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bone mineralization, endothelium repair and cell growth arrest in colon and breast
cancer, among other processes. Repeated skeletal muscle contraction induces the
production and secretion of myokines, which have a wide range of functions in different
tissues and organs. This new role of skeletal muscle as a secretory organ means
skeletal muscle contraction could be a key player in the prevention and/or management
of chronic disease. However, some individuals are not capable of optimal physical
exercise in terms of adequate duration, intensity or muscles involved, and therefore
they may be virtually deprived of at least some of the physiological benefits induced
by exercise. Neuromuscular electrical stimulation (NMES) is emerging as an effective
physical exercise substitute for myokine induction. NMES is safe and efficient and
has been shown to improve muscle strength, functional capacity, and quality of life.
This alternative exercise modality elicits hypertrophy and neuromuscular adaptations
of skeletal muscles. NMES stimulates circulating myokine secretion, promoting a
cascade of endocrine, paracrine, and autocrine effects. We review the current evidence
supporting NMES as an effective physical exercise substitute for inducing myokine
production and its potential applications in health and disease.

Keywords: electrotherapy, cytokines, transcutaneous electrical nerve stimulation, physical exercise, skeletal
muscle contraction

INTRODUCTION

Functions classically attributed to skeletal muscle are movement and maintenance of posture,
protection of vital organs, stimulation of blood and lymphatic circulation, and activation of
metabolic pathways as the consequence of the large amount of energy consumed. More recently,
this perspective has broadened, as contracting skeletal muscles have been shown to release
molecules responsible for signal transmission to other tissues (Hawley et al., 2014). These molecules
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were referred to as “the work stimulus,” “the work factor”
or “the exercise factor” (Pedersen et al., 2003). It was
originally hypothesized that this exercise factor could be
potassium ions, lactic acid, adenosine, interleukin (IL)-6 or
other metabolites, until Pedersen et al. (2003) suggested in 2003
that cytokines - produced and released by skeletal muscles
contraction and exerting their effects on other organs - should be
named “myokines.”

Myokines are recognized as potential candidates to manage
metabolic diseases through their capacity to modulate fuel
oxidation, hypertrophy, angiogenesis, inflammatory processes,
and extracellular matrix regulation (Leal et al., 2018; Piccirillo,
2019). Myokines may also influence the onset and the course
of other diseases through their endocrine functions, as they
interplay with body weight regulation, inflammation, insulin
sensitivity, tumor growth, and cognitive function (So et al., 2014;
Carson, 2017; Hoffmann and Weigert, 2017). Thus, myokines
may exert beneficial effects on metabolic syndrome-related
disorders such as obesity, insulin resistance and type-2 diabetes,
dyslipidemia; cardiovascular diseases such as hypertension
and coronary heart disease; breast and colon cancer; and
neuropsychiatric diseases such as Alzheimer’s, Parkinson’s and
depression (Sanchis-Gomar and Perez-Quilis, 2014; Sanchis-
Gomar et al., 2014; Pareja-Galeano et al., 2015).

Myostatin was the first myokine identified in 2008 (Allen et al.,
2008), and IL-6 was the first myokine found to be secreted into
the bloodstream in response to muscle contraction (Pedersen
and Febbraio, 2008). Since then, several hundred myokines have
been described, including cytokines, small proteins (~ 5-20 kDa)
and proteoglycan peptides produced and released by contracting
muscle cells via secretion of proteins that signal between muscle
and the rest of the body (Pedersen et al., 2007; Catoire etal., 2014).
Thus, these peptidic molecules are expressed, produced, and
released by muscle fibers which thus exert autocrine, paracrine,
and/or endocrine effects (Pedersen et al., 2003). The autocrine,
paracrine and/or endocrine (systemic) actions of myokines occur
at picomolar concentrations (Pedersen and Febbraio, 2012;
Pedersen, 2013). The autocrine and paracrine effects of myokines
are mainly involved in the regulation of muscle physiology,
muscle growth or lipid metabolism. However, myokine receptors
have been identified in different tissues and organs, including
the muscle itself, adipose tissue, liver, pancreas, bone, brain,
heart, vessels, and immune cells, thereby modulating a myriad of
functions (Pedersen et al., 2007; Lee and Jun, 2019).

Plasma levels of most myokines depend on the amount of
contracted muscle mass and are hence strongly related to the
amount of muscle mass exercised (Pedersen and Febbraio, 2008;
Hody et al., 2019). For instance, IL-6 production is sensitive to
exercise intensity (Ostrowski et al., 2000), an indirect measure
of the muscle mass involved in contractile activity (Pedersen
and Febbraio, 2008). Contracting skeletal muscle is an important
source of plasma IL-6 (Steensberg et al., 2000; Fischer et al,
2004), and exercise involving a limited muscle mass (e.g., upper
limb muscle) may be insufficient to significantly increase plasma
IL-6 levels (Nosaka and Clarkson, 1996; Hirose et al., 2004;
Bergfors et al., 2005; Pedersen and Febbraio, 2008). The sharpest
increase in plasma IL-6 is typically observed in running, which

involves several large muscle groups (Fischer, 2006; Pedersen
and Fischer, 2007). On the other hand, although IL-8 mRNA
increases up to 10-fold in response to exercise and up to
twofolds with a pharmacological cocktail (palmitate, forskolin,
and ionomycin) to mimicking exercise-stimulated contractions
in vitro (Covington et al., 2016), circulating IL-8 increases only
transiently after exhaustive exercise, suggesting that this myokine
acts only locally in an autocrine/paracrine fashion (Nielsen
and Pedersen, 2007). In this regard, neuromuscular stimulation
of cultured human primary skeletal muscle cells (hSkMCs)
increases IL-8 secretion by muscle cells (Scheler et al., 2013). The
production of the myokine brain-derived neurotrophic factor
(BDNF) is stimulated by some types of physical exercise. Acute
aerobic exercise leads to increased BDNF plasma levels in an
intensity-dependent manner, whereas acute strength exercise
does not elicit this effect (Knaepen et al., 2010; Huang et al., 2014).
Thus, rest periods between efforts, relative intensity and a limited
amount of muscle mass mobilized and contracted simultaneously
during strength exercise could limit the production of this and
other myokines (Table 1).

Active skeletal fibers produce and release several myokines
that act as hormones (Carson, 2017). These myokines released
into the bloodstream exert well defined specific endocrine effects
in different organs. This endocrine function of skeletal muscle
may underlie numerous health benefits such as maintaining
adequate body weight, reducing low-grade inflammation typical
of chronic diseases, improving insulin sensitivity, protecting from
tumor growth, and improving cognitive function. Therefore,
physical exercise in which large muscle groups are mobilized
at sufficient intensity and duration may produce benefits
from a modulation of circulating myokines (He et al., 2018).

TABLE 1 | List of myokines potentially induced by muscle contraction and regular
exercise (So et al., 2014; Schnyder and Handschin, 2015; Lightfoot and Cooper,
2016; Garneau and Aguer, 2019).

o Angiopoietin-like 4 (ANGPTLA4)

e Apelin

e B-aminoisobutyric acid (BAIBA)

e Brain-derived neurotrophic factor (BDNF)

e Chemokine ligand and chemokine (C-X-C motif) ligand family
e Decorin

o Fibroblast growth factor 21 (FGF21)

o Interleukin-6 (IL-6)

olL-8

e IL-10

o |L-13

olL-15

olL-18

o Irisin (FNDC5)

e Musclin

e Myonectin - C1q tumor necrosis factor a-related protein isoform 5 (C1QTNF5)
o Myostatin

o Leukemia inhibitory factor (LIF)

e Secreted protein acidic rich in cysteine (SPARC)

e Tumor necrosis factor-alpha (TNF-a)
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Exercise also increases circulating small vesicles and exosomes
as well as extracellular vesicles-packaged proteins involved in
several biological functions (Whitham et al., 2018). Importantly,
extracellular exosomes and extracellular matrix proteins might
also be classified as myokines, particularly the extracellular
matrix protein tenascin C, which is produced after electrical
stimulation (Crameri et al., 2007) and affect muscle healing and
regeneration (Fluck et al,, 2008). However, the physical and
metabolic limitations of some individuals will prevent them from
undertaking physical exercise of sufficient intensity or duration
to trigger such a myokine response.

Neuromuscular electrical stimulation (NMES) is based on
applying in the transcutaneous electrical currents to a group of
muscles, stimulating it to contract (Veldman et al., 2016). This
method is usually employed as a passive “substitute” of dynamic
training and acts as an “exercise emulator.” In fact, NMES
can activate PGC-1la (the master regulator of mitochondrial
biogenesis activated by endurance exercise) as well as the target
of rapamycin (mTOR), which in turn activates insulin and IGF-1
receptors (Atherton et al., 2005). Accordingly, this strategy could
be particularly useful in patients with paraplegia, tetraplegia,
obesity and limited mobility, frail elderly, or any person needing
prolonged bed rest.

This review describes the most relevant in vivo research
findings linking NMES and endocrine myokine expression,
revealing NMES as an ergo-mimetic agent, and discusses how
this method of stimulating the production of plasma myokines
can exert a beneficial effect on the pathophysiology of several
conditions in patients with limited mobility. We have particularly
focused on myokines for which sufficient scientific evidence is
currently available.

MYOKINE PRODUCTION THROUGHOUT
NEUROMUSCULAR ELECTRICAL
STIMULATION: A REVIEW OF IN VIVO
EVIDENCE

Neuromuscular electrical stimulation may act as an efficient
protector of muscle competence when subjects are unable or
unwilling to engage in resistance or aerobic training programs.
In accordance with this hypothesis, superimposed muscle
contraction produced by electrical stimulators was found to
enhance functional capacity in heart failure (HF) patients tested
using the 6-min walk test (Nuhr et al., 2004; Karavidas et al,
2006). Similar results emerged from a meta-analysis of functional
electrical stimulation in patients with chronic HF (Sbruzzi et al.,
2010). Thus, NMES improved functional capacity (measured as
VOzpeak) in HF patients to a similar extent as conventional
aerobic training. The greatest improvements in the NMES group
were detected in patients with a lower exercise capacity (Deley
et al,, 2008). A Cochrane systematic review (Jones et al., 2016)
considered NMES a valid therapeutic intervention to improve
muscle weakness in adults with conditions such as chronic
obstructive pulmonary disease (COPD), chronic respiratory
disease, chronic HE, or thoracic cancer. Likewise, NMES could

be useful during recovery from injury (Caggiano et al., 1994;
Wall et al,, 2015), since it increases antioxidant capacity and
decreases redox imbalance caused by disuse (Gondin et al,
2011a,b; Pellegrino et al., 2011).

INTERLEUKINS

NMES behaves as a powerful stimulus to skeletal muscle
with systemic consequences when undertaking considered at
low to moderate workload. Compared to groups in which
the only intervention was active cycling or passively applied
NMES, cycling plus NMES produced the greatest increases
in plasma IL-6 levels immediately and 30 and 60 min
after the intervention, showing a significant interaction effect
(intervention*time) (partial n? = 0.55; power = 0.99) (all
p <0.001) (Wahl et al., 2015).

The duration of exercise seems to be the most critical factor
regulating the amplitude of the systemic IL-6 response. Since
the intervention time was exactly the same for the three groups,
these results may arise from the larger amount of muscle mass
engaged in the intervention combining NMES and active cycling
(Fischer, 2006).

Increased peripheral blood levels of IL-6 were measured after
a single 30-min NMES session in healthy participants receiving
bilateral lower extremity muscle stimulation in the quadriceps,
tibialis anterior and gastrocnemius. This intervention produced
a significant increase in peak IL-6 from the mean pre-NMES
value [0.65 (0.89) to 1.04 (0.89) pg ml™!, P = 0.001], and a
significant decrease in interleukin-10 (IL-10) [0.08 (0.07) to 0.02
(0.02) pg mi~, P = 0.041] and TNF-a [2.42 (0.54) to 2.16 (0.59)
pgml~!, P=0021]. Significantly higher mean values of IL-6 were
also observed after NMES throughout the full 120-min period
(Truong et al., 2017).

Although the magnitude of change was not impressive, these
results are in line with similar responses to exercise observed
in healthy adults (Greiwe et al., 2001; Steensberg et al., 2002).
Truong et al. (2017) demonstrated a clear relationship between
exercise-induced release of IL-6 and TNF-a, thus supporting its
putative anti-inflammatory role. Specifically, IL-6 seems to exert
its anti-inflammatory actions during low to moderate exercise,
through induction of IL-1ra transcription, which in turn inhibits
the pro-inflammatory cytokine IL-1. Moreover, IL-6 increases
the production of IL-10, which inhibits lipoprotein saccharide-
stimulated production of the pro-inflammatory cytokines TNF-a,
IL-1a, and IL-1B (Steensberg et al., 2003; Fischer, 2006).

Chronic conditions such as COPD may lead to a pro-
inflammatory state. In these situations, IL-6 may be increased
in the presence of increased TNF-a expression. Akar et al.
(2017) studied COPD exacerbation during intubation in hospital,
and found significantly reduced plasma IL-6 levels after a
rehabilitation program based on NMES and active mobilization
[5.70 (1.70-13.70) - 1.20 (0.50-2.70) (P = 0.015)], and on
NMES alone [3.35 (0.70-14.18) - 1.20 (0.50-6.70) (P = 0.068)].
The intervention group only undergoing active mobilization
showed increased IL-6 levels without significant differences
(Akar et al, 2017). Similarly decreased levels of IL-8 were
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TABLE 2 | Summary of the different NMES protocols most commonly used to evaluate circulating myokine’s secretion in humans.

Study Type Frequency Pulse width Intensity Time Total number of Stimulated zone Others
sessions
Dirks et al., 2014 Biphasic Warm-up: Warm-up: 250 us Subjects set the Warm-up: 5 10 sessions (2 Self-adhesive Volunteers were
symmetrical 5Hz Stimulation Stimulation period: intensity of the Stimulation period: sessions per electrodes placed subjected to 5 days
rectangular-wave period: 400 s Cooling stimulation to a 30’ Cooling down day/5-day period) on the distal part at of one-legged knee

Wahl et al., 2015

Akar et al., 2017

Dalise et al., 2017

Truong et al., 2017

pulses

Bipolar rectangular
pulse continuously
applied

Symmetrical
biphasic squared
waveform, pulsed
(ramp-up 1.5s,6s
duration
contraction and
0.75 ramp-down;
the rest time was
not reported and
the duty-cycle rest
was unknown)
Interference wave
at an amplitude-
modulated
frequency of 20 Hz,
on-off ratio

4.5:4.5 s (ramp-up
1 s and ramp-down
0.559)

Pulsed
asymmetrical
biphasic waveform

100Hz Cooling
down phase: 5Hz

60 Hz

50 Hz

2000 Hz

50 Hz

down phase:
250 ps

400 ps

Not reported

50 ns

400 ps for
quadriceps and
250 s for tiabialis

level at which full
contractions of m
quadriceps femoris
were visible and
palpable
Progressively 60’
increased at

maximum tolerated

Until visible
contraction was
obtained,

20-25 mA
(depending on
patient tolerance).

Progressively 20
increase to the

highest tolerated

intensity during the
experiment

Until visible 30
contractions were
obtained

phase: 5

Not reported

One unique session

20 sessions (5 days
per week,
4 weeks).

One unique session

One unique session

the m. rectus
femoris and the m.
vastus lateralis

Circular electrodes
around the thigh
and the calf and
laminar electrodes
in the gluteal zone

bilateral upper
extremity (deltoid)
and bilateral lower
extremity
(quadriceps).

Bilateral lower limbs
(quadriceps) were
stimulated
alternately

Quadriceps, tibialis
anterior and
gastrocnemius

immobilization

The electrical
stimulation was
continuous and
independent from
the cycling
Volitional
contraction was not
allowed for the
patients

Electrical
stimulation of the
tibialis anterior and

(2 sramp-up, 5's anterior and gastrocnemius

duration gastrocnemius alternated to

contraction and stimulate

<1 s ramp-down, physiologic

8/18 duty-cycle) volitional
contraction in order
to prevent
discomfort

(Continued)
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electrodes were
placed in the
gluteal zone

respectively

Bilateral lower limbs
(quadriceps) were

stimulated
alternately

One unique session

20’

0.05 ms Progressively

2000 Hz

Interference wave
at an amplitude-
modulated

Kimura et al., 2019

increase to the

highest tolerated

intensity during the

experiment

frequency of 20 Hz,

on-off ratio

4.5:4.5 s (ramp-up

1 s and ramp-down

0.559)

found in a NMES and active mobilization group [13.64 (1.47-
23.70) - 2.35 (0.80-17.63) (P = 0.017)], and a NMES alone
group [6.13 (2.35-25.00) - 3.92 (0.80-17.63) (P = 0.017)]. This
time, the active mobilization intervention group showed no
significant differences in IL-8. Although no significant difference
was reported, NMES and active mobilization, as well as NMES
alone, were effective in increasing IL-10, whereas the active
mobilization alone group showed reduced IL-10 values. This
downregulation of IL-6 and IL-8, and upregulation of IL-
10, could be consequent to a reduced proinflammatory state
mediated by muscle contraction.

BRAIN-DERIVED NEUROTROPHIC
FACTOR

Miyamoto et al. (2018) carried out several studies in healthy
subjects and those with type 2 diabetes mellitus. These authors
reported significantly improved plasma BDNF concentrations
after an 8-week period of NMES training and after a single bout
of NMES, respectively. In this study, a single 30 min bout of
NMES significantly increased plasma BDNF levels (pre-NMES:
150.5 & 126.7 vs. post-NMES: 250.5 £ 131.1 pg mL™!; p = 0.017);
this effect was similar to that observed in subjects completing
a 30-min cycling ergometer exercise test at 60% VO3 pear (post-
NMES: 250.5 & 131.1 vs. post-exercise: 268.6 4= 123.8 pg - mL™!;
p = 0.908). However, this acute response was not associated with
an improvement in cognitive function (Miyamoto et al., 2018).
The 8-week protocol of NMES training in subjects with type 2
diabetes was able to induce a significant increase in plasma BDNF
(pre-NMES: 117.0 £ 40.4 vs. post-NMES 245.5 £ 51.2 pg/ml;
P =0.026) compared to participants allocated to the control group
and who showed a decline in plasma BDNF during the 8-week
period without NMES. The NMES intervention also induced a
greater reduction in the body fat percentage and fasting glucose
concentrations than in the control group (Miyamoto et al., 2018).

Kimura et al. (2019) compared voluntary exercise and NMES-
induced muscle contraction with the same integrated force
measured using electro-myographic technology, and observed
that the increase in serum BDNF in the NMES group was higher
than that in the voluntary exercise group (18625.6 + 4173.5
pg/ml, p = 0.003 vs. 15103.0 & 4177.9 pg/ml, p = 0.004). NMES
could therefore be even more effective than active exercise using
the same integrated force to increase serum BDNF.

Several animal experiments have also examined the
relationship between BDNF and exercise. In 2017, Dalise et al.
(2017) obtained surprising results in Sprague-Dawley rats. These
authors compared serum myokines such as vascular endothelial
growth factor-A (VEGF-A), insulin-like growth factor-1 (IGF-1),
Klotho (i.e., an anti-aging single-pass membrane protein),
and BDNF produced in response to different intensities (low,
medium, or high) of active exercise and analogous NMES
interventions. NMES did not modify IGF-1 levels yet led to a
modest increase in plasma Klotho concentrations in the low- and
high intensity interventions. Notably, after a medium-intensity
session of NMES, serum BDNF underwent a dramatic eightfold
increase (p = 0.01).
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FIGURE 1 | NMES-induced myokine production and its effects on health. BDNF, brain-derived neurotrophic factor; GH, growth hormone; IGF-1, insulin-like growth

factor 1; MGF, mechano-growth factor.
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Mackawa et al. (2018) found that 50 repeated maximal
electrically evoked-isometric contractions in unconscious rats
were effective at increasing BDNF protein expression and activate
its hippocampus receptor. These findings could provide reliable
evidence of an alternative means of communication between
muscle and different organs, additional to endocrine interactions.

MYOSTATIN

Myostatin is an inverse modulator of muscle mass in animals
and humans (McPherron and Lee, 1997; Schuelke et al., 2004;
Mosher et al., 2007), inhibiting mTOR signaling (Rodriguez et al.,
2011). Wall et al. (2012) showed that the expression of myostatin
mRNA declined significantly after 60 min of NMES in the lower
limbs, coinciding with a significant increase in MyoD mRNA
expression. These results are consistent with an anabolic stimulus
following a bout of resistance exercise. Dirks et al. (2014) reported
that the expression of myostatin mRNA was lower after NMES
compared to baseline or a control group not receiving electrical
stimulation. The expression of MyoD mRNA was also increased
after NMES compared to values recorded at baseline and in
the non-NMES group.

GH AND IGF-1 SIGNALING

In an experimental study in rats subjected to sciatic neurectomy
to reproduce adverse effects such as disuse amyotrophy and
cortical bone loss (Feng et al., 2016), 30-min NMES sessions
5 days per week for 9 weeks downregulated mRNA expression
levels of myostatin and upregulated those of mechano-growth
factor (MGF) and insulin-like growth factor 1 (IGF-1).

In a treadmill study in Sprague-Dawley rats, resistance
training (based on superimposed NMES-induced isometric
contraction) led to increased and maintained IGF-1 and GLUT-4
translocation compared to aerobic exercise, suggesting a potential
role of NMES resistance training as a regulator of glucose
metabolism (Kido et al., 2016).

The growth hormone (GH) response to exercise is a driving
force of anabolic protein synthesis linked to strength and

muscle mass enhancement. NMES is a valid and efficient tool
to stimulate a hormone response in healthy subjects (Aldayel
et al, 2010; Wahl et al, 2014). Collectively, evidence so far
suggests that NMES mediates a protective effect on muscular
structural integrity and functional capacity via autocrine and
paracrine mechanisms.

DOSE-EFFECT RELATIONSHIP
BETWEEN CONTRACTION INTENSITY
AND MYOKINES

Unfortunately, no information exists on a minimal contraction
and/or number of sessions needed to stimulate myokines’
secretion. However, although at present there are no precise
data about the dose-response relationship between NMES-
induced contraction intensity and myokines secretion, higher
intensities of muscle contraction provoked by NMES improved
muscle function in patients after an anterior cruciate ligament
reconstruction (Snyder-Mackler et al., 1994). There is also
a linear dose-response relationship between the increase in
energy expenditure and the intensity of NMES in healthy
subjects (Hsu et al., 2011) as well as with muscle function
in patients with rheumatoid arthritis (Almeida et al, 2018).
Likewise, a linear dose-response relationship was observed
between NMES intensity and quadriceps strength and voluntary
activation in subjects who received NMES after total knee
arthroplasty, although there was no evidence of an association
with muscle cross-sectional area (Marmon and Snyder-Mackler,
2011). Therefore, it is likely that there is a dose-effect
relationship between NMES intensity and other variables, but
additional investigations are still needed to elucidate the dose-
effect relationship between NMES intensity-frequency-duration-
muscle/s and myokines’ secretion.

POTENTIAL DRAWBACKS AND
LIMITATIONS OF USING NMES

NMES-provoked muscle damage characterized by histological
alterations in muscular and connective tissue, creatine kinase
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(CK) activity increases, declines in muscle strength, and delayed
onset muscle soreness has been recently reported (Nosaka et al.,
2011). Several cases of rhabdomyolysis induced by NMES have
been reported (Guarascio et al., 2004; Kastner et al., 2015;
Johannsen and Krogh, 2019). NMES might increase myostatin
(also named GDF-8; growth/differentiation factor 8), an inhibitor
of skeletal muscle growth, and GDF-15 (growth differentiation
factor 15), suggesting thus that excessive NMES could damage
muscles (Bloch et al., 2014). Nevertheless, it seems that pre-
conditioning muscles by isometric contractions or submaximal
eccentric might attenuate NMES-provoked muscle damage
(Nosaka et al., 2011).

On the other hand, a rehabilitation program including NMES
must be accompanied by functional task to guarantee the
eventual success of the intervention (Azman and Azman, 2017).
Although there is controversy regarding the additional benefits
of “superimposed” NMES in trained subjects vs. voluntary
exercise alone, the former could be effective in untrained
subjects or in patients who cannot mobilize appropriately
(Paillard et al., 2005). Superimposed NMES seems more
effective than voluntary exercise alone for the prevention of
muscle atrophy, maintenance of muscle oxidative capacity and
prevention of strength loss, and to recover knee function
and gait kinematics after ligament surgery (Eriksson and
Haggmark, 1979; Snyder-Mackler et al., 1991). A large muscle
mass and a higher strain to skeletal muscles than normal are
needed to increase the secretion of certain myokines (Wahl
et al, 2015): this is the reason why superimposed NMES
might be more effective to induce a higher local muscle
stimulus for myokine secretion. Finally, voluntary exercise is
at least as beneficial as superimposed NMES, although the
latter could produce additional benefits in weaker muscles
(Hartsell, 1986).

MOST COMMONLY NEUROMUSCULAR
ELECTRICAL STIMULATION
PROTOCOLS USED IN HUMANS TO
EVALUATE CIRCULATING MYOKINE’S
SECRETION

Table 2 summarizes the most commonly NMES protocols used
in human investigations. In general, NMES sessions last ~20 to
60 min, with a stimulation frequency between 4 and 2000 Hz,
pulse (biphasic rectangular pulses) duration of 50-1000 s, with
the highest tolerable intensity to maximize force production,
performed every day in patients with activation neural deficits,
and alternate days to produce hypertrophy in the affected muscle
when the neural deficits have improved (Maffiuletti et al., 2018).
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