.8 aU

– – Blood IL-6: 40 ± 60 vs. 460 ± 390 pg/ml

Blood IL-8: 20 ± 4 vs. 26 ± 6 pg/ml

Blood CD11/18: not different (?)

Holopainen et al. (2005) 10–12 6.5 3 /2–3 16–20 6 – – ivIg 0.8 g/kg1 MPO: 11 ± 3 vs. 215 ± 58 mU/g protein

– (+165%) PLA2: 0.15 ± 0.07 vs. 0.10 ± 0.03 U/g

Lindenskov et al. (2005) 0–2 13.5 4 <45/? – 8 −46–60% 21 ± 2 → 32 ± 10 Albumin IL-8: 9.5 ± 1.6 vs. 9.6 ± 0.4 ng/ml

– – Protein 3.5 ± 0.3 vs. 3.6 ± 0.5 mg/ml

Hilgendorff et al. (2006) 1–11 20 5 15 → 25/2 →

4

– 5.5 2.2 ± 0.2 →

0.7 ± 0.1

– rSP-C surfactant Tissue SP-B: 0.1 (0.1–0.4) vs. 0.6

(0.1–1.0) 2∧11ct

Tissue SP-C: 0.5 (0.3–0.5) vs. 0.5

(0.1–0.8) 2∧11ct

Jeng et al. (2006) <14 25 3–5 10–13/3 10 4 1.1 ± 0.2 →

0.4 ± 0.1

– Surfactant and liquid

ventilation

Blood IL-1β: 2.3 ± 0.3 vs. 0.1 ± 0.02

ng/ml

Blood IL-6: 1.6 ± 0.4 vs. 0.1 ± 0.03 ng/ml

Angert et al. (2007) 1–3 20 3 /3 – 24 – – rhCC10 5 mg/kg it¢ IL-8: 4.8 ± 1.9 vs. 5.5 ± 2.8 ng/mg

protein/ml

TNF-α: 1.3 ± 0.6 vs. 0.5 ± 0.3 ng/mg

protein/ml

Salvesen et al. (2008) 0–2 13.5 4 18–20/4 8–14 6 2.1 ± 0.2 →

0.9 ± 0.3

– Albumin 0.6 g/kg it Blood sC5b-9: 0.2 ± 0.7 vs. 0.9 ± 1.6

aU/ml

59 ± 5 →

69 ± 24

– Blood TNF-α: 82 ± 19 vs. 62 ± 7 pg/ml

Blood IL-1β: 29 ± 75 vs. 83 ± 44 pg/ml

Blood IL-6: 32 ± 95 vs. 50 ± 87 pg/ml

Saugstad et al. (2008) 2–5 ? 3–4 ? 10–15 8 – – Albumin it IL-8: 93 vs. 18 pg/ml

(Continued)
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TABLE 11 | Continued

References Age

(days)

Meconium

(%)

Volume

(ml/kg)

PIP/PEEP*

(mbar)

V#
T

(ml/kg)

Study

l.$ (h)

Crs/R
§
rs

(ml/mbar/kg)

(mbar/l*sec)

PAP/PVR(I)¶

(mmHg)

(mmHg/ml/kg/min

a.o.†)

Intervention Immunologic response

Wang et al. (2010) 7–14 20 3–5 17→ 27/5 10 4 1.4 ± 0.2 →

0.6 ± 0.1

– Surfactant IL-1β: 265 ± 61 vs. 65 ± 18 ng/ml

IL-6: 0.6 ± 0.4 vs. 0.1 ± 0.1 µg/ml

TNF-α: 0.4 ± 0.1 vs. 0.4 ± 0.1 µg/ml

AEC apoptosis: 22 ± 6 vs. 8 ± 4 per

power field

Salvesen et al. (2014) 0–2 10 4.5 18–20/5 6–12 6 2.0 ± 0.2 →

0.8 ± 0.2

– Poractant alpha and

CHF5633¬
Blood lipid peroxidation: 1.5 ± 0.4 vs.

0.4 ± 0 nmol/mg

Blood sC5b-9: 0.8 ± 0.4 vs. 1.1 ± 0.5

aU/ml

Blood TAT∼: 50 ± 29 vs. 145 ± 81 µg/ml

Blood PAI-1¤: 145 ± 42 vs. 72 ± 25 ng/ml

Blood TNF-α: 90 ± 21 vs. 150 ± 25 pg/ml

Blood IL-6: 0.2 ± 0.06 vs. 0.6 ± 0.3 ng/ml

Blood IL-1β: 0.18 ± 0.04 vs. 0.11 ± 0.04

ng/ml

Lin et al. (2016) <14 25 6–7 11 → 20/5 8 6 1.3 ± 0.1 →

0.6 ± 0.1

– Surfactant and

budenoside

IL-1β: 2.1 (2.0–3.1) vs. 0.8 (0.3–1.3) ng/ml

– – IL-6: 2.7 (2.4–2.8) vs. 1.3 (2.1–0.7) ng/ml

IL-8: 2.8 (2.1–4.6) vs. 1.7 (0.4–3.3) ng/ml

Lin et al. (2017) 4–12 25 6 15/5 → 23 ± 1 – 8 0.9 ± 0.1 →

0.6 ± 0.01

– Dexa, budenoside iv Tissue lung injury score:↓

Thomas et al. (2018) 2 9.9 5.5 /5 – 5 – – Anti-CD14, anti-C5a Blood IL-1β: 240 ± 45 vs. 172 ± 52 pg/ml

Blood IL-6: 154 ± 38 vs. 181 ± 34 pg/ml

MPO: 856 ± 35 vs. 265 ± 30 ng/ml

*PIP/PEEP, peak inspiratory pressure/positive end-exspiratory pressure; #VT , tidal volume;
$study l., study length; §Crs/Rrs, compliance/resistance of the respiratory system;

¶PAP/PVR(I), pulmonary arterial pressure/pulmonary vascular

resistance (index);
†
a.o., and others;

∫
BQ-123, endothelin antagonist; ‡aU, arbitrary units; πCV/HFO, conventional ventilation/high-frequency oscillation; 1 ivIg, intravenous immunoglobulin; ¢rhCC10 it, recombinant human Clara Cell

protein 10, intratracheally administered; ¬CHF5633, synthetic surfactant containing SP-B/C, DPPC, POPG; ∼TAT, thrombin antithrombin complex; ¤PAI-1, plasminogen activator inhibitor-1.

PIP/PEEP, Crs/Rrs, PAP/PVR(I), immunologic response: arrow (→) delineates changes by the lung injury protocol (i.e., meconium instillation into the airways); vs. delineates differences secondary to a specific intervention (first place

control group, second place intervention group data).

Immunologic response parameters are from broncho-alveolar lavage fluid (BALF) unless specified otherwise.

F
ro
n
tie
rs

in
P
h
ysio

lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

1
9

O
c
to
b
e
r
2
0
1
9
|V

o
lu
m
e
1
0
|A

rtic
le
1
3
4
5

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


S
p
e
n
g
le
r
e
t
a
l.

P
ig
le
t
M
o
d
e
lo

f
R
e
sp

ira
to
ry

D
istre

ss

TABLE 12 | Lavage model.

References Age

(days)

Lavages

(n)

Volume

(ml/kg)

PIP/PEEP*

(mbar)

V#
T

(ml/kg)

study l.$

(h)

C§
rs

(ml/mbar/kg)

R¶
rs

(mbar/l*sec)

FRC† (ml/kg) Intervention Immunologic response

Sood et al. (1996a) 4–9 ? 35 17 → 29/6 – 1.5 1.3 ± 0.1 →

0.5 ± 0.1

32 ± 3 →

58 ± 3

29 ± 1 →

12 ± 2

Beractant, DPPC,

and KL4‡
Protein: 347 ± 142 vs. 56 ± 13 mg/dl

(KL4) histopathology scores: no difference

Abubakar et al.

(1998) (double-hit:

lavage and

overventilation)

<3 ? 35 15 → 40

→ ?/3 → 2

→ 4

10–13 24 – – – Heparin, ATIII ATIII: 49 ± 8 vs. 57 ± 10 µg/ml
125 I-fibrinogen uptake: 19 ± 10 vs.

10 ± 9%

lung injury score: 1.99 ± 0.71 vs.

1.55 ± 0.63

Balaraman et al.

(1998)

4–8 13 ± 1 +

4

35 ?→ 32/6 – 4 ?→ 0.7 ± 0.1 ? ? (un)diluted DPPC Protein: 25 ± 6 vs. 15 ± 9 mg/dl (undil. vs.

dil.)

Jeng et al. (2002) 1–14 ? 30 /5 15 3 1.7 ± 0.2 →

0.8 ± 0.1

– – FC-77π Alveolar inflammation score: 1.8 ± 04 vs.

0.6 ± 0.3

AEC1 necrosis score: 3.1 ± 0.5 vs.

1.4 ± 0.3

Merz et al. (2002) 1–3 ? 30 16 → 20/2

→ 4

? 24 – – – Surfactant, HFOV

and liquid

ventilation

LTB4: 1.5 ± 0.3 vs. 1.1 ± 0.2 ng/ml

IL-6: 1.2 ± 0.3 vs. 1.6 ± 0.9 ng/ml

TNF-α: 1.3 ± 0.4 vs. 1.0 ± 0.3 ng/ml

von der Hardt

et al. (2002)

?(4 kg) ? 30 20 → 32/4

→ 8

– 6 – – – FC-77 Tissue IL-1β: 15 ± 4 vs. 1.4 ± 0.4 rU¢

Tissue IL-6: 1.0 ± 0.2 vs. 0.4 ± 0.2 rU

Tissue IL-8: 2.4 ± 0.6 vs. 0.7 ± 0.3 rU

Tissue TGF-β: 1.7 ± 0.2 vs. 1.2 ± 0.1 rU

van Kaam et al.

(2003b)

0–2 ? 50 10–12 →

25/2 → 5 →

10

– 5 – – – OLC¬-ventilation Cells: 0.8 ± 0.5 vs. 0.4 ± 0.2 × 106/ml

IL-8: not different

TNF-α: not different

Thrombin activity: not different

van Kaam et al.

(2003a)

0–2 ? 50 9–12 → 25/2

→ 5 → 15

– 5 – – – OLC-ventilation Protein: 0.7 ± 0.2 vs. 1.0 ± 0.1

van Kaam et al.

(2004a)

? ? 50 25/4–5 → 10 7 5 – – TLC
∫
:

57 ± 20 →

22 ± 6

OLC-ventilation on

GBS it¬
Bacterial infiltration score: 11 ± 1 vs. 4 ± 1

Cellular infiltration score: 11 ± 1 vs. 6 ± 1

van Kaam et al.

(2004b)

0–2 15 ± 5 50 8–10/2 → 10 – 5 – – – HL10 surfactant

and

OLC-ventilation

Protein: 0.8 ± 0.1 vs. 0.3 ± 0.1 mg/ml

SA/LA-ratio∼: 1.6 ± 0.4 vs. 0.2 ± 0.1

IL-8: 15 ± 7 vs. 41 ± 20 pg/ml

Cells: 8 ± 5 vs. 1 ± 1 × 106/ml

(Continued)
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TABLE 12 | Continued

References Age

(days)

Lavages

(n)

Volume

(ml/kg)

PIP/PEEP*

(mbar)

V#
T

(ml/kg)

study l.$

(h)

C§
rs

(ml/mbar/kg)

R¶
rs

(mbar/l*sec)

FRC† (ml/kg) Intervention Immunologic response

van Kaam et al.

(2005)

? ? 50 /5 7 5 – – – HL10 surfactant

and

OLC-ventilation on

GBS it

IL-8: 19 (5–44) vs. 4 (0–6) ng/ml

MPO: 8 (3–22) vs. 4 (0–7) ng/ml

TNF-α: 1.2 (0–1.7) vs. 1.4 (0–3.2) ng/ml

Krause et al.

(2005)

2–10 12 ± 5 30 23/4 → 8 6 6 0.9 ± 0.4 →

0.5 ± 0.2

47 ± 7 →

77 ± 13

24 ± 3 →

9 ± 2

Poractant IL-6: 30 ± 29 vs. 16 ± 10 U/ml

IL-8: 0.4 ± 0.2 vs. 1.0 ± 0.6 ng/ml

TNF-α: 0.64 ± 0.69 vs. 1.42 ± 1.37 U/ml

Protein: 53 ± 7 vs. 50 ± 18 mg/l

Ankermann et al.

(2005b)

2–10 9–12 30 → 23–27/4 6 6 1.9 ± 0.3 →

0.6 ± 0.2

52 ± 7 →

74 ± 14

24 ± 4 →

10 ± 3

Poractant and

anti-IL-8 AB

IL-8: 0.3(0.1–0.7) vs. 0.8(0.4–2.3) vs.

3.4(0.6–16.1) ng/ml

IL-6: 29 ± 28 vs. 16 ± 10 vs. 199 ± 458

U/ml

TNF-α: 0.6 ± 0.6 vs. 1.4 ± 1.3 vs.

3.7 ± 4.9 U/ml

Ankermann et al.

(2005a)

2–10 10 ± 4 30 → 23–5/4 6 6 1.8 ± 0.3 →

0.5 ± 0.2

50 ± 8 →

91 ± 17

27 ± 6 →

12 ± 2

Poractant and

IKK-NBD peptide¤
Protein: 50 ± 5 vs. 38 ± 5 mg/l

IL-1β: 0.09 ± 0.08 vs. 0.06 ± 0.05 U/ml

IL-8: 2.3 ± 1.1 vs. 2.2 ± 1.0 ng/ml

TNF-α: 2.9 ± 3.0 vs. 1.3 ± 0.9 U/ml

LTB4: 3.5 ± 1.4 vs. 2.0 ± 0.6 pg/ml

Ankermann et al.

(2006)

2–10 11 ± 3 30 → 25/4 → 8 6 6 1.7 ± 0.4 →

0.5 ± 0.2

– 25 ± 4 →

10 ± 4

Poractant and

MK886△
LTB4: 3.5 ± 1.4 vs. 2.3 ± 1.6 pg/ml

IL-8: 1.0 ± 0.6 vs. 4.7 ± 5.4 µg/ml

Cells: 625 ± 36 vs. 525 ± 176/µl

van Veenendaal

et al. (2006)

<7 12 ± 4 50 10 → 26/2

→ 6 or 10

7–8 4 – – – HL-10 surfactant

and open lung

ventilation

Protein: 1.6 ± 0.4 vs. 0.5 ± 0.2 mg/ml

IL-8: 1.8 (0–44) vs. 0 (0–0) ng/ml

MPO: 0.6 (0–2.1) vs. 0 (0–0) ng/ml

von Bismarck

et al. (2007)

2–5 20 ± 6 30 → 24/6 7 24 0.8 ± 0.2 →

0.3 ± 0.1

– 30 ± 7 →

15 ± 4

HL-10 surfactant

and IKK-NBD

peptide

Protein: 747 (621–1268) vs. 1,020

(145–1798) vs. 1,322 (909–2,790) mg/l

Tissue MPO: 0.45 ± 0.16 vs. 0.38 ± 0.22

vs. 0.26 ± 0.21 U/mg

LTB4: 78 ± 74 vs. 65 ± 54 vs. 23 ± 17

pg/ml

Tissue NF-κB: 1.0 ± 0.1 vs. 0.9 ± 0.2 vs.

0.7 ± 0.1 aU∧

Tissue aSMasex–activity: 25 ± 1 vs.

22 ± 2 vs. 16 ± 2 nmol/mg/h

Tissue ceramide: 544 ± 40 vs. 455 ± 59

vs. 358 ± 64 pmol/g

(Continued)

F
ro
n
tie
rs

in
P
h
ysio

lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

2
1

O
c
to
b
e
r
2
0
1
9
|V

o
lu
m
e
1
0
|A

rtic
le
1
3
4
5

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


S
p
e
n
g
le
r
e
t
a
l.

P
ig
le
t
M
o
d
e
lo

f
R
e
sp

ira
to
ry

D
istre

ss

TABLE 12 | Continued

References Age

(days)

Lavages

(n)

Volume

(ml/kg)

PIP/PEEP*

(mbar)

V#
T

(ml/kg)

study l.$

(h)

C§
rs

(ml/mbar/kg)

R¶
rs

(mbar/l*sec)

FRC† (ml/kg) Intervention Immunologic response

von Bismarck

et al. (2008)

2–5 21 ± 8 30 → 25/6 7 24 1.0 ± 0.4 →

0.25 ± 0.01

– 34 ± 4 →

23 ± 12

HL-10 surfactant

and imipramine

5mg it

Tissue aSMase-activity:27 ± 2 vs. 20 ± 2

vs. 17 ± 1 nmol/mg/h

Tissue ceramide: 578 ± 27 vs. 464 ± 43

vs. 494 ± 38 pmol/g

Tissue NF-κB: 1.0 ± 0.4 vs. 0.5 ± 0.1 vs.

0.7 ± 0.2 aU

LTB4: 95 ± 72 vs. 54 ± 22 vs. 32 ± 13

pg/ml

IL-8: 455 ± 320 vs. 125 ± 134 vs.

56 ± 40 pg/ml

Chada et al. (2008) 9–12 – 30 20 → 26/4

→ 6

7 12 1.4 ± 0.1 →

0.3 ± 0.05

– – Anakinra 100mg

aerosol vs. iv

Lung injury score: 14 ± 3 vs. 12 ± 4 vs.

10 ± 4

Tissue IL-1β: 4.9 ± 2.4 vs. 0.9 ± 0.3 vs.

1.9 ± 0.6 rU

Tissue IL-8: 5.0 ± 1.6 vs. 1.3 ± 0.4 vs.

2.2 ± 0.5 rU

von Bismarck

et al. (2009)

2–5 21 ± 2 30 → 25/6 7 24 0.90 ± 0.15 →

0.33 ± 0.04

– 33 ± 8 →

16 ± 2

HL-10 surfactant,

dexamethasone,

IKK-NBD peptide

IL-8: 2,093 ± 583 vs. 491 ± 144 vs.

351 ± 117 pg/ml

LTB4: 78 ± 31 vs. 71 ± 11 vs. 23 ± 7

pg/ml

NF-κB activity: 100 ± 4 vs. 55 ± 3 vs.

32 ± 5%

Yang et al. (2010) <14 – 10 /5 10 4 1.07 ± 0.17 →

0.51 ± 0.05

– – Beractant and

budenoside

AEC necrosis score: 4 (4) vs. 2.5 (2–3) vs.

2.5 (2–3)

Lung injury score: 27.5 vs. 15 vs. 14

Preuß et al.

(2012b) (triple-hit:

lavage

overventilation

LPS)

3–6 15 ± 2 30 /6 7 72 1.3 ± 0.2 →

0.5 ± 0.2

51 ± 11 →

99 ± 40

– Poractant alfa and

IP3♦
Tissue aSMase activity: 2.6 ± 0.3 vs.

1.9 ± 0.2 vs. 1.6 ± 0.2 nmol/g/h

Tissue ceramide: 2.4 ± 0.4 vs. 2.1 ± 0.3

vs. 1.6 ± 0.4 nmol/mg

Tissue caspase-8: 100 vs. 76 ± 8 vs.

60 ± 14%

AEC apoptosis: 15 ± 2 vs. 14 ± 2 vs.

7 ± 2%

Tissue amphiregulin: 1.0 ± 1.6 vs.

1.5 ± 2.1 vs. 0.1 ± 0.1 rU

Tissue TGF-β1: 1.0 ± 0.8 vs. 0.9 ± 0.6 vs.

0.02 ± 0.01 rU

Tissue IL-6: 1.0 ± 0.5 vs. 2.0 ± 1.3 vs.

0.05 ± 0.01 rU

CD14+/18+: 281 ± 61 vs. 264 ± 38 vs.

116 ± 16 × 103/µl

(Continued)
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TABLE 12 | Continued

References Age

(days)

Lavages

(n)

Volume

(ml/kg)

PIP/PEEP*

(mbar)

V#
T

(ml/kg)

study l.$

(h)

C§
rs

(ml/mbar/kg)

R¶
rs

(mbar/l*sec)

FRC† (ml/kg) Intervention Immunologic response

Preuß et al.

(2012a) (triple-hit:

lavage

overventilation

LPS)

3–6 16 ± 3 30 /6 7 72 1.2 ± 0.2 →

0.5 ± 0.2

57 ± 18 →

109 ± 49

– Poractant alfa and

PIP2◦
Cells: 555 ± 238 vs. 379 ± 179 vs.

149 ± 130 × 103/µl

CD14+/18+: 331 ± 96 vs. 244 ± 46 vs.

99 ± 30 × 103/µl

Tissue amphiregulin: 1.0 ± 1.3 vs.

1.8 ± 2.2 vs. 0.1 ± 0.1 rU

Tissue TGF-1β: 1.0 ± 0.6 vs. 0.9 ± 0.7 vs.

0.02 ± 0.01 rU

Tissue IL-6: 1.0 ± 0.5 vs. 2.3 ± 1.4 vs.

0.003 ± 0.001 rU

Tissue aSMase activity: 2.6 ± 0.3 vs.

1.9 ± 0.2 vs. 1.8 ± 0.2 nmol/g protein/h

Tissue ceramide: 2.4 ± 0.4 vs. 2.1 ± 0.2

vs. 2.0 ± 0.5 nmol/mg

Qin et al. (2013) ? ? 35 10 → 20/2

→ 4

? 48 – – – CMV vs. HFOV
⋂

Lesser AEC migration, lesser giant lamellar

bodies, lesser vacuoles and cell

polymorphisms

Fu et al. (2013) 0–3 – 35 10 → 20/2

→ 4

? 48 – – – CMV vs. HFOV Alveolar macophages: 76 ± 14 vs.

69 ± 8%

Alveolar red blood cells: 380 ± 15 vs.

230 ± 18/100 alveoli

Yang et al. (2013) 7–14 ? 10 /5 8 24 0.74 ± 0.03 →

0.46 ± 0.02

– – Surfactant and

Budenoside

IL-1β: 27 ± 7 vs. 30 ± 13 pg/ml

TNF-α: 1.0 ± 0.2 vs. 0.9 ± 0.2 ng/ml

Lung injury score: 15 (12–18) vs. 12 (7–13)

Preuß et al. (2014)

(triple-hit: lavage

overventilation

LPS)

3–6 15 ± 1 30 /6 7 72 1.16 ± 0.31 →

0.30 ± 0.06

60 ± 18 →

112 ± 52

– Poractant alfa and

DOPG

R sPLA2: 2.0 ± 0.3 vs. 0.9 ± 0.2 vs.

0.2 ± 0.2 pg/ml

TNF-α: 0.24 ± 0.05 vs. 0.19 ± 0.01 vs.

0.10 ± 0.01 pg/ml

Cells: 448 ± 222 vs. 457 ± 228 vs.

73 ± 79 × 103/µl

CD14+/18+: 287 ± 58 vs. 340 ± 65 vs.

52 ± 6 × 103/µl

(Continued)
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TABLE 12 | Continued

References Age

(days)

Lavages

(n)

Volume

(ml/kg)

PIP/PEEP*

(mbar)

V#
T

(ml/kg)

study l.$

(h)

C§
rs

(ml/mbar/kg)

R¶
rs

(mbar/l*sec)

FRC† (ml/kg) Intervention Immunologic response

Tissue amphiregulin: 1.0 ± 1.7 vs.

0.6 ± 0.7 vs. 0.1 ± 0.2 rU

Tissue TGF-β1: 1.0 ± 0.8 vs. 1.4 ± 0.8 vs.

0.02 ± 0.01 rU

AEC apoptosis: 30 ± 13 vs. 35 ± 10 vs.

15 ± 6 of 200 AEC

Spengler et al.

(2018) (triple-hit:

lavage

overventilation

LPS)

2–7 17 ± 2 30 /6 7 72 1.2 ± 0.4 →

0.4 ± 0.1

71 ± 19 →

150 ± 62

– Poractant alfa and

IP3, PIP2,

POPG�,

R

DOPG

Tissue aSMase activity: 49 ± 4 vs. 42 ± 5

vs. 20 ± 3 vs. 32 ± 2 vs. 40 ± 7 vs.

40 ± 3 nmol/mg/h

Tissue ceramide: 1.2 ± 0.2 vs. 1.1 ± 0.1

vs. 0.6 ± 0.1 vs. 1.0 ± 0.1 vs. 1.1 ± 0.1

vs. 1.1 ± 0.1 pmol/mg

Tissue NLRP3∞: 100 ± 7 vs. 91 ± 9 vs.

32 ± 9 vs. 87 ± 6 vs. 82 ± 12 vs.

81 ± 9%

Tissue caspase-1: 100 ± 5 vs. 91 ± 23

vs. 35 ± 13 vs. 88 ± 16 vs. 103 ± 21 vs.

84 ± 18%

Further data from (Spengler et al., 2018): tissue IL-1β: 100 ± 11 vs. 99 ± 17 vs. 33 ± 16 vs. 86 ± 24 vs. 92 ± 19 vs. 75 ± 16%, Tissue IL-18: 100 ± 12 vs. 99 ± 17 vs. 34 ± 8 vs. 97 ± 17 vs. 95 ± 14 vs. 80 ± 24%, Tissue IκBα:

8 ± 4 vs. 12 ± 7 vs. 66 ± 16 vs. 50 ± 15 vs. 31 ± 9 vs. 26 ± 6%, Tissue IκB-kinase: 99 ± 4 vs. 88 ± 4 vs. 23 ± 12 vs. 33 ± 11 vs. 54 ± 21 vs. 65 ± 15%, Tissue TGF-β1: 103 ± 2 vs. 97 ± 7 vs. 36 ± 12 vs. 95 ± 24 vs. 93 ± 25 vs.

85 ± 34%, Tissue IFN-γ: 100 ± 13 vs. 90 ± 13 vs. 26 ± 15 vs. 89 ± 21 vs. 94 ± 14 vs. 76 ± 21%, Tissue elastin: 101 ± 5 vs. 97 ± 6 vs. 49 ± 5 vs. 85 ± 7 vs. 83 ± 14 vs. 51 ± 8%, Tissue MMP-1≡: 101 ± 6 vs. 91 ± 13 vs. 43 ± 7

vs. 65 ± 17 vs. 80 ± 17 vs. 52 ± 12%, Albumin: 378 ± 36 vs. 368 ± 16 vs. 109 ± 15 vs. 357 ± 24 vs. 327 ± 16 vs. 124 ± 9µg/ml, Blood SP-D: 326 ± 19 vs. 326 ± 13 vs. 65 ± 7 vs. 288 ± 16 vs. 260 ± 17 vs. 126 ± 6 ng/ml, AEC

apoptosis: 15 ± 5 vs. 21 ± 6 vs. 12 ± 2 vs. 11 ± 3 vs. n.d. vs. 9 ± 3%, MMP-8≡: 26 ± 8 vs. 24 ± 4 vs. 4 ± 0.5 vs. 23 ± 7 vs. 25 ± 8 vs. 5 ± 1 ng/ml, sPLA2: 20 ± 10 vs. 15 ± 6 vs. 13 ± 11 vs. 12 ± 11 vs. 28 ± 8 vs. 27 ± 9 pg/ml.
*PIP/PEEP, peak inspiratory pressure/positive end-exspiratory pressure; #VT , tidal volume;

$study l., study length; §Crs, compliance of the respiratory system:
¶Rrs, resistance of the respiratory system;

†
FRC, functional residual capacity;

‡KL4, synthetic surfactant containing DPPC and a synthetic SP-B derivate; πFC-77, perfluorocarbon for liquid ventilation; 1AEC, alveolar epithelial cells; ¢rU, relative units;
∫
TLC, total lung capacity; ¬OLC-ventilation on GBS it,

open lung concept ventilation secondary to additional intratracheal instillation of group B streptococci; ∼ SA/LA-ratio, small aggregate/large aggregate surfactant ratio; ¤ IKK-NBD peptide, NF-κB antibody; △MK886, 5-lipoxygenase

inhibitor; ∧aU, arbitrary units; xaSMase, acid sphingomyelinase; ♦ IP3, myo-inositol-1,2,6-trisphosphate; ◦PIP2, L-α-phosphatidyl-L-myo-inositol-3,5-bisphosphate;
⋂
CMV/HFOV, conventional mechanical ventilation/high-frequency

oscillatory ventilation;

R

DOPG, 18:1/18:1-dioeoyl-phosphatidylglycerol; �POPG, palmitoyl-oleoyl-phosphatidylglycerol; ∞NLRP3, nucleotide-binding domain, leucine-rich repeat-containing protein-3 (inflammasome); ≡MMP-1/8, matrix

metalloproteinase-1; n.d., not determined.

PIP/PEEP, Crs, Rrs, FRC, immunologic response: arrow (→ ) delineates changes by the lung injury protocol (i.e., repeated airway lavage); vs. delineates differences secondary to a specific intervention (first place control group, second

place intervention group data).

Immunologic response parameters are from broncho-alveolar lavage fluid (BALF) unless specified otherwise.
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TABLE 13 | Newborn animal models of acute respiratory distress syndrome (NARDS) involving mechanical ventilation.

Species Availability Costs Clinical

relevance

Max. period of

mechanical

ventilation (d)

Common types of

lung injury (see

below)

TLR4 HVR* (%) Pulmonary

intravascular

macrophages

LPS# sensitivity

Baboon Scarce Very high Very high 28 IRDS1, HO2 95 Few3$ Intermediate

Pig Good Intermediate High 4 L, OV, ITLPS, MAS,

HO, IPI

∼804 Yes5 Intermediate6

Sheep Seasonal High High <1 IRDS, IT/ALPS, HCL9,

MAS10, IPI11, HO12

83–857 Yes3,5 High8

Rabbit Good Low Low <1 L, MAS13 57 No Intermediate

Guinea pig Good Low Low <1 IRDS, HO ? No Low

Rat Good Low Low <1 HO14, OV15, HCL15,

IPLPS17

48 No$ Low16

*TLR4 HVR, similarity with the human hypervariable region of Toll-like receptor 4 expressed in percent; #LPS, lipopolysaccharide; $few/no, pulmonary intravascular macrophages may

be induced, such as in human kind.

Common types of lung injury: IRDS, respiratory distress syndrome of the premature infant (surfactant deficiency, immature alveolarization, precursor of bronchopulmonary dysplasia);

HO, hyperoxia/exposure to 100% O2 (epithelial injury, PMNL infiltration, epithelial-to-mesenchymal transition); L, lavage with normal saline (surfactant depletion, PMNL and macrophage

infiltration, impaired lung volumes and lung mechanics); OV, overventilation (disruption of alveolar structures, epithelial-to-mesenchymal transition); ITLPS, intratracheal LPS (PMNL

infiltration, cytokine storm), MAS, meconium aspiration syndrome (pulmonary hypertension, impaired lung mechanics, release of reactive oxygen species and sPLA2 ); IPI, infectious

pathogen instillation (increased permeability, interstitial and alveolar edema, PMNL infiltration); IA/PLPS, intraamniotic/intraperitoneal LPS (PMNL infiltration, cytokine storm); HCL,

hydrochloric acid lavage (disruption of alveolar and capillary structures, PMNL infiltration).
1Yoder et al. (2000), 2Lee et al. (2005), 3Brain et al. (1999), 4Palermo et al. (2009), 5Cantu et al. (2006), 6Spengler et al. (2018), 7Hillman et al. (2008), 8Polglase et al. (2008), 9Cox et al.

(2002), 10Foust III et al. (1996), 11Larios Mora et al. (2015), 12Kumar et al. (2010), 13Mokra et al. (2016), 14Wu et al. (2019), 15Sly et al. (2013), 16Liu et al. (2013), 17Trummer-Menzi

et al. (2012).

the advantage of being able to transfer findings from neonatal to
more mature animal models (Schouten et al., 2015).

Future Direction: Customizing Innate
Immunity
In the majority of cases NARDS is elicited by the invasion of
PAMPS (pathogen-associated molecular patterns) into the lungs
which may be bacteria, meconium, droplets of bile, amniotic
fluid, or swallowed blood among others. These pathogens may
be bound by macrophages with the help of surface lectins or
Toll-like receptors also inducing macrophage activation. The
surfactant proteins A and D are collectins and provide a first
line defense next to molecules of the ficolin and pentraxin
families which act as opsonins together with the complement
system. Of paramount significance is the early invasion of
PMNL to the site of inflammation (alveolar epithelium, capillary
endothelium of the lung) mediated by CAMs (cellular adhesion
molecules, interaction with PMNL integrins) and selectins
(interaction with carbohydrate ligands). In addition, cytokines,
such as TNF-α, IL-1β, and chemokines move PMNL and plasma
molecules to the site of inflammation or tissue damage. The
clearance of pathogens and cell debris is followed by remodeling
and regeneration of pulmonary tissue including epithelial-
to-mesenchymal transition (EMT) and the proliferation and
mobilization of fibroblasts (being responsible for the rapidly
declining Crs (compliance of the respiratory system) after some
days of mechanical ventilation).

Limiting damage and repair of lung tissue by the newborn
organism’s innate immunity without completely uncoupling the
means of defense—especially in case of infectious pathogens—
seems to be the distinguished task for future research by the use
of the piglet lavage/meconium aspiration model. Considering the

complexity of the innate immunity as very shortly outlined above,
many approaches are possible but should probably tackle major
anti-inflammatory pathways instead of single—even important—
molecules to overcome the phenomenon of redundant activation
of e.g., many cytokines [such as blocking IL-8 by specific
antibodies may upregulate IL-8 production in experimental
NARDS (Ankermann et al., 2005b)].

Conclusions
The newborn piglet serves as an excellent, robust animal model
to study severe neonatal lung diseases with high mortality. The
research of three decades has described a myriad of physiological
and immunological parameters of the newborn piglet as one
of the best studied animal models ever. Most of the clinical,
physiological, biological, and pathological changes in NARDS
can be also found in the two well-established models presented
here: the meconium aspiration model and the lavage model.
While most of the research was conducted in the last decade
and has slowed down lately, many new insights into the innate
immune system should bring up new treatments to specifically
tackle important pro-inflammatory upstream pathways. For the
benefit of many newborns with life-threatening nARDS future
research on the newborn piglet models may greatly help to
conquer new specific treatment modalities.
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