

Corrigendum: Inherency of Form and Function in Animal Development and Evolution

OPEN ACCESS

Approved by:

Frontiers Editorial Office, Frontiers Media SA, Switzerland

*Correspondence:

Stuart A. Newman newman@nymc.edu

Specialty section:

This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology

Received: 01 November 2019 Accepted: 04 November 2019 Published: 03 December 2019

Citation:

Newman SA (2019) Corrigendum: Inherency of Form and Function in Animal Development and Evolution. Front. Physiol. 10:1433. doi: 10.3389/fphys.2019.01433 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States

Keywords: biogeneric, morphogenesis, pattern formation, cell differentiation, self-organization, phase transition, reaction-diffusion

A Corrigendum on

Stuart A. Newman*

Inherency of Form and Function in Animal Development and Evolution by Newman, S. A. (2019). Front. Physiol. 10:702. doi: 10.3389/fphys.2019.00702

In the original article, there was a mistake in **Table 1** as published. Because of an editing error, the lines for "Apicobasal cell polarization" and "Nonliquid cellular assemblages *via* matrices" were transposed. The corrected **Table 1** appears below.

The author apologizes for this error and states that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Copyright © 2019 Newman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

TABLE 1 | Novel inherent properties in animal development and evolution.

Property	Gene or molecular motif	Character
 Properties dependent on novel genes or regulatory motifs coincident with emergence of Metazoa Liquid-tissue state Regulated cell polarity Capacity to exaggerate intrinsic cell functions Morphogen gradients 	Classical cadherins Wnt Enhancers; PcGl proteins Hedgehog, BMPs	Multicellularity; layering Lumens; elongated tissues Differentiation Simple cell patterns
 Properties dependent on novel genes acquired after metazoan origins Liquid-crystalline-tissue state Wettable substrata (basal lamina) Lateral inhibition; oscillation of gene expression Multiple alternative cell types 	Vang/Stbm Peroxidasin Notch, Hes1 MyoD, PPARy, SMAD	Tissue elongation Appendages, glands Complex cell patterns Complex tissues, organs
8. Properties dependent on ancestral genes repurposed into DPMs in the multicellular context Cell-cell cohesion in liquid tissues Apicobasal cell polarization Nonliquid cellular assemblages <i>via</i> matrices Cell-cell electrical coupling	Grainyhead β-catenin Collagen IV Voltage-gated channels	E-M transformation Epithelia and lumens Mesenchymal tissues Bioelectrical integration

Each list is nonexhaustive but contains the most important examples of its respective category.