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Background/Hypothesis: Cardiopulmonary exercise testing (CPET) is used in the 
assessment of function and prognosis of cardiopulmonary health in children with cardiac 
and pulmonary diseases. Techniques, such as cardiac MRi, and PET-scan, can 
be performed simultaneously with exercise testing. Thus, it is desirable to have a broader 
knowledge about children’s normal cardiopulmonary function in different body postures 
and exercise modalities. The aim of this study was to investigate the effect of different 
body positions on cardiopulmonary function in healthy subjects performing CPETs.

Materials and Methods: Thirty-one healthy children aged 9, 12, and 15 years did four 
CPETs: one treadmill test with a modified Bruce protocol and three different bicycle tests 
with different body postures, sitting, tilted 45°, and lying flat (0°). For the bicycle tests, a 
20-watt ramp protocol with a pedal frequency of 60 ± 5 rotations per minute was used.  
Continous ECG and breath-by-breath VO2  measurements was done throughout the tests. 
Cardiac structure and function including aortic diameter were evaluated by transthoracic 
echocardiography prior to the tests. Doppler measurements of the blood velocity in the 
ascending aorta were measured prior to and during the test. Prior to every test, the 
participants performed pulmonary function tests with maximum voluntary ventilation test.

Results: There is a significantly ( p < 0.05) lower peak VO2  in all bicycle tests compared 
with the treadmill test. There is lower corrected peak VO2  (ml kg−0.67 min−1), but not relative 
peak VO2  (ml kg−1 min−1), in the supine compared with the upright bicycle test. There 
are no differences in peak stroke volume or cardiac output between the bicycle modalities 
when calculated from aortic blood flow. Peak heart rate decreases from both treadmill to 
upright bicycle and from upright bicycle to the supine test (0°).

Conclusion: There are no differences in peak cardiac output between the upright bicycle 
test and supine bicycle tests. Heart rate and corrected peak VO2  are lower in the supine 
test (0°) than the upright bicycle test. In the treadmill test, it is a higher absolute and relative 
peak VO2. Despite the latter differences, we are convinced that both upright and supine 
bicycle tests are apt in the clinical setting when needed.

Keywords: cardiopulmonary exercise testing, children’s physiology, spirometry, cardiac output, peak V∙ O2, 
cardiopulmonary capacity, exercise testing
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INTRODUCTION

Cardiopulmonary exercise testing (CPET) is important in  
the assessment of function and prognosis of children’s 
cardiopulmonary health in a clinical setting (Albouaini et  al., 
2007; Leclerc, 2017, Stephens, 2017). CPET is important in 
diagnostics of diseases such as exercise-induced laryngeal 
obstruction (EILO) (Johansson et al., 2015) and exercise-induced 
asthma or bronchial obstruction (EIA/EIB) (Anderson and 
Kippelen, 2012). In addition, CPET is used for monitoring 
function in children with congenital and acquired heart diseases 
(Carano et  al., 1999; Hebert et  al., 2014) as well as in children 
and adolescents with cerebral palsy (Verschuren and Balemans, 
2015). A treadmill or an upright bicycle test is the most used 
exercise modality for CPET (Cooper, 1995).

There is a growing interest in conduction of simultaneous 
MRI-scanning, PET-scanning, or echocardiography during a 
CPET (Gusso et  al., 2012). By conducting these supplementary 
investigations, one may achieve improved overview of 
cardiopulmonary health during the CPET (Chesler and Stein, 
2004; Cullen and Pellikka, 2011; Barber et  al., 2016). This is 
possible if the test subject is fixed and in a supine body position 
during the tests. In addition, a supine bicycle test will accommodate 
a better way to perform CPETs for patients who are unable to 
perform the test in an upright body position due to physical 
disabilities. Thus, advantages and disadvantages of different body 
positions during CPETs have been investigated in later years.

In the literature, there is no generally accepted definition 
of exercise capacity. However, peak oxygen consumption 
(peak VO2 ) is commonly used as an indicator of physical 
fitness and exercise capacity (Shuleva et al., 1990; Armstrong 
et al., 1991; Figueroa-Colon et al., 2000; Fletcher et al., 2001; 
LeMura et al., 2001; American Thoracic Societ, 2003; Johnston 
et  al., 2005; Armstrong and Welsman, 2007).

Due to a relatively smaller cross section area of leg muscles 
(Bar-Or, 1983; Lexell et  al., 1992), most children will have a 
lower peak VO2  on a bicycle than on a treadmill. Previous 
studies have found a significant lower peak VO2  when using 
the upright bicycle for CPET in young children (Armstrong et al., 
1991; LeMura et  al., 2001). These results correlate with similar 
research done in adults (Quinn et  al., 1995; Egaña et  al., 2006).

There is some knowledge of children and adolescent’s normal 
cardiopulmonary response to CPET in the supine bicycle 
positions (Moller et  al., 2009), but there is still a need to 
further investigate the cardiopulmonary response in different 
body positions.

This study anticipates that both the gravitation and the changes 
of hemodynamic conditions will affect the cardiopulmonary 
performance of the children in a negative direction in CPETs 
in the supine body posture. This study aimed to assess 
cardiopulmonary responses in CPETs in four different body 
postures, performed by healthy children. In addition, the 
differences in cardiopulmonary capacity in CPETs between age 
groups, ranging from children to adolescents was studied. This 
was to study differences in cardiopulmonary capacity before 
and during puberty, as it is known that both blood pressure 
and muscle mass change during puberty.

METHOD

Subjects
Three cohorts of children, born in 1999, 2002, and 2005, 
were included in the study. They were tested in 2014 and 
hence, at ages of 9, 12, and 15  years, respectively. Ten 
children in the two oldest age groups and 11 children in 
the youngest age group were included. The children were 
recruited from schools in Bergen, Norway. The subjects were 
excluded if they had history of smoking, cardiovascular or 
lung disease, family history of cardio-pulmonary diseases, 
and physical difficulties performing the tests. The test subjects 
served as their own controls in the comparison of the 
different test positions. Lean body mass was calculated with 
the Peters equation (Peters et  al., 2011) for the 9- and 
12-year-olds and the Boer equation for the 15-year-olds 
(Table 1; Boer, 1984).

Prior to the start of the study, the participants’ parents 
signed informed written consents. The study was approved by 
the Regional Committee for Medical and Health Research in 
Western Norway (REK Vest 2014/1056).

Exercise Test
The tests were performed in a randomized order and conducted 
at the Heart and Lung Test Laboratory at The Department of 
Child and Adolescents Medicine at Haukeland University 
Hospital, Bergen, Norway.

Exercise Protocol
All participants performed the following tests: (1) treadmill 
CPET, (2) ergometer upright bicycle (sitting) CPET, (3) CPET 
in a supine bike tilted at 45° to the floor, and (4) CPET in a 
supine bike tilted at 0° to the floor (illustrated in Figure 1). 
The tests were conducted with at least 24  h between them. 
The test subjects were not instructed to refrain from their 
normal day activities or diet.

For the upright bicycle CPET, an electromagnetic resistance 
seeking ergometer bicycle (Corival, Lode B.V., Groningen, The 
Netherlands) was used. An electromagnetic resistance seeking 
tilt bicycle (Ergoselect 1,200, ergoline, Bitz, Germany) was 
used in the 0° and 45° bicycle tests. For all three bicycle 
tests, a 20-watt (W) ramp protocol (Buys et al., 2012; Armstrong 
and Welsman, 2019) was utilized. In the 20-W protocol, the 
resistance starts with a resistance of 20  W and increases with 
2  W every fifth second, i.e., 20  W every minute. It was of 
importance to keep the length of the test within a timeframe 
so that the children did not get impatient. The participants 
were instructed to keep a speed of 60 rotations per minute 
(rpm) with a range between 55 and 65  rpm (Blanchard et  al., 
2018), which in our experience is the range that suits most 
children well.

The incremental peak treadmill (ELG 70, Woodway, Weil 
am  Rhein, Germany) exercise test was executed with a 
modified and computerized Bruce protocol identical for all 
subjects (Duff et al., 2017). Speed and elevation were gradually 
increased every 60  s (see Supplementary Table S1), starting 
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from an initial slow-walking phase (Cumming et  al., 1978; 
Paridon et  al., 2006; Clemm et  al., 2012).

The exercise test was considered to have reached peak level 
when the participant indicated subjective exhaustion, preferably 
supported by a plateau in VO2  or heart rate (HR) response 
(Paridon et  al., 2006), or a respiratory exchange ratio (RER) 
higher than 1.1 (Rowland et  al., 2017). Thus, the tests were 
not considered to be  max tests, but rather peak tests. Direct 
breath-by-breath measurements were continuously monitored 
on the computer screen throughout the tests, to supervise the 
physiological response to exercise.

Cardiopulmonary Exercise Testing Measurements
Prior to the start of each test, the participants did a forced 
spirometry test (Vmax 29, SensorMedics, Yorba Linda, CA, 
USA) and a maximum voluntary ventilation (MVV) test. 
Variables of gas exchange and airflow were measured breath-
by-breath with a facemask (Hans Rudolph Inc., Kansas City, 
MO, USA) connected to Oxycon pro® JLAB 5.x. version 1.0 
(Jaeger®, Care Fusion, San Diego, CA, USA) set up with 
standard layout Vmax29 cardiopulmonary exercise unit CPET 
computer program (SensorMedics, Yorba Linda, CA, USA). 

The participants wore a mask with a digital  TripleV-Volume 
sensor. Cardiopulmonary measurements were averaged per 
10  s. The highest value determined during the last 60  s was 
used as peak value. Peak VO2  was reported as ml min−1, 
ml kg−1 min−1, or as a corrected value, which has been 
used  by  some groups (ml kg−0.67 min−1) (Zapletal,  1987; 
Pettersen  and  Fredriksen, 2003; Wasserman et  al.,  2005).

During the CPET, a 12-lead ECG (GE CardioSoft V6.51, 
General electric company, Fairfield, CT, USA) recorded heart 
activity simultaneously, and blood pressure was measured every 
2  min with SunTech Tango+ (SunTech Medical, Morrisville, 
NC, USA).

Echocardiography
Echocardiography was performed using an ultrasound system 
with a 2.5-MHz transducer (Vivid E9, GE Vingmed, Canada). 
These measurements were performed by the same operator at 
every test. Prior to exercise testing, normal cardiac structure 
and function were confirmed. The internal aortic diameter 
was measured in the parasternal long- and short-axis at the 
valvular level. The aortic diameter was assumed to be  constant 
throughout a cycle and during exercise as there is only a 

TABLE 1 | Calculated anthropometric values for the test groups.

Height ± SD (cm) Weight ± SD (kg) BMI ± SD (kg/m2) LBM ± SD (kg) Number of participants

9-year-olds 139.5 ± 3.9 32.7 ± 4.6 16.8 ± 2.5 27.7 ± 2.5 11
12-year-olds 158.0 ± 6.6* 47.6 ± 8.8* 18.9 ± 2.2 38.7 ± 1.8* 10
15-year-olds 169.6 ± 6.9*,† 55.7 ± 7.8*,† 19.3 ± 1.8* 47.4 ± 5.7* 10

BMI, body mass index; LBM, lean body mass; SD, standard deviation.*Significantly different from the 9-year-old calculated mean. †Significantly different from the 12-year-old 
calculated mean.

FIGURE 1 | A 0° supine bicycle set-up illustrated, here with an adult volunteer. Informed, written consent for publication was obtained from the individuals in 
this photograph.
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small increase in aortic root size at the aortic valve annulus 
(Iskandar and Thompson, 2013).

Thereafter, Doppler measurements were obtained from the 
ascending aorta at every minute during the bicycle tests, 
including the post-exercise period (5  min). In the supine tests, 
this was done by continuous-wave (CW) Doppler measurements 
at the aortic valve visualized in the four-chamber view. In the 
upright bicycle test, the velocity of ascending blood was measured 
by a two-dimensional continuous-wave transducer positioned 
in the suprasternal notch pointing toward the origin of the 
aortic root. The measurement from the suprasternal notch has 
proved to give an accurate measurement of aortic blood flow 
(Lima et al., 1983). Stroke volume (SV) was assessed by standard 
Doppler echocardiographic methods and estimated as the 
product of the mean velocity-time integral (VTI). VTI was 
calculated tracing the velocity curve contour across the aortic 
valve, and the end-point of each contour was marked by aortic 
valve closure. The best-defined spectral curves out of three 
were averaged every minute (Quiñones et  al., 2002; Vignati 
and Cattadori, 2017). Cardiac output (CO) was calculated by 
multiplying SV with heart rate (HR) (Leyk et  al., 1994).

Statistics
SPSS 25 (IBM Corporation, Armonk, NY, USA) was used for 
all statistical analyses. Groups were checked for normality. 
Group means, standard deviation, and ranges were calculated 
as appropriate. p  <  0.05 was considered significant.

A repeated-measures one-way ANOVA with Greenhouse-
Geisser correction was used to investigate the mean differences 
in ventilatory and respiratory variables. Post hoc tests using 
the Bonferroni correction was used to further explore the 
differences in mean in the different body positions for main 
outcome variables.

For investigation of mean differences between age groups, 
a one-way ANOVA for independent measures was performed 
for each ventilatory and respiratory variable.

Using a paired sample t-test, the difference between rest 
values and peak values for the variables SV, HR, and CO for 
each test person in each age group was investigated.

New Equipment
New and updated equipment, as well as software, had to be used 
for five subjects in the 9-year-olds group. This was due to 
renovation of the Children’s Hospital during the test period. 
Replacements of equipment included the treadmill (bari-mill, 
Woodway, Weil am  Rhein, Germany), Jaeger® Vyntus CPX 
Canopy metabolic cart and SentrySuite® respiratory software 
platform (Jaeger®, CareFusion, San Diego, CA, USA), custo 
cardio 100 12-lead ECG recorder (Custo Med, GmbH, Ottobrunn, 
Germany), and Tango M2 blood pressure system (SunTech 
Medical, Morrisville, NC, USA). According to international 
recommendations, our exercise facilities are set up with biological 
controls. In biological controls, no systematical or significant 
alterations in variables between old and new equipment have 
been detected. Similarly, there are no differences (Student’s 

t-test) in values between age-matched children tests on the 
new equipment compared with tests on the old equipment.

RESULTS

Main anthropometric variables are shown in Table 1. It is not 
segregated based on gender in the groups as the participants 
function as their own control. Analysis shows significant mean 
differences in height between all age groups (139.5  ±  3.9, 
158.0  ±  6.6, 169.6  ±  6.9  cm). The weight does not differ 
significantly between the 9- and 12-year-olds, but it does 
between the other groups (32.7 ± 4.6, 47.6 ± 8.8, 55.7 ± 7.8 kg). 
Also, only the mean difference in body mass index (BMI) 
between 9- and 15-year-olds is significant (16.8 ± 2.5, 19.3 ± 1.8).

Pulmonary Function Test
Forced vital capacity (FVC) and forced expiratory volume in 
1 s (FEV1) are higher in standing and sitting positions compared 
with the lying position (0° supine) (FVC; 3.2 ± 1.2 vs. 3.0 ± 
1.2 L), (FEV1; 2.6 ± 0.9 vs. 2.4 ± 0.9 L), and lower maximal 
voluntary ventilation (MVV) in 45° supine position than in 
the sitting and 45° tilted position (85 ± 31 vs. 92 ± 35 L). 
All values are presented in Table 2.

Breath-by-Breath Measurements
Peak VO2 , reported in ml min−1 (absolute), ml kg−0.67 min−1 
(corrected), and ml kg−1 min−1 (relative), are significantly higher 
during the treadmill exercise test compared with all three 
bicycle modalities (52.9  ±  7.6 vs. 43.0  ±  6.2  ml kg−1 min−1). 
It is not a difference between the bicycle modalities for relative 
peak VO2 , but for absolute and corrected peak VO2  there 
is a decrease from upright bicycle to the 0° supine test (Table 3). 
When accounted for lean body mass (LBM) it is a difference 
between the upright bicycle and the supine bicycle (53.7  ±  7.9 
vs. 51.0  ±  6.6) as well. There is a significantly higher mean 
minute ventilation (VE) and tidal volume (VT) during the 
treadmill test than in the other test modalities (85.5  ±  27.7 
vs. 69.8  ±  26.4) (Table 4).

Both when comparing the peak VO2  given in ml kg−1 
min−1 and peak VO2  given in ml kg−0.67 min−1, between the 
age groups, there is a significant increase between the 

TABLE 2 | Calculated means for spirometry variables obtained prior to the 
exercise tests.

FEV1 (L) 
mean ± SD

FVC (L) 
mean ± SD

MVV (L/min) 
mean ± SD

Treadmill/standing 2.6 ± 0.9 3.2 ± 1.2 92 ± 35
UB/sitting 2.7 ± 0.9 3.4 ± 1.3 92 ± 33
45° SB 2.4 ± 0.8*,† 3.1 ± 1.2† 85 ± 31*,†

0° SB 2.4 ± 0.9*,† 3.0 ± 1.2*,† 81 ± 37*,†

UB, upright bicycle; SB, supine bicycle; FVC, forced vital capacity; FEV1, forced 
expiratory volume in 1 s; MVV, maximum voluntary ventilation. N = 30. *Significantly 
different to treadmill test. †Significantly different to upright bicycle test.
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9-year-olds and 12-year-olds in all four different test positions. 
However, there is no significant increase in corrected peak 
VO2  from 12- to 15-year-olds. The different peak VO2  means 

for all tests and age groups are shown in Figure 2. Results of 
breath-by-breath measurements are presented in Tables 3, 4.

Cardiac Measurements
HRpeak is higher in the treadmill tests compared with the 
bicycle tests (199  ±  8 vs. 173  ±  16 beats/min) (Table 4). 
Comparison of the three bicycle tests gives no differences in 
HRpeak. There are small differences between the age group 
means for HRpeak. Comparison of age groups shows significant 
changes in CO between 9- and 12-year-olds, as well as 9- and 
15-year-olds in the three bicycle tests. No difference in HR 
between age groups.

There are no significant differences in SV at COpeak, or in 
COpeak when comparing the different modalities (Table 5). There 
is a significantly higher mean HR at COpeak in the upright 
bicycle test than in the 0° supine bicycle test (180  ±  10 vs. 
171  ±  17 beats/min).

Investigation of change in HR, CO, and SV from rest to 
COpeak shows significant increase of all values, except for SV 
from rest to peak in the upright bicycle for the youngest 
group (Supplementary Figure S6).

DISCUSSION

In this study, there is a lower absolute, corrected, and relative 
peak VO2  in all bicycle tests compared with the treadmill 

test as well as lower absolute and corrected peak VO2  in the 
supine compared with the upright bicycle test. There are no 
differences in peak stroke volume or cardiac output between 
the bicycle modalities. Peak heart rate decreased from both 
treadmill to upright bicycle and from upright bicycle to the 
supine tests.

Other studies have previously reported that the differences 
in children’s peak VO2  with altered body position to 
be  smaller when adjusted for lean body mass (LBM) (Vinet 
et  al., 2003; Eiberg et  al., 2005). On the contrary, this study 
shows an additional change in peak VO2  when adjusted 
for LBM, where the results from the 0° supine bicycle is 
significantly lower than the upright bicycle test. The same 
result is present in the absolute and corrected peak VO2  
results, but not the relative peak VO2. Correction with 
exponential factor of 0.67 has been claimed to express the 
peak VO2  of adolescents more correctly. This has been 
discussed to be due to that the increase in peak VO2  in 
children and adolescents is masked by the increase in body 
mass with age (Pettersen and Fredriksen, 2003). With the 
exponential correction factor, there is a significant difference 
in mean peak VO2  when comparing the upright bicycle 
and 0° supine bicycle, which was not present when only 
expressing the peak VO2  relative to body weight. This may 
strengthen the argument that a correction factor is needed 
in evaluation of peak VO2  in children and adolescents.

Pulmonary Function Tests
As previously reported in adults, this study also found lower 
spirometry values in the supine position than in the sitting 
and standing positions (Vilke et  al., 2000; Naitoh et  al., 2014). 
However, there is no decrease in FEV1 and FVC from the 
standing to the sitting posture (Pierson et al., 1976). A systematic 
review of pulmonary function tests with different body positions 
is showing somewhat conflicting results in the literature 
regarding the effect of different body positions (Katz et  al., 
2018). But in general, FEV1, FVC, FRC, maximal expiratory 
pressure (PEmax), maximal inspiratory pressure (PImax), and 
peak expiratory flow (PEF) values were higher in more erect 
positions. For subjects with tetraplegic SCI, FVC and FEV1 
were higher in supine vs. sitting position. In our study, MVV 
is lower in the supine than in the sitting position in accordance 
with results shown in adults by Vilke et  al. (2000).

TABLE 3 | Calculated means for peak oxygen uptake in all test groups.

Peak VO2  (ml min−1) 
mean ± SD

Peak VO2  (ml kg−1 min−1) 
mean ± SD

Peak VO2  (ml kg−0.67 min−1) 
mean ± SD

Peak VO2  adjusted for LBM 
(ml kg−1 min−1) mean ± SD

Treadmill 2,373 ± 710 52.9 ± 7.6 184.0 ± 30.5 62.6 ± 7.8
Upright bicycle 2050 ± 683* 45.3 ± 7.3* 158.1 ± 31.2* 53.7 ± 7.9*
45° supine 2014 ± 714* 44.1 ± 7.6* 154.5 ± 33.7* 52.4 ± 8.5*
0° supine 1945 ± 622*,† 43.0 ± 6.2* 150.2 ± 27.3*,† 51.0 ± 6.6*,†

peak
 
VO2 , peak oxygen consumption; LBM, lean body mass. N = 31. *Significantly different to treadmill test. †Significantly different to upright bicycle test.

TABLE 4 | Calculated means for ventilatory variables in all test groups.

HRpeak 
(beats/

min) ± SD

VE (L/min) 
mean ± SD

VT (L) 
mean ± SD

RER (CO2 
production/
O2 uptake) 
mean ± SD

Treadmill 199 ± 8 85.5 ± 27.7 1.5 ± 0.1 1.18 ± 0.1
Upright bicycle 182 ± 10* 77.2 ± 30.9* 1.4 ± 0.1* 1.14 ± 0.1
45° supine 176 ± 15* 71.7 ± 28.0* 1.3 ± 0.1*,† 1.13 ± 0.1
0° supine 173 ± 16*,† 69.8 ± 26.4* 1.3 ± 0.1*,† 1.12 ± 0.1*

HR, heart rate; VE, ventilation; VT, tidal volume. N = 31.*Significantly different to treadmill 
test. †Significantly different to upright bicycle test.
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Ventilation During Exercise
Studies of ventilatory function during exercise have shown 
conflicting results. LeMura et  al. reported a trend but no 
significant differences in VE in their 5- and 6-year-olds 
when comparing treadmill and upright bicycle (LeMura 
et  al., 2001). Boileau et  al. studied a group of 11- to 14- 
year-old boys, and did not find any differences in VE 
when  achieved on a treadmill or an ergometer bicycle 
(Boileau  et  al., 1977).

Age-Group Differences in 
Cardiopulmonary Capacity
When comparing the test modalities, there were significant 
differences for most of the ventilatory and respiratory variables. 
There is also a higher CO in the 12- and 15-year-olds 
compared with the 9-year-olds. This appears to be  due to 
higher SV in the oldest groups, as the HR was without any 
significant changes throughout the age groups. Stroke 

volume  is related to body surface area, which explains our 
results well.

An interesting aspect of the between-group analysis is that 
the differences in peak VO2 , when corrected for weight, is 
less than the absolute value and when using the correction 
factor of 0.67. However, when correcting with a power of 
−0.67 instead of −1 as used by some groups, there is still no 
increase in peak VO2  from 12- to 15-year-olds. A possible 
explanation is that the relative increase in weight compared 
with the increase in peak VO2  is greater, and thus gives a 
smaller increase in weight-adjusted peak VO2 . This has been 
suggested in earlier studies as well (Krahenbuhl et  al., 1985; 
Pettersen and Fredriksen, 2003).

As there is a lack of increase in relative and corrected peak 
VO2 , as well as CO, between 12- and 15-year-olds, our results 

indicate that most changes in peak VO2  and CO occur between 
9 and 12  years of age.

Cardiopulmonary Measurements
In adults, linearity between CO and VO2  has been shown 
throughout exercise tests (Thadani and Parker, 1978; De Cort 
et  al., 1991). Similar linearity is visualized in Supplementary 
Figures S1–S3. It was previously suggested that the linearity 
might be  affected by fitness level (Beck et  al., 2006; Trinity 
et  al., 2012), and a study has shown that this linearity ceases 
at a certain point in the exercise, where CO starts decreasing 
as peak VO2  is approached (Stringer et  al., 2005). Figures in 
the supplementary show (Supplementary Figures S1–S3) a similar 
tendency of a flat, or decreasing, CO toward the end is observed. 
This is however not present in all tests.

FIGURE 2 | Peak oxygen consumption (peak VO2 ) (ml kg−1 min−1) means with standard deviations in all body postures in all age groups. 9Y = 9-year-olds, 
12Y = 12-year-olds, 15Y = 15-year-olds. There is a significant higher peak VO2  in the treadmill test compared with the bicycle tests, and higher in the upright 
bicycle test compared to the 0° supine test. Peak VO2  was higher in the 12- and 15-year-olds in all tests compared to the 9-year-olds. No differences in peak 
VO2  between 12-year-olds and 15-year-olds.

TABLE 5 | Group means of cardiac output (CO), heart rate (HR), and stroke 
volume (SV) with standard deviations.

SV at COpeak  
(ml/beat) ± SD

HR at COpeak 
(beats/min) ± SD

COpeak (L/
min) ± SD

Upright bicycle 95.5 ± 30 180 ± 10 17.1 ± 5.6
45° supine 98.0 ± 36 174 ± 15 17.2 ± 6.8
0° supine 97.9 ± 30 171 ± 17* 16.8 ± 5.6

*Significantly different from upright bicycle value.
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There is an absence of differences in relative peak VO2  
between bicycle CPETs in three different body positions. 
This is supported by the findings on CO, which is unchanged 
between the three different bicycle tests. However, there are 
some results suggesting a change in hemodynamics in the 
supine test. HR at COpeak, as well as absolute peak VO2 , is 
significantly lower in the supine tests than in the upright 
bicycle test (Tables 3–5). SVpeak also shows a somewhat 
higher mean value in the supine position, but this is not 
significant (Table 5, Figure 3). These findings may be explained 
by a higher preload in the supine position, a body posture 
which will give less work toward gravitational forces, thus 
improving venous backflow. Thus, the same CO was obtained 
at a lower HR.

Studies have investigated the hemodynamics with change 
of body position. Higginbotham and coworkers have reported 
individual differences with increase of end-diastolic volume 

in a supine position, which partly can explain the variation 
of SV changes (Higginbotham et  al., 1986). It is also 
subjected  that the decrease in intrathoracic pressure in an 
upright position might cause a shift of blood to the legs, 
and thus a reduced heart volume. Other hemodynamic 
considerations include a higher ventricular filling in a 
supine position, and a rise in HR and vascular resistance in an 
upright posture (Bevegard et al., 1960; Ray and Cureton, 1991).

Thadani et  al. discussed that normal adult subjects have 
individual variation in stroke volume response to exercise in 
supine body positions, as studies have found conflicting results 
on this (Bevegard et  al., 1960; Ross et  al., 1965; Thadani and 
Parker, 1978). Also, CO has shown different results in studies, 
which underlines the variation in the normal population (Bevegard 
et al., 1960). Nevertheless, due to a lack of agreement of changes 
in SV and CO with altered body position, one can argue that 
the hemodynamics during exercise is not completely understood.

FIGURE 3 | Stroke volume and heart rate at rest and at peak cardiac output (CO). Illustrates the increase in CO with exercise as well as little difference  
between the different tests.
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Strength and Weaknesses
This study has mapped a small number of individuals and 
their performance in four different CPET modalities. Every 
participant conducted all four tests, which gave a strong basis 
for intra-individual comparisons. No segregation was made 
based on gender in the test groups. This might mask differences 
is peak values as sex differences have been reported in other 
studies. However, the main purpose of the test subjects was 
to serve as their own control when changing body posture 
and not to define absolute reference values. Conducting 
echocardiographic measurements, including VTI measurements, 
are challenging because of movement artifacts, especially at 
the end of the tests. The test personnel were the same throughout 
the project, providing less room for methodical human errors.

CONCLUSION

This study does not find any differences in relative peak VO2  
or peak cardiac output between the upright bicycle test and 
the supine bicycle tests. When correcting relative peak VO2  
with an exponential factor of 0.67, we  find a lower peak VO2  
in the supine test (0°) compared to the upright bicycle test. 
Heart rate and absolute peak VO2  are lower in a supine than 
the upright bicycle test. In the treadmill test, higher absolute, 
corrected, and relative peak VO2  values are found compared 
to all bicycle tests. Our study supports the view that both upright 
and supine bicycle tests are apt in the clinical setting when needed.
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