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Heat acclimation is associated with plasma volume (PV) expansion that occurs within the 
first week of exposure. However, prolonged effects on hemoglobin mass (Hbmass) are 
unclear as intervention periods in previous studies have not allowed sufficient time for 
erythropoiesis to manifest. Therefore, Hbmass, intravascular volumes, and blood volume 
(BV)-regulating hormones were assessed with 5½ weeks of exercise-heat acclimation 
(HEAT) or matched training in cold conditions (CON) in 21 male cyclists [(mean ± SD) age: 
38 ± 9 years, body weight: 80.4 ± 7.9 kg, VO2peak: 59.1 ± 5.2 ml/min/kg]. HEAT (n = 12) 
consisted of 1 h cycling at 60% VO2peak in 40°C for 5 days/week in addition to regular 
training, whereas CON (n = 9) trained exclusively in cold conditions (<15°C). Before and 
after the intervention, Hbmass and intravascular volumes were assessed by carbon monoxide 
rebreathing, while reticulocyte count and BV-regulating hormones were measured before, 
after 2 weeks and post intervention. Total training volume during the intervention was 
similar (p = 0.282) between HEAT (509 ± 173 min/week) and CON (576 ± 143 min/week). 
PV increased (p = 0.004) in both groups, by 303 ± 345 ml in HEAT and 188 ± 286 ml in 
CON. There was also a main effect of time (p = 0.038) for Hbmass with +34 ± 36 g in HEAT 
and +2 ± 33 g in CON and a tendency toward a higher increase in Hbmass in HEAT 
compared to CON (time × group interaction: p = 0.061). The Hbmass changes were weakly 
correlated to alterations in PV (r = 0.493, p = 0.023). Reticulocyte count and BV-regulating 
hormones remained unchanged for both groups. In conclusion, Hbmass was slightly 
increased following prolonged training in the heat and although the mechanistic link 
remains to be  revealed, the increase could represent a compensatory response in 
erythropoiesis secondary to PV expansion.
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INTRODUCTION

Natural heat acclimatization as well as laboratory-based heat 
acclimation translates into plasma volume (PV) expansion within 
the first few days of exposure (Périard et  al., 2016). Longer 
intervention periods are typically required for the corresponding 
expansion in red blood cell volume (RBCV) and total hemoglobin 
mass (Hbmass) (Siebenmann et  al., 2017b; Montero and Lundby, 
2018) but are still desirable due to the potential for elevating 
arterial O2 delivery and improving endurance performance 
(Ekblom et  al., 1972; Montero et  al., 2015). Previous studies 
have, however, employed relatively short heat acclimation 
protocols leaving limited time for erythropoiesis to compensate 
for the hemodilution accompanying the initial PV expansion 
(Patterson et  al., 2004; Keiser et  al., 2015; McCleave et  al., 
2017; Rendell et al., 2017). Therefore, we tested whether exercise 
training in the heat, i.e., exercise-heat acclimation performed 
over a period of 5½  weeks, elicits higher Hbmass.

RBCV and Hbmass expand in response to conventional endurance 
training (ET) which manifests after 4–6 weeks of ET in untrained 
individuals (Montero et  al., 2015, 2017). In endurance athletes 
with high Hbmass, on the other hand, this effect is blunted 
throughout the season or after intense training periods (Gore 
et al., 1997; Prommer et al., 2008) and additional environmental 
or cardiovascular stressors may be  required to prompt Hbmass 
expansion further in such athletes. Therefore, hypoxic exposure 
or altitude training are strategies that are commonly employed 
by athletes, although their use is highly debated (Lundby and 
Robach, 2016; Bejder and Nordsborg, 2018). Prolonged exercise-
heat acclimation is an alternative approach that potentially 
increases Hbmass which however remains to be  explored.

A potential mechanism underlying an expansion in Hbmass may 
relate to the early PV expansion concomitant to exercise-heat 
acclimation as the reduced hematocrit, and thus arterial O2 content, 
triggers the release of erythropoietin (EPO) from the kidney 
(Adamson, 1968; Montero and Lundby, 2019). Indeed, the kidney 
has been proposed to act as a “critmeter,” regulating hematocrit 
by adjusting RBCV and PV mediated by EPO (Donnelly, 2001). 
Also, increased PV after 2 weeks of ET coincides with elevated 
EPO while RBCV remains unaffected which supports that a 
reduced hematocrit due to a sole expansion in PV may regulate 
erythropoiesis (Montero et  al., 2017). It is also noteworthy that 
key PV-regulating hormones, e.g., vasopressin and angiotensin II 
exert direct effects on erythropoiesis (Engel and Pagel, 1995; Kim 
et al., 2014; Montero and Lundby, 2018). Thus, both an expansion 
in PV but also the changes in PV-regulating hormones could 
ultimately affect Hbmass. We therefore conducted the present study 
to test the hypothesis that exercise-heat acclimation for 5½ weeks 
would stimulate erythropoiesis and increase total Hbmass in 
endurance-trained individuals and aimed at identifying some of 
the potential underlying hormonal and hematological mechanisms.

MATERIALS AND METHODS

The presented data were obtained as part of a large study 
exploring the effects of prolonged exercise-heat acclimation on 

performance and the underlying hematological mechanisms. 
For performance data, the reader is referred to the accompanying 
paper submitted in this issue (Mikkelsen et al., 2019, submitted). 
The study protocol was approved by the ethical committee of 
the Capital Region of Denmark (H-17036662) and conformed 
to the Declaration of Helsinki.

Participants
Twenty-one healthy, endurance-trained, male cyclists provided 
oral and written consent for participation and were included 
in this study (Table 1). All participants conducted their regular 
cycling training during the preceding 3 months in cold 
temperatures outside (winter: <15°C) and were thus not heat 
acclimatized prior to commencement of the intervention.

Study Design
Participants first underwent baseline testing consisting of blood 
sampling and determination of body composition, peak oxygen 
uptake (VO2peak), Hbmass, and intravascular volumes. After 
baseline measurements, participants were age- and VO2peak-
matched into two groups which were thereafter randomly 
assigned as the exercise-heat acclimation (HEAT, n  =  12) or 
the control (CON, n  =  9) group. Participants then completed 
the 5½-week intervention period, where after blood sampling 
and determination of Hbmass and intravascular volumes was 
repeated. In addition, blood sampling was conducted after 
2  weeks into the intervention period prior to an exercise 
training session.

Intervention
HEAT conducted 1  h of cycling in a climatic chamber on 5 
weekly occasions for 5½  weeks (28  ±  2 sessions in total). 
Temperature in the climatic chamber corresponded to 35°C 
in the first week and was augmented by 1°C each week (relative 
humidity of 30  ±  8%). This gradual increment in temperature 
provided a constant adaptation stimulus and resulted in a rectal 
temperature of >38.5°C after 35  ±  8  min of training during 

TABLE 1 | Participant characteristics at baseline.

HEAT (n = 12) CON (n = 9)

Age (years) 38.8 ± 8.9 37.7 ± 9.3
Body mass (kg) 80.2 ± 6.3 80.6 ± 9.5
Height (cm) 185 ± 3 184 ± 4
Body fat (%) 13.7 ± 4.0 14.7 ± 2.9
VO2peak (L/min) 4.8 ± 0.4 4.6 ± 0.4
VO2peak (ml/min/kg) 60.0 ± 5.1 57.9 ± 5.1
Training volume pre  
(min/week)

417 ± 105 499 ± 164

Training volume during 
(min/week)

509 ± 173 576 ± 143

Training volume > 80% 
HRmax pre (min/week)

102 ± 71 102 ± 55

Training volume > 80% 
HRmax during (min/week)

157 ± 90 122 ± 57

HRmax, maximal heart rate; VO2peak, peak oxygen uptake.
Pre refers to before the intervention. Data are presented as mean ± SD.
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all training sessions. Airflow was provided by a fan only if 
the participant could not complete the training otherwise and 
participants were allowed to drink warm water ad libitum 
during the training. CON maintained their regular outdoor 
training (<15°C) but reported to the laboratory once a week 
and cycled in cold conditions (<15°C) to maintain familiarization 
to stationary cycling. All training sessions in the laboratory, 
i.e., in the climatic chamber for HEAT, consisted of cycling 
at 60% VO2peak as determined in cold conditions (~15°C) and 
were conducted on the participants’ personal bikes using a 
stationary Tacx-trainer device (Tacx Neo Smart T2800; Tacx, 
Netherlands) and associated software (Tacx Trainer software 
4; Tacx, Netherlands). Participants in both groups completed 
a training log to quantify their training volume and intensity 
(assessed by heart rate) 2  weeks prior to the intervention and 
2  weeks into the intervention. Participants were instructed to 
maintain their training routine throughout the intervention 
but to subtract the training hours performed in the laboratory 
from their regular training. This resulted in similar training 
volumes between HEAT and CON.

Measurements
Body Composition
Baseline body mass and fat percentage were assessed by 
bioimpedance (InBody 270; InBody, Denmark).

Peak Oxygen Uptake
An incremental exercise test was performed to determine 
VO2peak. The test was conducted on the participants’ personal 
bikes, which were installed on a stationary Tacx-trainer device 
(Tacx Neo Smart T2800; Tacx, Netherlands). Following a 10 min 
warm up with 5  min at 100  W and 5  min at 175  W (80 
RPM), workload was increased by 25  W/min until exhaustion. 
VO2 and VCO2 were obtained by breath-by-breath recordings 
(Jaeger Oxycon Pro; Viasys Healthcare, Germany). The gas 
analyzers and the flowmeter were calibrated before each test. 
A plateau in VO2 despite increased workload and/or attainment 
of a respiratory exchange ratio (RER)  ≥  1.15 served as test 
validation criteria. VO2peak was defined as the highest observed 
value over a 30s-period.

Hemoglobin Mass and Intravascular Volumes
Hbmass and intravascular volumes were assessed using the 
carbon monoxide (CO) rebreathing technique (Siebenmann 
et  al., 2017a). For some of the participants (n  =  11), an 
automated version of the CO rebreathing (OpCO; Detalo 
Health, Denmark) was used. The same method (manual/
automated) was applied for intra-individual pre-post 
comparisons and the distribution of which technique was 
used was random among HEAT (n  =  7) and CON (n  =  4). 
The procedure was as follows: the participant rested for 20 min 
in the supine position before each measurement. During this 
time, the participant drank 500  ml of water and an 18-G 
venous catheter was placed into an antecubital vein. The 
participant was then connected to a breathing circuit and 
breathed 100% O2 for 4  min. 2  ml of blood were sampled 

and analyzed immediately in quadruplicates for (1) percent 
carboxyhemoglobin (%HbCO) and hemoglobin concentration 
([Hb]) (ABL835; Radiometer, Denmark) and (2) hematocrit 
with the microcentrifuge method (4  min at 13,500 RPM). 
Subsequently, the participant was switched by a sliding valve 
to a O2-filled rebreathing circuit and a bolus of 1.5  ml/kg 
body weight of 99.997% chemically pure CO (CO N47; 
Strandmøllen, Denmark) was administered to the rebreathing 
circuit. O2 was supplied into this circuit on a demand basis. 
The participant rebreathed the O2-CO gas mixture for 10 min. 
A second blood sample was obtained after 10  min of CO 
rebreathing and analyzed in quadruplicates for %HbCO. The 
remaining CO volume in the rebreathing circuit was determined 
as previously specified (Siebenmann et  al., 2017a) and was 
subtracted from the applied CO dose. For the calculation of 
Hbmass, the absorbed CO dose and the changes in %HbCO 
from before to after rebreathing were used. Total blood volume 
(BV), RBCV, and PV were then derived from Hbmass, [Hb], 
and hematocrit (Burge and Skinner, 1995).

Blood Sampling and Analyses
Venous blood was collected in EDTA-coated tubes for analyses 
of [Hb] and reticulocyte count (Sysmex XN; Sysmex Europe, 
Germany) on whole blood. Furthermore, 2  ml of blood was 
collected in a heparinized syringe (PICO50; Radiometer, Denmark) 
to analyze blood electrolyte concentration with an automated 
hemoximeter (ABL835; Radiometer, Denmark). A third blood 
sample was obtained in a sodium heparin-coated vacutainer. 
After centrifugation, plasma was collected and stored at −80°C 
until further analysis. Plasma EPO was determined with an 
ELISA kit (Human Erythropoietin Quantikine IVD ELISA Kit; 
R&D Systems, USA) with an intra-assay coefficient of variation 
(CV) of 2.8–5.2% and inter-assay CV of <1%. Plasma protein 
and albumin concentrations were measured with an automated 
analyzer (Cobas 8,000, c702 modul; Roche, Germany) with an 
intra- and inter-assay CV of <5%. Total protein and albumin 
were calculated by multiplying the respective concentrations 
with PV. Plasma copeptin as a more stable proxy for vasopressin 
was determined using an automated immunofluorescent assay 
(Thermo Fisher Scientific BRAHMS; Germany) (Alehagen et al., 
2011), while pro-ANP was measured with a mid-regional assay 
on a Kryptor Plus platform (Thermo Fisher Scientific BRAHMS; 
Germany) (Hunter et  al., 2011), both with intra- and inter-
assay CV of <6.5%.

Statistical Analyses
All statistical analyses were performed using SPSS 22 (IBM 
SPSS Statistics, USA). Figures were made using GraphPad Prism 
8.0.0 (GraphPad Software; USA). Power calculations before the 
onset of the study estimated that a sample size of n  ≥  9  in 
each group would allow detecting a meaningful change in 
Hbmass. Prior to analyses, data were evaluated for normality 
and equal variance and were log-transformed if required. 
Independent t-test was applied to assess differences in training 
volume between HEAT and CON. The influence of HEAT on 
the effects of ET on Hbmass, intravascular volumes and 
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FIGURE 1 | Hbmass and intravascular volumes with exercise-heat acclimation (HEAT) or matched control training (CON). (A) hemoglobin mass (Hbmass), (B) red blood 
cell volume (RBCV), (C) plasma volume (PV), (D) blood volume (BV).

hematological parameters was assessed with a two-way repeated 
measures ANOVA. Main effects of time (pre-post ET) as within-
subject factor and of group (HEAT-CON) as between-subject 
factor were determined along with the corresponding interactions. 
In addition, Pearson’s correlation coefficient was computed to 
assess associations between hematological parameters. Data are 
expressed as means ± standard deviation (SD). p <0.05 was 
considered statistically significant.

RESULTS

Heat acclimation in HEAT was verified by improved exercise 
tolerance in the heat and lowered sweat sodium concentration, 
while no signs of heat acclimation were observed for CON 
[see Mikkelsen et  al. (2019), submitted, for details].

Hemoglobin Mass and  
Intravascular Volumes
Hbmass increased in both groups (p  =  0.038) but this increase 
tended (p  =  0.061) to be  larger in HEAT (+3.2  ±  3.3% from 
1,052  ±  97 to 1,085  ±  108  g) than in CON (+0.2  ±  3.2% 
from 983 ± 137 to 985 ± 141 g) (Figure 1A). RBCV increased 
in both groups (p = 0.006) from 3,136 ± 295 to 3,270 ± 364 ml 
(+4.2 ± 4.2%) in HEAT and from 2,888 ± 395 to 2,929 ± 453 ml 
(+1.3  ±  3.3%) in CON (Figure 1B). Also, PV increased in 
both groups (p  =  0.004) from 4,091  ±  506 to 4,394  ±  626  ml 
(+7.6 ± 8.7%) in HEAT and from 4,012 ± 569 to 4,200 ± 471 ml 
(+5.3 ± 7.5%) in CON (Figure 1C). As a result of the elevated 
RBCV and PV, BV was expanded (p = 0.001) from 7,227 ± 725 
to 7,664 ± 876 ml (+6.1 ± 5.9%) in HEAT and from 6,900 ± 884 
to 7,130  ±  858  ml (3.5  ±  4.6%) in CON (Figure 1D). There 
was no time × group interaction for RBCV, PV or BV.
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General Hematological Characteristics 
and Plasma Hormones
Hematocrit, [Hb] and reticulocyte count remained unaffected 
throughout the intervention in both groups (Table 2). There 
was an effect of time for mean corpuscular hemoglobin 
concentration (p  =  0.015) and for plasma albumin (p  =  0.014) 
and protein concentration (p  =  0.028), however, no effect of 
group or interaction of time ´ group were detected. Likewise, 
total albumin and protein content increased in both groups 
(p  =  0.004 and p  <  0.001, respectively). Plasma EPO, pro-ANP 
and copeptin remained unchanged. Furthermore, blood sodium, 
chloride, calcium and potassium concentrations were unchanged 
in both groups.

Correlations
We pooled HEAT and CON to examine whether the expansion 
in PV is correlated to accentuated erythropoiesis and found that 
changes in PV were weakly associated with altered Hbmass in 
response to the intervention (Figure 2A). Furthermore, hematocrit 
determined before and after the intervention was negatively 
associated with plasma EPO at these time points (Figure 2B) 
and similarly, there was a tendency toward a negative association 
(r  =  −0.416, p  =  0.076) between [Hb] and EPO determined at 
2 weeks into the intervention. However, no association of copeptin 
and pro-ANP with EPO was detected at any time point.

DISCUSSION

The present study provides a detailed picture of the hematological 
adaptations to prolonged exercise-heat acclimation and we report 
a 3% increase in Hbmass following heat acclimation corresponding 
to a change of +34 g (range: −17 to 114 g) for HEAT compared 
to +2  g (range: −50 to 61  g) for CON. This observation is 
in agreement with our hypothesis, although we  only observed 
a tendency toward a higher increase in Hbmass after exercise-
heat acclimation compared to matched training in cold conditions. 
The Hbmass expansion was weakly correlated to the overall PV 

change, indicating that the PV expansion is accompanied by 
an elevation of total Hbmass. Hence, we suggest that in endurance-
trained individuals with high Hbmass, heat imposed on ET may 
trigger a further erythropoietic stimulus, leading to additional 
Hbmass expansion.

Studies on the adaptation of Hbmass to heat exposure are 
rare and equivocal. Although, some report unchanged Hbmass 
in response to 10 or 21  days of exercise-heat acclimation 
(McCleave et  al., 2017; Rendell et  al., 2017), we  hypothesized 
these training durations were insufficient to elicit increased 
erythropoiesis. A reason for this hypothesis was that higher 
RBCV and Hbmass is only detected after >4 weeks of conventional 
ET in untrained individuals (Montero et  al., 2017). Indeed, 
in the present study, 5½  weeks of exercise-heat acclimation 
elicited a slight expansion of 34  g, whereas Hbmass in CON 
remained similar with +2  g. This ∼3% Hbmass expansion in 
HEAT was greater than the typical error of measurement of 
the CO rebreathing we  observe in our laboratory when using 
the manual method (Siebenmann et al., 2015, 2017a) and when 
using the automated version (Fagoni et al., 2018). Higher Hbmass 
has also previously been reported ∼3½ weeks after the initiation 
of an exercise-heat acclimatization period (Karlsen et al., 2015). 
Opposite to exercise-heat acclimation as in the present study, 
participants were residing and training in a natural hot 
environment thus heat exposure time was substantially longer. 
However, similar exercise-heat acclimatization has also resulted 
in unaltered Hbmass (Gore et al., 1997). Hence, whether exercise-
heat acclimatization manifests in erythropoietic adaptation 
remains controversial. Overall, applying exercise-heat acclimation, 
i.e. laboratory-based intermittent heat exposure appears to 
trigger an erythropoietic response and may be  easier to 
implement, as it does not involve traveling to hot areas and 
allows furthermore to carefully control for exposure temperature 
and humidity.

It is recognized that heat exposure and undergoing exercise-
heat acclimation or acclimatization results in an expansion of 
PV between 3 and 27% within the first days of exposure (Périard 
et  al., 2016). We  observed that exercise-heat acclimation may 
furthermore pose an erythropoietic stimulus. In fact, the  

TABLE 2 | Hematological characteristics and plasma hormone concentrations.

HEAT CON

Pre Mid Post Pre Mid Post

[Hb] (g/dl) 14.5 ± 0.9 14.6 ± 1.0 14.3 ± 1.0 14.0 ± 1.0 14.4 ± 0.9 14.2 ± 0.8
Hematocrit (%) 43.5 ± 2.5 — 42.8 ± 3.2 41.9 ± 2.8 — 41.0 ± 2.6
Reticulocytes (109/L) 52.0 ± 8.9 59.3 ± 14.8 54.8 ± 16.2 55.3 ± 14.1 60.4 ± 12.8 54.8 ± 16.3
MCHC (g/dl) 33.4 ± 0.9 — 34.1 ± 2.0 33.4 ± 1.3 — 35.3 ± 2.5
Plasma proteins (g/L) 73.2 ± 3.9 75.7 ± 5.3 74.6 ± 2.6 74.4 ± 3.4 78.4 ± 4.9 76.3 ± 2.7
TCP (g) 298 ± 29 — 327 ± 46 297 ± 34 — 321 ± 38
Albumin (g/L) 42.8 ± 2.1 44.5 ± 2.8 42.5 ± 2.0 43.3 ± 3.0 45.0 ± 5.2 43.8 ± 2.9
Total albumin (g) 175 ± 20 — 187 ± 27 173 ± 19 — 184 ± 20
Copeptin (pmol/L) 68.3 ± 26.2 65.0 ± 18.1 78.6 ± 27.4 59.7 ± 24.6 58.4 ± 27.1 65.2 ± 24.7
Pro-ANP (pmol/L) 5.71 ± 2.29 6.20 ± 3.24 5.57 ± 2.45 4.57 ± 1.72 4.30 ± 1.13 5.00 ± 1.82
EPO (mIU/ml) 9.3 ± 2.9 8.7 ± 1.7 9.4 ± 2.2 9.7 ± 2.3 9.4 ± 3.4 9.3 ± 1.8

EPO, erythropoietin; [Hb], hemoglobin concentration; MCHC, mean corpuscular hemoglobin concentration; TCP, total content of protein; Pro-ANP, pro-atrial natriuretic peptide.
Before (Pre), after 2 weeks (Mid) and after the intervention (Post). Results represent mean ± SD.
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higher Hbmass may be  a consequence of the exercise-heat 
acclimation-induced PV expansion (Montero and Lundby, 2018). 
The mechanistic basis for this was introduced with the concept 
of the kidney functioning as a “critmeter” that controls hematocrit 
by adjusting PV and RBCV, and thus stabilizes arterial O2 content 
(Donnelly, 2001). The mediating hormone is the glycoprotein 
EPO that is released upon renal tissue hypoxia resulting from 
hemodilution and promotes the production of red blood cells 
in the hematopoietic bone marrow (Jelkmann, 2011). Indeed, it 
is observed that the rise in EPO coincides with the expansion 
in PV after 2  weeks of ET (Montero et  al., 2017). In the present 
study, we  found that alterations in Hbmass were weakly correlated 
to PV changes when participants from HEAT and CON were 
included in the analysis. Furthermore, participants with low 
hematocrit possessed higher plasma EPO as previously reported 
for anemic individuals (Erslev, 1991). Thus, accumulating evidence, 
including our correlational data, points toward PV fluctuations 
being a driver of erythropoiesis. It needs to be  highlighted, 
however, that the tendency in higher Hbmass in HEAT was not 
reflected in any changes in plasma EPO or other BV-regulating 
hormones measured after 2 weeks and by the end of the intervention 

and the above hypothesis is only supported by the correlational 
analyses. Moreover, the [Hb] was unchanged after 2  weeks into 
the intervention period, indicating either normalized PV at this 
time point or partial Hbmass expansion already compensating for 
elevated PV. While the latter appears unlikely (Keiser et al., 2015; 
Rendell et  al., 2017), there is some evidence pointing toward 
only transient effects of exercise-heat acclimatization on PV 
(Wyndham et al., 1968). Since CO rebreathing was omitted during 
the intervention period, we  cannot conclude on the precise time 
course of Hbmass and intravascular volume adaptations to exercise-
heat acclimation. In addition, determination of the PV-regulating 
hormones pro-ANP and copeptin, a proxy measure of vasopressin, 
did not reveal any alterations.

The strong association between endurance performance and 
Hbmass implies that strategies to stimulate and induce an overall 
increase in Hbmass are commonly applied by endurance athletes 
(Gore et  al., 1997). A classic procedure is altitude training or 
“live high-train low”, where the hypoxia-induced augmented 
RBCV is observed to enhance performance (Stray-Gundersen 
and Levine, 2008), although more recent evidence questions 
this approach (Bejder and Nordsborg, 2018; Robach et  al., 
2018). Nonetheless, data showing Hbmass expansion with altitude 
training in individuals with a similarly high Hbmass as in the 
present study, report an increase of 5–6% (Robach and Lundby, 
2012), which is slightly higher than the +3% observed in the 
current study with prolonged exercise-heat acclimation. Notably, 
hypoxia leads to an early contraction in PV (Siebenmann et al., 
2017b), whereas exercise-heat acclimation is a training approach 
that circumvents this reduction in PV.

Eventually, the question arises as to whether the trend in 
higher Hbmass translated into better endurance performance. 
It is known that the infusion of packed red blood cells leads 
to improved VO2peak consequent of increased O2 transport 
capacity and facilitated cardiac output (Ekblom et  al., 1972). 
The autologous transfusion of ~135  ml red blood cells is 
furthermore sufficient to improve time trial performance by 
~5% in well-trained men (Bejder et  al., 2019). Considering 
that participants in HEAT in the present study had elevated 
RBCV by 134  ±  140  ml, some participants may indeed have 
benefitted from a performance effect in cold conditions. However, 
while there was an improved time trial performance in HEAT 
in cold conditions, the same was observed for CON and the 
intervention did not affect VO2peak [Mikkelsen et  al. (2019), 
submitted in this issue]. Yet, it has been suggested that VO2peak 
is elevated by ~4  ml/min for each1g rise in Hbmass (Schmidt 
and Prommer, 2010), which hypothetically would correspond 
to a mean increase in VO2peak of ~1.75  ml/min/kg (+3%) in 
HEAT. While this slight increment is of relevance for competing 
athletes, it is likely that our VO2 measurement was not sufficiently 
sensitive to detect this difference (Carter and Jeukendrup, 
2002). Taken together, even though Hbmass and thus O2 transport 
capacity tended to be  higher in HEAT than in CON, this did 
not manifest in better performance in the cold. Nonetheless, 
it is worthwhile investigating whether exercise-heat acclimation 
for even longer periods results in a gradual Hbmass expansion 
and whether that may ultimately improve endurance performance 
in the cold.

A

B

FIGURE 2 | Correlation of hematological parameters. (A) Changes in Hbmass 
and PV with the intervention (HEAT: red, CON: blue), (B) absolute EPO and 
hematocrit (values before and after the intervention pooled). EPO, 
erythropoietin; Hbmass, hemoglobin mass; PV, plasma volume.
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We acknowledge some limitations to our study. First, we only 
observed a tendency toward a modifying effect of exercise-heat 
acclimation on Hbmass. This tendency is likely related to the 
variation in the two groups and therefore limited statistical power 
may hinder us from drawing definite conclusions. Nevertheless, 
the time × group interaction was borderline significant (p = 0.061) 
and the inclusion of a carefully matched control group (VO2peak, 
age, and training volume) is considered as a major strength of 
the study design. Secondly, we  were not able to pinpoint the 
time course of erythropoietic adaptation to exercise-heat 
acclimation, as reticulocyte count and EPO remained unaltered 
at 2  weeks of exercise-heat acclimation. This is in contrast to 
conventional ET, where EPO peaks after 2  weeks and thereafter 
returns to baseline (Montero et  al., 2017). However, at altitude, 
a steep rise in EPO is detected already after 24  h of exposure 
whereafter it normalizes (Lundby et  al., 2014) and it thus may 
be that the erythropoietic stimulus in the present study occurred 
earlier. Thirdly, we  hypothesized that the expansion in PV is a 
mechanism underlying the higher Hbmass. However, we  only 
revealed a weak correlation between alterations in PV and Hbmass 
and we  can thus only speculate on a potential association of 
the PV expansion with the higher Hbmass. Accordingly, there is 
need for further experimental verification in humans (Montero 
and Lundby, 2018). Ultimately, even though participants in the 
present study were endurance-trained, they did not reach the 
very high Hbmass values of professional endurance athletes 
(Jelkmann and Lundby, 2011). Given that it appears challenging 
to augment erythropoiesis in athletes with high initial Hbmass 
(Robach and Lundby, 2012), it remains to be examined whether 
prolonged exercise-heat acclimation in professional endurance 
athletes is feasible and beneficial for Hbmass expansion.

In summary, when endurance-trained individuals were 
exposed to environmental stress, i.e., heat, during a substantial 
part of their weekly training, Hbmass tended to be more expanded 
than with conventional ET. The mechanisms triggering the 
response remain to be revealed but could involve a compensatory 
response in erythropoiesis secondary to PV expansion as the 
higher Hbmass was correlated to the expansion in PV although 
EPO and BV-regulating hormones remained unchanged.
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