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Objective: To investigate the impact of match and training load on time-loss incidence
in elite, professional Rugby Union players.

Materials and Methods: Eighty-nine Rugby Union players were monitored over two
seasons of training and competition. Load was measured for all training sessions
and matches using subjective [session ratings of perceived exertion (sRPE) load;
RPE × session duration] and objective [global positioning systems (GPS); distance
and high-speed running distance] methods and quantified using multiple approaches;
absolute match and training load, acute:chronic workload ratio (ACWR), exponentially
weighted moving average (EWMA) and cumulative 7, 14, 21, and 28 d sums. Mixed
effect models were used to assess the effect of each variable on time-loss incidence.

Results: Of the 474 time-loss incidences that occurred across the two seasons, 50.0%
were contact injuries (86.5% occurred during matches and 13.5% during training),
34.8% were non-contact injuries (31.5% occurred during matches and 68.5% during
training) and 15.2% were cases of illness. The absolute match and training load variables
provided the best explanation of the variance in time-loss incidence occurrence [sRPE
load: p < 0.001, Akaike information criterion (AIC) = 2936; distance: p < 0.001,
AIC = 3004; high-speed running distance: p < 0.001, AIC = 3025]. The EWMA approach
(EWMA sRPE load: p < 0.001, AIC = 2980; EWMA distance: p < 0.001, AIC = 2980;
EWMA high-speed running distance: p = 0.002, AIC = 2987) also explained more of
the variance in time-loss incidence occurrence than the ACWR approach (ACWR sRPE
load: p = 0.091, AIC = 2993; ACWR distance: p = 0.008, AIC = 2990; ACWR high-speed
running distance: p = 0.153, AIC = 2994).

Conclusion: Overall, the absolute sRPE load variable best explained the variance in
time-loss incidence, followed by absolute distance and absolute high-speed running
distance. Whilst the model fit using the EWMA approach was not as good as the
absolute load variables, it was better than when the same variables were calculated
using the ACWR method. Overall, these findings suggest that the absolute match and
training load variables provide the best predictors of time-loss incidence rates, with
sRPE load likely to be the optimal variant of those examined here.

Keywords: RPE, GPS, exponentially weighted moving average, acute:chronic workload ratio, monitoring, mixed
effect models
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INTRODUCTION

It has been demonstrated in a number of professional sports,
including Soccer (Carling et al., 2015) and Rugby Union
(Williams et al., 2015), that success is inversely related to injury
incidence, suggesting that player availability is a key determinant
of success. Rugby Union has one of the highest reported
incidences of match injury amongst all professional team sports,
at 81 injuries per 1000 player hours for matches and 3 injuries
per 1000 player hours for training (Williams et al., 2013). It is
therefore crucial that Rugby Union coaches, performance and
medical staff develop strategies to reduce time-loss incidence
and maximize squad availability, thus enhancing the chances
of team success.

Time-loss incidences are typically classified as either injuries
or illness, with injuries further categorized as contact and non-
contact (Fuller et al., 2008). In elite sport, the careful management
of match and training load to minimize time-loss incidence, is a
key role of performance, medical and coaching staff (Gabbett and
Ullah, 2012; Rogalski et al., 2013; Blanch and Gabbett, 2015; Cross
et al., 2016). Improper load management can negatively affect
numerous physiological systems including the neuroendocrine,
immunological, cardiovascular and musculoskeletal systems
(Adams and Kirkby, 2001), resulting in an increased occurrence
of time-loss incidence.

Research exploring the effects of match and training load
on time-loss incidence rates has typically quantified load using
either subjective or objective measures. Subjective measures of
match and training load include ratings of perceived exertion
(RPE), with the most commonly used outcome variable being
session ratings of perceived exertion load (sRPE), calculated by
multiplying session RPE (Borg CR10 scale; Foster et al., 2001) by
session duration (in min) (Gabbett, 2004; Gabbett and Domrow,
2007). Objective measures include micro technology such as
global positioning systems (GPS), which provide information
such as the overall distance covered by the players in a given
training session or match and the speeds at which those distances
are covered (Colby et al., 2014). In recent years, research has
been undertaken investigating the relationship between match
and training load and time-loss incidence across a variety of
sports, including Australian Rules Football (Rogalski et al., 2013),
Rugby League (Blanch and Gabbett, 2015; Hulin et al., 2016),
Cricket (Hulin et al., 2016), and Soccer (Bowen et al., 2016). One
of the first papers to examine the relationship between match
and training load and injury was conducted in 46 elite Australian
Rules footballers (Rogalski et al., 2013). sRPE load showed
that high training loads over 1 week of >1750 arbitrary units
(AU) (compared to a reference group of <1250 AU) resulted
in an increased occurrence of injury [odds ratio (OR) = 2.44–
3.38]. Two week loads of >4000 AU (compared to <2000 AU)
were also associated with an increased occurrence of injury
(OR = 4.74), as were large changes (from 1 week to the next)
of greater than 1250 AU (compared to a change of <250 AU;
OR = 2.58). A more objective approach has also been used in
Australian Rules Football, where GPS derived running loads and
injury occurrence were assessed across one season of competition
(Colby et al., 2014). Total distance and sprint distance were

analyzed as cumulative 3-week loads and results showed that total
distance between 73,721 and 86,662 m (compared to <73,721 m)
increased the occurrence of non-contact injury (OR = 5.49), as
did a high sprint (greater than 75% of the individual’s maximum
velocity) distance (>1453 m compared to <864 m; OR = 3.67)
(Colby et al., 2014). However, this objective approach to match
and training load quantification has only been examined in
Australian Rules football.

A number of different methods of quantifying match and
training load have also been reported in the literature to date,
including the acute:chronic workload ratio (ACWR) (Blanch and
Gabbett, 2015) and the exponentially weighted moving average
(EWMA) (Williams et al., 2017). The ACWR is the ratio of
average load in the past 7 d (acute) compared to the average
of the past 28 d (chronic) (Blanch and Gabbett, 2015); which
when applied to sRPE load data, it has led to the suggestion of
a “sweet-spot” (i.e., the match and training load associated with
the lowest time-loss incidence risk) of 0.8–1.3 (80–130% in the
past 7 d compared to the past 28 d). It is also interesting to note
that the risk of injury increases when the ACWR goes above 1.5
(Blanch and Gabbett, 2015). In more recent years researchers
have questioned the rolling average approach of the ACWR
(Drew and Purdam, 2016; Lolli et al., 2017, 2018; Menaspà,
2017; Williams et al., 2017), with the suggested new approach to
place greater weighting on the load completed in the acute phase
(compared to the preceding days/weeks), due to the decaying
nature of fitness and fatigue effects over time (Williams et al.,
2017). This approach, defined as the EWMA, mitigates the issues
described by Menaspà (2017) and Lolli et al. (2017), such as
mathematical coupling, and is therefore potentially suggested as
a more sensitive measure.

One of the few studies to explore the influence of in-season
training loads on injury risk specifically in professional Rugby
Union was undertaken by Cross et al. (2016). sRPE load was
examined across four teams (n = 173 players) for the in-
season period of one season of competition. Results showed that
injury risk increased when 1-week load was 1245 AU greater
than an average week (OR = 1.68) and when week-to-week
changes in load exceeded 1069 AU (compared to no change,
OR = 1.58). Furthermore, a likely harmful effect was seen when
4-week cumulative loads >8651 AU (compared to <3684 AU;
OR = 1.39). However, the study by Cross et al. (2016), did
not account for the loads accumulated from matches, which
is typically the player’s biggest load in a week. Additionally,
no objective measures were used to quantify load, therefore,
no external load measurement was obtained, and training load
was assessed in its absolute form, with no ACWR or EWMA
quantification applied.

Therefore, the aims of this study were to examine and
identify relationships between match and training load, derived
through both subjective and objective measures, and time-loss
incidence rates in elite Rugby Union players, across two seasons
of competition. The study sought to identify the best predictor
of time-loss incidence occurrence between absolute match and
training load variables, the ACWR and the EWMA quantification
methods. Furthermore, it was hypothesized that due to the
decaying nature of fitness and fatigue, the EWMA approach to

Frontiers in Physiology | www.frontiersin.org 2 November 2019 | Volume 10 | Article 1413

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01413 November 16, 2019 Time: 13:5 # 3

Cousins et al. Match, Training Load and Injury

match and training load quantification would better explain the
variance in time-loss incidence occurrence in comparison to the
ACWR method. It was also hypothesized that the acute (last 7 d)
period of match and training load would be the greatest predictor
of time-loss incidence occurrence compared to the longer 14, 21,
and 28 d timeframes.

MATERIALS AND METHODS

Study Design
The study was a two-season prospective cohort study of Rugby
Union players (n = 89, age: 26.5 ± 4.5 years, body mass:
104.3± 13.5 kg, height: 1.86± 0.07 m) registered in the first team
squad of an elite professional English Rugby Union club, playing
in the top two tiers during the 2016–2017 and 2017–2018 seasons.
Ethical approval was provided by the host institution’s Ethical
Advisory Committee and all players provided their written
consent to participate. In brief, the quantification of load was
undertaken using three methods; the absolute match and training
load (cumulative daily load), the ACWR (Blanch and Gabbett,
2015) and EWMA match and training load ratio (Williams et al.,
2017), with these calculations applied to subjective (sRPE load)
and objective (GPS) data. Additional match and training load
quantification was undertaken in the format of cumulative rolling
sums for 7, 14, 21, and 28 d periods, again for both sRPE
load and GPS data.

Rating of Perceived Exertion
For every field- and gym-based training session and match, an
RPE rating, using the modified Borg CR-10 RPE scale (Foster
et al., 2001), was obtained within 30 min of the end of the
exercise, in line with the recommendations of Kraft et al. (2014).
Session RPE load in AU for each player was then calculated
by multiplying the given RPE by the session duration (min)
(Foster et al., 2001). This was performed for all players across
both seasons of data collection. Session RPE load has previously
been shown to be a valid method for estimating relative exercise
intensity (Impellizzeri et al., 2004). The ACWR and EWMA
calculations were then applied to the RPE data, yielding two
variables: ACWR sRPE load and EWMA sRPE load. In addition,
cumulative 7, 14, 21, and 28 d sums were calculated.

Global Positioning Systems
An objective measure of match and training load was obtained
through GPS for every field-based training session and match,
for 33 out of the 60 players in the squad for season one and
for all 56 players in season two. Overall, 27 players completed
both seasons and 62 players completed only one of the two
seasons. Two GPS systems were used (Catapult OptimEye S5
monitoring system, 10 Hz, Canberra, Australia, n = 18; and
GPSports SPI-Pro, 5 Hz, Canberra, Australia, n = 15) during
season one, with each player using the same GPS unit for the
entire season. In season two all 56 players used the same GPS
system (STATSports APEX, 10 Hz, Newry, Northern Ireland,
n = 56). The number of satellites was satisfactory on all days
for all systems, with an average of 9 ± 1 satellites per day

being used and a horizontal dilution of precision of 0.58 ± 0.06.
The firmware of the systems was the same for all units for the
respective manufacturer and the firmware was not updated at
any stage during the study. The manufacturer’s software was
used to download all sessions and again the software was not
updated at any stage during the study. Previous research has
demonstrated the reliability and validity of each of the GPS
systems used (GPSports SPI-Pro: Waldron et al., 2011; Catapult
OptimEye S5: Thornton et al., 2019; STATSports APEX: Beato
et al., 2018). Furthermore, the analysis of the distance covered
at high speed has been shown to be associated with increased risk
of lower body soft-tissue injury (Gabbett and Ullah, 2012). High-
speed running was determined as the distance covered at greater
than 70% of a player’s maximum velocity, determined during pre-
season testing (40 m sprint testing) and updated if bettered at
any stage across the season. GPS data were also quantified using
ACWR and EWMA, giving rise to four further variables (ACWR
distance, EWMA distance, ACWR high-speed running distance
and EWMA high-speed running distance) and the cumulative 7,
14, 21, and 28 d rolling sums calculated for both distance and
high-speed running distance.

Data Handling
The ACWR was calculated as the average load of the previous
7 d divided by the average load of the previous 28 d (Blanch
and Gabbett, 2015), with the acute, 7 d period also included
in the chronic, 28 d period. The EWMA for any given day
is calculated by; EWMAtoday = Loadtoday × λa + ((1 − λa)
× EWMAyesterday) where λa is a value between 0 and 1
that represents the degree of decay. The λa is calculated;
λa = 2/(N + 1), where N is 7 d (acute) or 28 d (chronic) time
period, with the acute EWMA then being divided by the chronic
EWMA to provide a single EWMA value. The absolute match
and training load variables for sRPE load, distance and high-
speed running distance, along with the aforementioned ACWR
and EWMA variables were used in the analysis. Cumulative
7, 14, 21, and 28 d rolling sums for sRPE load, distance and
high-speed running distance were calculated for each player.
Due to the ACWR and EWMA variables requiring at least
28 d of match and training load data and the cumulative sums
requiring 7, 14, 21, and 28 d respectively, the overall n for each
variable is varied.

Time-Loss Incidence Definitions
All time-loss incidences sustained were categorized by the club’s
medical staff and were defined as any physical complaint that
resulted in that individual being unable to take full part in any
field- or gym-based training session or match, in line with the
consensus statement defined by the International Rugby Board
in 2007 (Fuller et al., 2008). Further information on the nature of
the time-loss incidence was recorded, including severity (number
of days unavailable for training and/or matches), the nature of the
injury (contact, non-contact or illness) and the session in which
the injury occurred (training or match). Each time-loss incidence
was entered into the database for the day on which it occurred,
and subsequently was associated with the absolute match and
training load, ACWR and EWMA for that day.
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Statistical Analysis
The first section of the results presents descriptive data. To
assess the impact of each match and training load quantification
method on time loss-incidence occurrence, mixed effect models
were conducted using the glmer function in R1 (as suggested by
Windt et al., 2018). All models were fit with a Bernoulli outcome
distribution (i.e., injury or no injury) and random effects for
player, season, day of the season were included in all models. To
assess the effect of matches and training on time-loss incidence
occurrence, this variable was included in subsequent models
for that section of the results. Position (forward/back) and age
were included in all models. The exponential of the parameter
estimate was used to calculate the odds. Due to co-linearity
between the dependent variables, it was not possible to include
several variables within the same model. Thus, separate models
were performed for each variable. To enable a comparison of
fit between models containing different variables, all analyses
were subsequently performed on a reduced dataset with an equal
number of data points for all variables (n = 14937) and the Akaike
information criterion (AIC) and Bayesian information criterion
(BIC) were used to assess model fit. For all analyses statistical
significance was accepted as p < 0.05.

RESULTS

A total of 474 time-loss incidences were reported across the two
seasons of the study, 240 time-loss incidences were reported in
season one and 234 time-loss incidences in season two. Table 1
details the total time-loss incidence, nature of the injury and the
session in which the injury occurred. Across the two seasons
there were a total of 31,117 exposure days, with the 474 time-loss
incidences resulting in a cumulative number of 9558 days lost due
to injury or illness (30.7% of total days).

Mixed Effect Models
Results of the mixed effect models that were conducted to
examine the impact of each match and training load variable
on time-loss incidence are presented in Table 2. In all models
there was no significant main effect of age or interaction between
age and the variable of interest (all p > 0.05), thus age was
removed from all models. Furthermore, the interaction between
position (forward/back) and the variables of interest were all non-
significant (all p > 0.05), so the interactions were removed from
the model. The main effects of position were however significant
so were included in the analyses.

Session RPE Load
Session ratings of perceived exertion load demonstrated a
significant influence on time-loss incidence (p < 0.001,
Figure 1A). The odds of 1.11 indicates that for each 100 unit
increase in sRPE load (e.g., from 500 to 600 AU), there was an
11% increase in time-loss incidence. The model also indicates
that the odds of a time-loss incidence occurring in forwards
was 1.32 compared to backs (p = 0.043). ACWR sRPE load

1www.r-project.org

did not influence time-loss incidence occurrence (p = 0.255,
Figure 1B). However, when sRPE load was quantified using the
EWMA approach, there was a significant influence on time-loss
incidence (p = 0.001; Figure 1C). The OR of 2.01 indicates that
for each 1 unit increase in EWMA sRPE load (e.g., from 0.5
to 1.5, or 1 to 2, etc.), there was a 101% increase in time-loss
incidence. The model again indicates that the odds of a time-loss
incidence occurring in forwards was higher (odds = 1.35) than in
backs (p = 0.039).

Distance
Distance demonstrated a significant influence on time-loss
incidence (p < 0.001, Figure 2A). The odds of 1.01 indicates
that for each 100 m increase in distance covered (e.g., from
2000 to 2100 m), there was a 1% increase in time-loss
incidence. The model also indicates that the odds of a time-
loss incidence occurring in forwards was 1.49 compared to
backs (p = 0.003). ACWR distance also influenced time-loss
incidence (p = 0.008, Figure 2B), with the odds of 1.56 indicating
a 56% increase in time-loss incidence with a 1 unit increase
in ACWR distance (e.g., from 0.8 to 1.8). The occurrence of
time-loss incidence was again greater in forwards compared
to backs (odds = 1.53, p = 0.013). Finally, EWMA distance
also demonstrated a significant influence on time-loss incidence
(p < 0.001, Figure 2C). The OR of 2.23 indicates that for each 1
unit increase in EWMA distance (e.g., from 0.8 to 1.8), there was
a 123% increase in time-loss incidence. The model again indicates
that the odds of a time-loss incidence occurring in forwards was
higher (odds = 1.50) than in backs (p = 0.014).

High-Speed Running Distance
High-speed running distance also demonstrated a significant
influence on time-loss incidence (p < 0.001, Figure 3A).
The odds of 1.21 indicates that for each 100 m increase in
high-speed running distance (e.g., from 800 to 900 m), there
was a 21% increase in time-loss incidence. The model also
indicates that the odds of a time-loss incidence occurring in
forwards was 1.56 compared to backs (p = 0.007). However,
ACWR high-speed running distance did not influence time-loss
incidence (p = 0.154, Figure 3B). Finally, EWMA high-speed
running distance demonstrated a significant influence on time-
loss incidence (p = 0.002, Figure 3C). The OR of 1.44 indicates
that for each 1 unit increase in EWMA high-speed running
(e.g., from 0.8 to 1.8), there was a 44% increase in time-loss
incidence. The model again indicates that the odds of a time-loss
incidence occurring in forwards was higher (odds = 1.56) than in
backs (p = 0.009).

7, 14, 21, and 28 d Cumulative Rolling
Sums
Mixed effect models were also conducted on the 7, 14, 21,
and 28 d cumulative rolling sum data for sRPE load, distance
and high-speed running distance. All models returned a non-
significant effect on time-loss incidence, with the exception of
the 14 d cumulative rolling sum of high-speed running distance
(model details: intercept =−5.3009, parameter estimate = 0.0003,
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TABLE 1 | Number, nature and severity of time-loss incidences across the two seasons, expressed both as absolute numbers and a percentage of the total time-loss
incidences/total injuries/contact injuries/non-contact injuries, as appropriate.

Season Total time-loss incidences Contact injuries Non-contact injuries Illnesses

Combined 474 237 (50.0%) 165 (34.8%) 72 (15.2%)

Season one 240 125 (52.1%) 76 (31.7%) 39 (16.2%)

Season two 234 112 (47.9%) 89 (38.0%) 33 (14.1%)

Season Total injuries Match injuries Training injuries

Combined 402 257 (63.9%) 145 (36.1%)

Season one 201 132 (65.7%) 69 (34.3%)

Season two 201 125 (62.2%) 76 (37.8%)

Season Contact injuries Contact injuries in matches Contact injuries in training

Combined 237 205 (86.5%) 32 (13.5%)

Season one 125 106 (84.8%) 19 (15.2%)

Season two 112 99 (88.4%) 13 (11.6%)

Season Non-contact injuries Non-contact injuries in matches Non-contact injuries in training

Combined 165 52 (31.5%) 113 (68.5%)

Season one 76 26 (34.2%) 50 (65.8%)

Season two 89 26 (29.2%) 63 (70.8%)

Season Exposure days Days lost (severity) Percentage days lost

Combined 31117 9558 30.7

Season one 15869 4736 29.8

Season two 15248 4822 31.6

TABLE 2 | Multilevel model characteristics.

Variable Variable effect Position effect Model characteristics

Intercept Parameter
estimate

Std. error Odds p-value Parameter
estimate

Odds p-value AIC BIC Number of
observations

Session RPE load$
−5.058 0.108 0.014 1.11 <0.001 0.280 1.32 0.043 4407 4456 23,032

ACWR session RPE load −4.962 0.191 0.168 1.21 0.255 0.302 1.35 0.039 4042 4090 20,522

EWMA session RPE load −5.451 0.697 0.218 2.01 0.001 0.300 1.35 0.039 4033 4081 20,522

Distance$
−5.380 0.013 0.002 1.01 <0.001 0.481 1.49 0.003 3341 3388 16,927

ACWR distance −5.534 0.442 0.167 1.56 0.008 0.425 1.53 0.013 2990 3035 14,937

EWMA distance −5.849 0.801 0.206 2.23 <0.001 0.408 1.50 0.014 2981 3026 14,937

High-speed running distance$
−5.131 0.190 0.058 1.21 <0.001 0.443 1.56 0.007 3364 3410 16,927

ACWR high-speed running −5.206 0.121 0.085 1.13 0.154 0.428 1.53 0.013 2994 3040 14,937

EWMA high-speed running −5.439 0.365 0.119 1.44 0.002 0.446 1.56 0.009 2987 3033 14,937

Odds is the exponential of the parameter estimate and represents the time-loss incidence risk for a 1 unit increase in the variable (e.g., an increase in EWMA session RPE
load from 1.0 to 2.0, etc.). Odds for position effect is the odds of time loss incidence in forwards compared to backs. $The parameter estimate, standard error and odds
for the absolute variables (session RPE load, distance and high-speed running distance) are presented for 100 unit increases in each variable.

standard error = 0.0001, OR (for a 1000 m increase)
= 3.0, p = 0.040).

Comparing Model Fit
To enable a comparison of fit between models containing
different variables, all analyses were subsequently performed on
a reduced dataset with an equal number of data points for all
variables (n = 14937). This dataset was the largest possible dataset
where the same number of observations for all nine variables
of interest (sRPE load, distance, high-speed running distance

and each of these quantified using the ACWR and EWMA
approaches) were available. Models were constructed in exactly
the same way as above. The AIC and BIC can be used in these
models to examine which variable best explains the variance in
time-loss incidence occurrence, with smaller AIC and BIC values
indicative of a better model fit.

The results of this analysis are shown in Table 3. For sRPE
load, distance and high-speed running distance, the absolute
match and training load variables demonstrated a lower AIC
and BIC than when these variables were quantified using either
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FIGURE 1 | The relationship between time-loss incidence occurrence (per
player day) and absolute session RPE load (p < 0.001) (A), ACWR session
RPE load (p = 0.255) (B), and EWMA session RPE load (p = 0.001) (C), split
for backs and forwards. Data are mean ± standard error.

FIGURE 2 | The relationship between time-loss incidence occurrence (per
player day) and absolute distance (p < 0.001) (A), ACWR distance (p = 0.008)
(B), and EWMA distance (p < 0.001) (C), split for backs and forwards. Data
are mean ± standard error.
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FIGURE 3 | The relationship between time-loss incidence occurrence (per
player day) and absolute high-speed running distance (p < 0.001) (A), ACWR
high-speed running distance (p = 0.154) (B), and EWMA high-speed running
distance (p = 0.002) (C), split for backs and forwards. Data are
mean ± standard error.

the ACWR or EWMA approach. This suggests that more of the
variance in time-loss incidence occurrence is explained by the
absolute match and training load variables rather than when
the variables are quantified using either the ACWR or EWMA.
Additionally, the EWMA demonstrated a lower AIC and BIC
than ACWR. When comparing sRPE load, distance and high-
speed running distance, the model with sRPE load had the lowest
AIC and BIC, followed by distance, then high-speed running
distance (Table 3).

Calculating Time-Loss Incidence Rate
The mixed effect models provided here can be used to calculate
time-loss incidence. The calculation, using sRPE load as an
example, is as follows:

Time-loss incidence (per player day)

=
exp(intercept + parameter estimate× sRPE load)

1+ exp(intercept + parameter estimate× session RPE load)

The above calculation would be for a back. To calculate time-loss
incidence in a forward the effect of position must be added to the
equation, as follows:

Time-lossincidence(per player day)

=

exp((intercept + parameter estimate× sRPE load)
+ position parameter estimate)

1 + exp((intercept + parameter estimate × sRPE load)
+ position parameter estimate)

For example, for a forward with a sRPE load of 650 AU, the
calculation would be:

Exp((−5.058 + 0.108 × 650) + 0.280)

1 + exp((−5.058 + 0.108 × 650) + 0.280)

= 0.017 time-loss incidences per player day

Time-Loss Incidence in Matches and
Training
To examine the impact of matches compared to training on
time-loss incidence, an additional (match or training) variable
was included in the mixed effect models assessing the effect
of the absolute match and training load variables on time-
loss incidence. There were no interactions between the absolute
match and training load variables and matches/training (sRPE
load, p = 0.218; distance, p = 0.146; high-speed running
distance, p = 0.501). However, there was a significant main
effect, suggesting that time-loss incidence was greater in matches
compared to training (sRPE load: parameter estimate = 2.313,
standard error = 0.235, OR = 10.1, p < 0.001; distance: parameter
estimate = 2.479, standard error = 0.241, OR = 11.9, p < 0.001;
high-speed running distance: parameter estimate = 2.732,
standard error = 0.001, OR = 15.4, p < 0.001).
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TABLE 3 | Multilevel model characteristics (with an equal n for all variables).

Variable effect Position effect Model characteristics

Intercept Parameter
estimate

Std.
error

Odds p-value Parameter
estimate

Odds p-value AIC BIC Number of observations

Session RPE load$
−5.431 0.137 0.017 1.15 <0.001 0.407 1.50 0.019 2936 2981 14,937

ACWR session
RPE load

−5.405 0.342 0.202 1.41 0.090 0.416 1.52 0.015 2993 3038 14,937

EWMA session
RPE load

−6.064 1.032 0.167 2.81 <0.001 0.411 1.51 0.014 2980 3026 14,937

Distance$
−5.478 0.016 0.003 1.17 <0.001 0.512 1.67 0.003 2958 3004 14,937

ACWR distance −5.534 0.442 0.167 1.56 0.008 0.425 1.53 0.013 2990 3035 14,937

EWMA distance −5.849 0.801 0.206 2.23 <0.001 0.408 1.50 0.014 2980 3026 14,937

High-speed running
distance$

−5.255 0.294 0.067 1.34 <0.001 0.497 1.64 0.004 2979 3025 14,937

ACWR high-speed
running

−5.206 0.121 0.085 1.13 0.153 0.428 1.53 0.013 2994 3040 14,937

EWMA high-speed
running

−5.439 0.365 0.119 1.44 0.002 0.446 1.56 0.009 2987 3033 14,937

Odds is the exponential of the parameter estimate and represents the time-loss incidence risk for a 1 unit increase in the variable (e.g., an increase in EWMA session RPE
load from 1.0 to 2.0, etc.). Odds for position effect is the odds of time loss incidence in forwards compared to backs. $The parameter estimate, standard error and odds
for the absolute variables (session RPE load, distance and high-speed running distance) are presented for 100 unit increases in each variable.

DISCUSSION

The aim of the present study was to identify the best predictor
of time-loss incidence occurrence between absolute match and
training load variables, the ACWR and the EWMA quantification
methods, when applied to sRPE load, distance and high-speed
running distance. The main findings of the present study suggest
that changes in the absolute match and training load variables
(sRPE load, distance and high-speed running distance), with no
quantification method applied to them, provide the best method
of explaining the variance in time-loss incidence rate in elite
Rugby Union players. Specifically, the use of absolute sRPE load
provided the lowest AIC and BIC values, followed by distance and
then high-speed running distance. As shown in Tables 2, 3, when
comparing the different match and training load quantification
methods, the EWMA method better explained the variance in
time-loss incidence occurrence than the ACWR method, as the
AIC and BIC were lower across all variables for EWMA compared
to ACWR. A higher time-loss incidence was seen in forwards
compared to backs, ranging from 32% (sRPE load) to 62%
(distance), but no interaction was seen between position and
any match and training load variables. The models examining
cumulative rolling sums did not identify any significant effects
on time-loss incidence rate of these variables, with the exception
being 14 d cumulative rolling sum for high-speed running
distance. Overall, these findings suggest that the absolute match
and training load variables may provide the best predictors of
time-loss incidence rates, with sRPE load likely to be the optimal
variant of those examined here.

This is the first study to compare absolute match and training
load, ACWR and EWMA methods for the assessment of time-
loss incidence in elite athletes. The model fit assessment suggests
that the absolute match and training load variables (sRPE load,
distance and high-speed running distance) are better predictors

of time-loss incidence occurrence in professional Rugby Union
players, compared to when the same variables are quantified
using the ACWR and EWMA approaches. Furthermore, it
appears that sRPE load was the best variable to use to assess
time-loss incidence (when compared to distance and high-speed
running distance). Unlike the GPS-derived variables (distance
and high-speed running distance) which require expensive
technologies to collect, sRPE load provides performance and
medical staff with a low cost, easy to administer method of match
and training load assessment and management (Kraft et al., 2014).
It is also possible that the RPE variable provides a more accurate
reflection of contacts and collisions during Rugby Union (not
picked up by GPS variables). Furthermore, RPE was also recorded
during gym-based sessions where GPS monitoring is not possible,
a further potential explanation of the enhanced predictive ability
of the models with RPE included. Additionally, the calculations
provided within this paper provide performance and medical
staff with actionable values which can be easily communicated
to coaches when assessing an individual players risk; and thus,
enable them to make an informed decision about player match
and training load.

When the two ratio quantification methods (ACWR and
EWMA) are compared, the EWMA approach better explains
the variance in time-loss incidence occurrence compared to the
ACWR method, as shown through the lower AIC and BIC
values. This therefore affirms the thoughts of Menaspà (2017)
and Williams et al. (2017) who suggest the ACWR approach
lacks sensitivity and suffers mathematical coupling (Lolli et al.,
2017). Furthermore, it agrees with the findings of Murray et al.
(2017), who investigated the relationship between match and
training load and injury in Australian footballers using only
objective (GPS) measures and quantified it using both the ACWR
and EWMA. The present study extends these findings to both
subjective (sRPE load) and objective measures and utilized an
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individual approach to determining high-speed running distance
(>70% of an individual’s maximum velocity), compared to the
set parameters (18–24 km/h) used by Murray et al. (2017). When
assessing the cumulative rolling sums models, the only variable
to return a significant effect on time-loss incidence rate was 14 d
high-speed running distance, therefore, aggregating match and
training load into weekly sums does not further assist in time-loss
incidence occurrence assessment. To summarize, the absolute
match and training load variables better explain the variance in
time-loss incidence rates above the ratio ACWR and EWMA
methods and the cumulative rolling sums approach.

The time-loss incidence curves describing the relationships
between time-loss incidence and the match and training load
variables are shown in Figures 1–3. In contrast to previous work
by Blanch and Gabbett (2015), who suggested that a U-shaped
pattern existed between injury incidence and an ACWR. Our
analysis and models do not find any evidence of this form of
U-shape pattern. This apparent disagreement in findings may
have arisen because the independent variables in the Blanch
and Gabbett (2015) analysis appears to be based on aggregated
categorical data from a series of research investigations (Hulin
et al., 2014, 2016) whereas in the current study the models
use the raw/absolute match and training load data from each
player on each day.

Another novel aspect of this study was the comparison in
time-loss incidence rates between forwards and backs. Players
occupying forward positions were found to have a higher time-
loss incidence rates compared to backs for all match and training
load variables, ranging from 32 to 62%. An explanation for this
may be due to the higher involvement of total impacts, tackles
and rucks of forwards compared to backs as shown by Lindsay
et al. (2015), and also demonstrated in the results of this paper
the number of time-loss incidence occurring through contact
injuries makes up 50.0% of all time-loss incidences. Furthermore,
it is important to note that position did not interact with any
of the match and training load variables, thus suggesting that
time-loss incidence rates changed with increased match and
training load in a similar manner for both positional groups. In
addition, the present study also examined time-loss incidence
in training compared to matches. The findings suggest that the
likelihood of a time-loss incidence occurring was 10–15 times
higher in matches compared to training. However, none of the
absolute match and training load variables interacted with the
training/match variable, suggesting that the increased time-loss
incidence was similar when load increased in both training and
matches by a similar amount.

Practical Applications in Rugby Union
The “sweet-spot” of an ACWR of 0.8–1.3 (based on sRPE
load data) suggested by Blanch and Gabbett (2015) has been
widely cited and used within professional sport. However, the
findings of the present study suggest that the absolute match
and training load variables provide a better explanation of the
variance in time-loss incidence (and thus should be incorporated
in load management models to minimize the time-loss incidences
occurring), when compared to the more commonly used ACWR
and EWMA approaches. The present study enhances previous

work in the area (Rogalski et al., 2013; Cross et al., 2016; Hulin
et al., 2016) by showing that subjective measures (i.e., sRPE
load) can be quantified in various ways to manage time-loss
incidence. Session RPE load is a relatively inexpensive method
when compared to the GPS-derived variables. However, there
are obvious challenges associated with the collection of sRPE
load data for every player for every session, particularly within
30 min of the end of each session. It should be noted however
that evidence has suggested that sRPE is still valid up to 24 h
post-exercise (Phibbs et al., 2017), potentially further enhancing
the practical utility of sRPE as a monitoring tool. The additional
inclusion of objective GPS-based measures can add further
value to sRPE load alone by assisting the load management
processes due to its capabilities of providing live feedback during
training sessions for at risk individuals (e.g., those returning
from injury), and may be easier to collect in a large number of
players at one time.

Limitations and Future Research
The findings of the present study are based on data from
one professional Rugby Union club thus the applicability to
all clubs is unknown. Future work could build upon this by,
for example, including match and training load and time-loss
incidence data from multiple clubs. Furthermore, future work
could also consider the relationship between match and training
load and different types of time-loss incidence (i.e., contact
injuries, non-contact injuries and illness) and whether the injury
occurred in training or matches separately. This could potentially
allow for greater resolution between variables and quantification
methods. Future work, perhaps with multiple clubs over multiple
seasons, could also consider matches in isolation, to examine
whether any aspects of matches (e.g., time of day, match outcome,
etc.) influence time-loss incidence risk. However, achieving this
volume of data from multiple clubs, allowing such analysis to be
undertaken, will be challenging, not least due to the variations
in the measurement and management of match and training
load and time-loss incidence between clubs. A further potential
limitation of the current study was the use of different GPS
monitoring systems from season one to season two, as stated in
the materials and methods section. Future work should endeavor
to use the same GPS monitoring system for the duration of the
data collection process to avoid potential conflicts between units.

CONCLUSION

The match and training load variable that best explains the
variance in time-loss incidence was absolute sRPE load, followed
by absolute distance and absolute high-speed running distance.
These findings therefore suggest that the use of absolute match
and training load data from each player on each day may be
more beneficial when assessing time-loss incidence risk, when
compared to the more commonly used ACWR and EWMA
quantification approaches. The objective GPS-derived variables
still appeared to provide a significant explanation of the variance
in time-loss incidence occurrence, and thus the use of GPS as a
real-time monitoring tool (providing live feedback) means that
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such measures may well have applied utility. When assessing
the quantified match and training load variables (ACWR and
EWMA), the EWMA variables better explained the variance
in time-loss incidence compared to the ACWR method. No
relationship was seen between the 7, 14, 21, and 28 d cumulative
rolling sums for all variables (sRPE load, distance and high-speed
running), with the exception of 14 d cumulative rolling sum
of high-speed running distance. Finally, the time-loss incidence
curves derived from the mixed effect models (for all absolute,
ACWR and EWMA variables) did not show a U-shaped pattern.
Overall, these findings suggest that the absolute match and
training load variables provide the best predictors of time-loss
incidence rates, with sRPE load likely to be the optimal variant
of those examined here. Furthermore, the EWMA approach
to quantifying match and training load was a better predictor
of time-loss incidence risk than when the same variables were
calculated using the ACWR approach.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the non-invasive ethics committee of
the School of Science and Technology at Nottingham Trent

University with written informed consent from all participants.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
non-invasive ethics committee of the School of Science and
Technology at Nottingham Trent University.

AUTHOR CONTRIBUTIONS

BC collected and analyzed the data, and drafted the manuscript.
SC and JM assisted with data analysis and drafting the
manuscript. CS and AB contributed to drafting the manuscript.
GS provided statistical expertise and advice on the data analysis.
All authors have read and approved the final manuscript.

FUNDING

The work was supported by the Professional Rugby Union Club.

ACKNOWLEDGMENTS

We would like to thank all the players and staff at the professional
club for their time and commitment to this project.

REFERENCES
Adams, J., and Kirkby, R. (2001). Exercise dependence and overtraining: the

physiological and psychological consequences of excessive exercise. Sports Med.
Train. Rehab. 10, 199–222. doi: 10.1080/10578310210395

Beato, M., Coratella, G., Stiff, A., and Iacono, A. D. (2018). The validity and
between-unit variability of GNSS units (STATSports Apex 10 and 18 Hz) for
measuring distance and peak speed in team sports. Front. Physiol. 9:1288.
doi: 10.3389/fphys.2018.01288

Blanch, P., and Gabbett, T. J. (2015). Has an athlete trained enough to return to play
safely? the acute:chronic workload ratio permits clinicians to quantify a player’s
risk of subsequent injury. Br. J. Sports Med. 50, 471–475. doi: 10.1136/bjsports-
2015-095445

Bowen, L., Gross, A. S., Gimpel, M., and Li, F.-X. (2016). Accumulated workloads
and the acute: chronic workload ration relate to injury risk in elite youth football
players. Br. J. Sports Med. 51, 452–459. doi: 10.1136/bjsports-2015-095820

Carling, C., Le Gall, F., McCall, A., Nédélec, M., and Dupont, G. (2015). Squad
management, injury and match performance in a professional soccer team over
a championship- winning season. Eur. J. Sport Sci. 15, 573–582. doi: 10.1080/
17461391.2014.955885

Colby, M. J., Dawson, B., Heasman, J., Rogalski, R., and Gabbett, T. J. (2014).
Accelerometer and GPS-derived running loads and injury risk in elite
australian footballers. J. Strength Cond. Res. 28, 2244–2252. doi: 10.1519/JSC.
0000000000000362

Cross, M. J., Williams, S., Trewartha, G., Kemp, S. P., and Stokes, K. A. (2016). The
influence of in-season training loads on injury risk in professional rugby union.
Int. J. Sports Physiol. Perform. 11, 350–355. doi: 10.1123/ijspp.2015-2187

Drew, M. K., and Purdam, C. (2016). Time to bin the term ‘overuse’ injury: is
‘training load error’ a more accurate term? Br. J. Sports Med. 50, 1423–1424.
doi: 10.1136/bjsports-2015-095543

Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S.,
et al. (2001). A new approach to monitoring exercise training. J. Strength Cond.
Res. 15, 109–115.

Fuller, C. W., Laborde, F., Leather, R. J., and Molloy, M. G. (2008). International
rugby board rugby world cup 2007 injury surveillance study. Br. J. Sports Med.
42, 452–459. doi: 10.1136/bjsm.2008.047035

Gabbett, T. (2004). Influence of training and match intensity on injuries in rugby
league. J. Sports Sci. 22, 409–417. doi: 10.1080/02640410310001641638

Gabbett, T. J., and Domrow, N. (2007). Relationships between training load, injury,
and fitness in sub-elite collision sport athletes. J. Sports Sci. 25, 1507–1519.
doi: 10.1080/02640410701215066

Gabbett, T. J., and Ullah, S. (2012). Relationships between running and soft-
tissue injury in elite team sport athletes. J. Strength Cond. Res. 26, 953–960.
doi: 10.1519/JSC.0b013e3182302023

Hulin, B. T., Gabbett, T. J., Blanch, P., Chapman, P., Bailey, D., and Orchard, J. W.
(2014). Spikes in acute workload are associated with increased injury risk in elite
cricket fast bowlers. Br. J. Sports Med. 48, 708–712. doi: 10.1136/bjsports-2013-
092524

Hulin, B. T., Gabbett, T. J., Lawson, D. W., Caputi, P., and Sampson, J. A. (2016).
The acute:chronic workload ratio predicts injury: high chronic workload may
decrease injury risk in elite rugby league players. Br. J. Sports Med. 50, 231–236.
doi: 10.1136/bjsports-2015-094817

Impellizzeri, F. M., Rampinini, E., Coutts, A. J., Sassi, A., and Marcora, S. M. (2004).
Use of RPE-based training load in soccer. Med. Sci. Sports Exerc. 36, 1042–1047.
doi: 10.1249/01.mss.0000128199.23901.2f

Kraft, J. A., Green, J. M., and Thompson, K. R. (2014). Session ratings of perceived
exertion responses during resistance training bouts equated for total work but
differing in work rate. J. Strength Cond. Res. 28, 540–545. doi: 10.1519/JSC.
0b013e31829b569c

Lindsay, A., Draper, N., Lewis, J., Gieseg, S. P., and Gill, N. (2015). Positional
demands of professional rugby. Eur. J. Sports Sci. 15, 480–487. doi: 10.1080/
17461391.2015.1025858

Lolli, L., Batterham, A. M., Hawkins, R., Kelly, D. M., Strudwick, A. J., Thorpe,
R., et al. (2017). Mathematical coupling causes spurious correlation within the
conventional acute-to-chronic workload ratio calculations. Br. J. Sports Med.
53, 921–922. doi: 10.1136/bjsports-2017-098110

Lolli, L., Batterham, A. M., Hawkins, R., Kelly, D. M., Strudwick, A. J., Thorpe, R.,
et al. (2018). The acute-to-chronic workload ratio: an inaccurate scaling index
for an unnecessary normalisation process? Br. J. Sports 13:bjsorts-2017-098884.

Menaspà, P. (2017). Are rolling averages a good way to assess training load for
injury prevention? Br. J. Sports. Med. 51, 618–619. doi: 10.1136/bjsports-2016-
096131

Frontiers in Physiology | www.frontiersin.org 10 November 2019 | Volume 10 | Article 1413

https://doi.org/10.1080/10578310210395
https://doi.org/10.3389/fphys.2018.01288
https://doi.org/10.1136/bjsports-2015-095445
https://doi.org/10.1136/bjsports-2015-095445
https://doi.org/10.1136/bjsports-2015-095820
https://doi.org/10.1080/17461391.2014.955885
https://doi.org/10.1080/17461391.2014.955885
https://doi.org/10.1519/JSC.0000000000000362
https://doi.org/10.1519/JSC.0000000000000362
https://doi.org/10.1123/ijspp.2015-2187
https://doi.org/10.1136/bjsports-2015-095543
https://doi.org/10.1136/bjsm.2008.047035
https://doi.org/10.1080/02640410310001641638
https://doi.org/10.1080/02640410701215066
https://doi.org/10.1519/JSC.0b013e3182302023
https://doi.org/10.1136/bjsports-2013-092524
https://doi.org/10.1136/bjsports-2013-092524
https://doi.org/10.1136/bjsports-2015-094817
https://doi.org/10.1249/01.mss.0000128199.23901.2f
https://doi.org/10.1519/JSC.0b013e31829b569c
https://doi.org/10.1519/JSC.0b013e31829b569c
https://doi.org/10.1080/17461391.2015.1025858
https://doi.org/10.1080/17461391.2015.1025858
https://doi.org/10.1136/bjsports-2017-098110
https://doi.org/10.1136/bjsports-2016-096131
https://doi.org/10.1136/bjsports-2016-096131
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01413 November 16, 2019 Time: 13:5 # 11

Cousins et al. Match, Training Load and Injury

Murray, N. B., Gabbett, T. J., Townshend, A. D., and Blanch, P. (2017).
Calculating acute:chronic workload ratios using exponentially weighted moving
averages provides a more sensitive indicator of injury likelihood than
rolling averages. Br. J. Sports Med. 51, 749–754. doi: 10.1136/bjsports-2016-
097152

Phibbs, P. J., Roe, G., Jones, B., Read, D. B., Weakley, J., Darrall-Jones, J., et al.
(2017). Validity of daily and weekly self-reported training load measures in
adolescent athletes. J. Strength Cond. Res. 31, 1121–1126. doi: 10.1519/JSC.
0000000000001708

Rogalski, B., Dawson, B., Heasman, J., and Gabbett, T. J. (2013). Training and
game loads and injury risk in elite Australian footballers. J. Sci. Med. Sport 16,
499–503. doi: 10.1016/j.jsams.2012.12.004

Thornton, H. R., Nelson, A. R., Delaney, J. A., Serpiello, F. R., and Duthie, G. M.
(2019). Interunit reliability and effect of data-processing methods of global
positioning systems. Int. J. Sports Physiol. Perform. 14, 432–438. doi: 10.1123/
ijspp.2018-2273

Waldron, M., Worsfold, P., Twist, C., and Lamb, K. (2011). Concurrent validity and
test-retest reliability of a global positioning system (GPS) and timing gates to
assess sprint performance variables. J. Sports. Sci. 29, 1613–1619. doi: 10.1080/
02640414.2011.608703

Williams, S., Trewartha, G., Kemp, S., and Stokes, K. (2013). A meta-analysis of
injuries in senior men’s professional rugby union. Sports Med. 43, 1043–1055.
doi: 10.1007/s40279-013-0078-1

Williams, S., Trewartha, G., Kemp, S. P. T., Brooks, J. H. M., Fuller, C. W.,
Taylor, A. E., et al. (2015). Time loss injuries compromise team success in
elite rugby union: a 7-year prospective study. Br. J. Sports Med. 50, 651–656.
doi: 10.1136/bjsports-2015-094798

Williams, S., West, S., Cross, M. J., and Stokes, K. A. (2017). Better way to
determine the acute:chronic workload ratio? Br. J. Sports Med. 51, 209–210.
doi: 10.1136/bjsports-2016-096589

Windt, J., Ardern, C. L., Gabbett, T. J., Khan, K. M., Cook, C. E., Sporer, B. C., et al.
(2018). Getting the most out of intensive longitudinal data: a methodological
review of workload-injury studies. BMJOpen 8:e022626. doi: 10.1136/bmjopen-
2018-022626

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Cousins, Morris, Sunderland, Bennett, Shahtahmassebi and
Cooper. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 11 November 2019 | Volume 10 | Article 1413

https://doi.org/10.1136/bjsports-2016-097152
https://doi.org/10.1136/bjsports-2016-097152
https://doi.org/10.1519/JSC.0000000000001708
https://doi.org/10.1519/JSC.0000000000001708
https://doi.org/10.1016/j.jsams.2012.12.004
https://doi.org/10.1123/ijspp.2018-2273
https://doi.org/10.1123/ijspp.2018-2273
https://doi.org/10.1080/02640414.2011.608703
https://doi.org/10.1080/02640414.2011.608703
https://doi.org/10.1007/s40279-013-0078-1
https://doi.org/10.1136/bjsports-2015-094798
https://doi.org/10.1136/bjsports-2016-096589
https://doi.org/10.1136/bmjopen-2018-022626
https://doi.org/10.1136/bmjopen-2018-022626
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Match and Training Load Exposure and Time-Loss Incidence in Elite Rugby Union Players
	Introduction
	Materials and Methods
	Study Design
	Rating of Perceived Exertion
	Global Positioning Systems
	Data Handling
	Time-Loss Incidence Definitions
	Statistical Analysis

	Results
	Mixed Effect Models
	Session RPE Load
	Distance
	High-Speed Running Distance
	7, 14, 21, and 28 d Cumulative Rolling Sums
	Comparing Model Fit
	Calculating Time-Loss Incidence Rate
	Time-Loss Incidence in Matches and Training

	Discussion
	Practical Applications in Rugby Union
	Limitations and Future Research

	Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


