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SNAREs (soluble N-ethylmaleimide-sensitive factor activating protein receptors) are
a group of proteins that are crucial for membrane fusion and exocytosis of
neurotransmitters from the cell. They play an important role in a broad range of cell
processes, including cell growth, cytokinesis, and synaptic transmission, to promote
cell membrane integration in eukaryotes. Many studies determined that SNARE proteins
have been associated with a lot of human diseases, especially in cancer. Therefore,
identifying their functions is a challenging problem for scientists to better understand
the cancer disease as well as design the drug targets for treatment. We described
each protein sequence based on the amino acid embeddings using fastText, which
is a natural language processing model performing well in its field. Because each
protein sequence is similar to a sentence with different words, applying language model
into protein sequence is challenging and promising. After generating, the amino acid
embedding features were fed into a deep learning algorithm for prediction. Our model
which combines fastText model and deep convolutional neural networks could identify
SNARE proteins with an independent test accuracy of 92.8%, sensitivity of 88.5%,
specificity of 97%, and Matthews correlation coefficient (MCC) of 0.86. Our performance
results were superior to the state-of-the-art predictor (SNARE-CNN). We suggest this
study as a reliable method for biologists for SNARE identification and it serves a basis
for applying fastText word embedding model into bioinformatics, especially in protein
sequencing prediction.

Keywords: SNARE proteins, deep learning, convolutional neural networks, word embedding, skip-gram

INTRODUCTION

Soluble N-ethylmaleimide-sensitive factor activating protein receptors (SNAREs) are the most
important and broadly studied proteins in membrane fusion, trafficking, and docking. They are
membrane-associated proteins that consist of distinguishing SNARE domains: heptad restates
∼60 amino acids in length that are predicted to assemble coiled-coils (Duman and Forte, 2003).
Most SNAREs consist of only one SNARE motif adjacent to a single C-terminal membrane
(e.g., syntaxin 1 and synaptobrevin 2). Figure 1 shows the domain architecture of some example
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FIGURE 1 | Domain architecture model of SNARE proteins.

SNAREs (e.g., syntaxin, SNAP-25, or Vam 7). As shown
in these proteins, SNAREs generally consist of a central
“SNARE domain” that is flanked by a variable N-terminal
domain and a C-terminal single α-helical transmembrane anchor
(Ungermann and Langosch, 2005). SNARE proteins are crucial
for a broad range of cell processes, e.g., cytokinesis, synaptic
transmission, and cell growth, to promote cell membrane
integration in eukaryotes (Jahn and Scheller, 2006; Wickner
and Schekman, 2008). There are two categories of SNARE:
v-SNAREs incorporated into the membranes of transport vesicles
during budding, and t-SNAREs associated with nerve terminal
membranes. Researchers have recently identified a lot of SNARE
proteins in human and they demonstrated that there is a
crucial link between SNARE proteins and numerous diseases
[e.g., neurodegenerative (Hou et al., 2017), mental illness
(Dwork et al., 2002), and especially cancer (Meng and Wang,
2015; Sun et al., 2016)]. As a detail, a 1 bp deletion in
SNAP-29 causes a novel neurocutaneous syndrome (Sprecher
et al., 2005), mutation in the b-isoform of neuronal SNARE
synaptosomal-associated protein of 25 kDa (SNAP-25) results
in both diabetes and psychiatric disease (Jeans et al., 2007),
mutations in VPS33B cause arthrogryposis–renal dysfunction–
cholestasis (ARC) syndrome (Gissen et al., 2004), and so on.

Because SNARE proteins play an essential molecular
function in cell biology, a wide variety of techniques were
presented and used to investigate them. One of the best studies
on SNAREs is molecular docking of synaptic vesicles with
the presynaptic membrane in neurons. Another solution is
to identify SNAREs from unknown sequence according to
their motif information. In order to address it, Kloepper
team is a first group that used bioinformatics techniques in
this kind of problem. In their research, they have already
built a database for retrieving and classifying SNARE
proteins (Kloepper et al., 2007, 2008; Kienle et al., 2009).
Furthermore, SNARE functions in sub-Golgi localization
had also been predicted using bioinformatics techniques
(van Dijk et al., 2008). Yoshizawa et al. (2006) identified
SNAREs in membrane trafficking via extracting sequence
motifs and the phylogenetic features. In the latest work, Le and
Nguyen (2019) identified SNAREs by treating position-specific
scoring matrices as images to feed into 2D convolutional
neural network (CNN).

To our knowledge, only the study from Le and Nguyen (2019)
conducted the SNARE protein prediction in membrane fusion by
using machine learning techniques. However, their performance
results need a lot of improvements, and we therefore motivate
to create a better model for this. To address this, we transform
the protein sequences into a continuous bag of nucleobases using
fastText model (Bojanowski et al., 2017) and then carry out to
identify them with the use of deep neural networks. Releasing
by Facebook Research, fastText is a natural language processing
(NLP) model for word embedding and text classification. It uses
neural network for learning text representations and since its
discovery, it has been used in a lot of different NLP problems
(Joulin et al., 2017). It has been also used in interpreting biological
sequences such as DNA sequences (Le, 2019; Le et al., 2019b) and
protein sequences (Asgari et al., 2019), and here we provide a
different application with a more in-depth analysis.

The idea is to treat protein sequence as a sentence and amino
acids as words, we used fastText to train the language model on
all sequences. Subsequently, this language model will be used to
generate vectors for protein sequences. At the latest stage, we
used a deep neural network to learn these vectors as features
and perform supervised learning for classification. The rest of
this paper is organized as follows: our materials and methods
are introduced in the section “Methods”; some of our relevant
experiments and results are introduced in the section “Results”;
discussions of the model performance as well as limitations are
given in the section “Discussion.”

METHODS

Figure 2 illustrates our flowchart which consists of three major
processes: data collection, training fastText model and 1D CNN
model. We describe the detailed description of our approach in
the following paragraphs.

Data Collection
The dataset retrieved from the National Center for Biotechnology
Information (NCBI) (by 4-2-2019) (Coordinators, 2015), which
is a large suite of online resources for biological information
and data. Moreover, on-line resource conserved domain database
(CDD) (Zheng et al., 2014) suggested that “SNARE superfamily”
members could be identified using the SNARE motif “cl22856,”
therefore, we used this information to generate non-redundant
(annotated) SNARE proteins. This step ensures that we collected
all corrected SNARE proteins including SNARE motif. There
are many protein sources in NCBI, and we chose to collect all
protein sequences from RefSeq (Pruitt et al., 2006). Next, to
prevent overfitting problem, we used CD-HIT (Fu et al., 2012)
to eliminate the redundant sequences with similarity greater than
30%, and the rest of proteins reaches 26,789 SNAREs. We used
full sequences of proteins, thus it includes typical coiled coil as
well as other motifs.

In the next step, we collected a negative set to treat our
problem as a binary classification between positive (SNAREs)
and negative set. To perform this, we retrieved all general
proteins without the SNARE motif and with similarity more
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FIGURE 2 | Flow chart of this study.

than 30%. Because the number of negative data was much
higher than the number of positive data, it will cause
difficulties in machine learning problem. Therefore, we randomly
selected 26,789 negative samples to give balance training in
our problem.

Amino Acid Embedding Representation
Encouraged by the high performance of word embedding in
many NLP tasks, we presented a similar feature set called “amino
acid embedding.” The objective is to apply recent NLP models
into biological sequences. It was first proposed by Asgari and
Mofrad (2015) and successfully used to solve the latter biological
problems related to sequence information (Habibi et al., 2017;
Vang and Xie, 2017; Öztürk et al., 2018). Nevertheless, with
the use of Word2Vector to describe the biological sequences,
these findings had some disadvantages such as out-of-vocabulary
cases for unknown words as well as not taking care of the inner
structure of words. Accordingly, a critical issue therefore needs
to be resolved is that instead of using an single specific vector
representation for the protein word, the internal structure of
each word needs to be taken into account. Facebook suggested

fastText, which is a Word2vec extension that can handle the
word as a continuous bag of character n-grams (Bojanowski
et al., 2017), to perform this task. The vector for a word
therefore consists of the number of n-grams of this type. It
has been shown that fastText was more accurate than using
Word2vec in a variety of fields (Joulin et al., 2017). Inspired
by its accomplishments, previous researchers used it to describe
biological sequences such as DNA enhancer sequence (Le et al.,
2019b), DNA N6-methyladenine sites (Le, 2019) and protein
sequence (Asgari et al., 2019).

The goal of this step is to encode nucleotides by establishing
their vector space distribution, enabling them to be adopted
by supervised learning algorithms. To perform a supervised
learning classification, we need a set of features having the same
dimension. Nonetheless, our protein sequences are of different
lengths, so to address this issue, we set the embedding vector
dimension to 100. This means that each protein sequence is
represented as real numerical values of 100 and can be fed directly
without pre-processing into any machine learning classifier. We
have more special features for a good prediction by bringing this
information into the dataset.
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Convolutional Neural Network
Convolutional neural network generally consists of multiple
layers with each layer performing a particular function of
translating its output into a functional representation. All layers
are combined to form the architecture of our CNN system using
a specific order. Similar to many published works in this field (Le
et al., 2018, 2019a,c; Nguyen et al., 2019), different layers used in
CNN for the current study include:

(1) Input layer of our CNN is a 1D vector, which is a vector of
size 1× 100 (created by fastText model).

(2) Convolutional layers were used as convolution operations
to extract features embedded in the 1D input vector. These
layers took a sliding window with specific stride shifting
across all the input shapes. After sliding, the input shapes
will be transformed into representative values. The spatial
relationship between numeric values in the vectors has
been preserved in this convolutional process. It will help
this layer learn the important features using small slides
of input data. Since the input of our CNN model is a
vector of small size, we used the kernel size of 3 to deduce
more information. This number of kernel has been used
in previous works on CNN (Le et al., 2017, 2018, 2019a).

(3) Activation layer was performed after convolutional layers.
It is an additional non-linear operation, called ReLU
(Rectified Linear Unit) and is calculated as follows:

f (x) = max (0, x) (1)

Where x is the number of inputs in a neural network. The
purpose of ReLU is to introduce non-linearity in our CNN
and help our model learn better from the data.

(4) Pooling layer was applied in convolutional layers to
reduce the computational size for the next layers. There
are three types of pooling layers, and we selected max
pooling in our architecture to select the maximum value
over a window of 2.

(5) Dropout layer was applied aiming to reduce the
overfitting of our model and also to improve the
performance results in some cases (Srivastava et al., 2014).

(6) Flatten layer was used to transform the input matrix into
a vector. It always stand before fully connected layers.

(7) Fully connected layer was usually applied in the last
stages of neural network architectures. In this layer,
each node is fully connected with all the nodes of the
previous layers. Two fully connected layers have been
included in the current model. The first one connected
all the input nodes to the flatten layer to help our model
to gain more knowledge and perform better. This one
was then connected to the output layer by the second
layer. The number of nodes in the output layer is equal
to 2 as identifying SNARE proteins was as a binary
classification problem.

(8) Softmax was an evaluation function standing at the output
of the model to determine the probability of each possible

output. Its function could be calculated by the formula:

σ (z)i =
ezi∑K

k=1 ezk
(2)

where z indicates the input vector with K-dimensional
vector, σ(z)i is real values in the range (0, 1) and ith class
is the predicted probability from sample vector x.

Assessment of Predictive Ability
We firstly trained the model on the entire training set using 5-fold
cross-validation technique. Since every 5-fold cross-validation
produces different results each time, we performed ten times 5-
fold cross-validation to achieve more reliable results. Thereafter,
we reported the cross-validation performance by averaging all
the ten times cross-validation tests. In the training process,
hyper-parameter optimization has been used to identify the best
parameters for each dataset. Finally, an independent test was
applied to evaluate the performance and to ensure preventing any
systematic bias in the cross-validation set.

Moreover, to evaluate the performance of our method,
we applied Chou’s criterion (Chou, 2001) used in many
bioinformatics studies. With this criterion, some standard
metrics sensitivity, specificity, accuracy and Matthews correlation
coefficient (MCC) are as follows:

Sensitivity = 1−
N+−
N+

, 0 ≤ Sen ≤ 1 (3)

Specificity = 1−
N−+
N−

, 0 ≤ Spec ≤ 1 (4)

Accuracy = 1−
N+− + N−+
N+ + N−

, 0 ≤ Acc ≤ 1 (5)

MCC =
1−

(
N+−
N+ +

N−+
N−

)
√(

1+ N−+−N+−
N+

)(
1+ N+−−N−+

N−

) ,

−1 ≤ MCC ≤ 1 (6)

The relations between these symbols and the symbols in Eqs.
(3–6) are given by:


N−+ = FP
N+− = FN

N+ = TP + N+−
N− = TN + N−+

(7)

Where TP, FP, TN, FN are true positive, false positive, true
negative, and false negative values, respectively.
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RESULTS

Composition of Amino Acid
Representation in SNAREs and
Non-SNAREs
In this section, we would like to analyze the differences between
SNARE and non-SNARE sequences in our dataset by computing
the composition of amino acid representation between them. The
amino acids which had the highest frequency in the positive
and negative set are shown in Figure 3. It is easy to point
out some of the differences between the two types of dataset.
For instance, we were aware of the higher frequency of amino
acid L, and F, and R in the SNARE proteins but lower in the
non-SNAREs. Otherwise, the amino acids that appeared a lot in
non-SNARE sequences are G, T, N, and D. Besides, we plotted
the standard error bars at each column to statistically see the
differences among amino acid compositions. These error bars
aim to calculate confidence intervals, or margins of error to
quantify uncertainty. As shown in Figure 3, there are some
amino acids had significantly differences (with no overlap error
bars) such as N, D, G, L, F, and T. Therefore, these amino acids
might play a crucial role in identifying SNARE sequences and
they can be special features that help our model predict SNAREs
with high accuracy. This finding also plays an important role

in further research that aims to analyze the motif information
in SNARE proteins.

Hyperparameters Optimization
Hyper-parameters are architecture-level parameters and
are different from parameters of a model trained via
backpropagation. To tune hyperparameters, we used the
approach to choose a set of hyperparameters for speeding up the
training process as well as preventing overfitting. As suggested by
Chollet (2015), each step of the above hyper-parameter-tuning
approach was integrated into the hyper-parameter-tuning
process as follows:

• Selecting a specific set of hyper-parameters.
• Creating the model according to the specific set.
• Evaluating the performance results using testing dataset.
• Moving to the next set of hyper-parameters.
• Repeating.
• Measuring performance results on an independent dataset.

Keras framework library (Chollet, 2015) with a TensorFlow
backend (Abadi et al., 2016) was used as a deep learning
framework to build the 1D CNN architecture. We performed
grid search on training set and used accuracy to select the next
set of hyperparameters. Furthermore among the six optimizers

FIGURE 3 | Composition of amino acid in SNAREs and non-SNAREs.
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in Keras [e.g., Adam, Adadelta, Adagrad, Stochastic Gradient
Descent (SGD), RMSprop, and Adamax], Adadelta has given a
superior performance. Therefore, we used Adadelta in our model
to achieve an optimal result. This point is also proven in the
previous protein function prediction using CNN (Le et al., 2017;
Nguyen et al., 2019).

SNARE Identification With Different
n-Gram Levels
After tuning the optimal parameters for 1D CNN model, we
evaluated the performance of this architecture on the datasets
of different n-gram levels (from 1 to 5). In this step, all the
measurement metrics were used to evaluate the comparative
performance in both cross-validation and independent test. The
result is displayed in Table 1. Table 1 shows that the performance
results of n-gram levels are proportional. We were not able
to achieve the best performance unless we used high levels of
n-gram values. To maximize the performance of our models,
we should choose the n-gram levels from 4 (accuracy of more
than 97%). This means that the model only captures the special
information in a high level of n-gram, increasing high level of
n-gram will help to increase much in the results. In this study,
we chose n-gram = 5 with the best metrics (accuracy of 97.5 and
92.8% in the cross-validation and independent test, respectively)
to perform further experiments.

In most of the supervised learning problems, our model can
perform well during training test, but worse in another invisible
data. This is called overfitting and our study, no exception also
included in this issue. Therefore, an independent test was used
in our study to ensure that our model also works well in a blind
dataset with unseen data. As described in the previous part, our
independent dataset contained 4,465 SNAREs and 4,465 non-
SNAREs. None of these samples occur in the training set. As
shown in Table 1, our independent testing results also comply
with cross-validation results in most metrics. To detail, our
independent testing performance achieved the accuracy of 92.8%,

sensitivity of 88.5%, specificity of 97%, and MCC of 0.86. There
is a very few overfitting in our model and it can demonstrate that
our model has been well done in this type of dataset. Another
reason is the use of dropout inside CNN structure and it helps us
prevent overfitting.

Comparative Performance Between
Proposed Method and the Existing
Methods
From the previous section, we chose the combination of 1D
CNN and 5-gram as our optimal model for SNARE identification.
In this section, we aim to compare the effectiveness of our
proposed features with other research groups studying the same
problem. As mentioned in the literature review, there have been
some published works on identifying SNARE proteins using
computational techniques. However, among of them, there is
only one predictor to propose the machine learning techniques
on predicting SNARE (Le and Nguyen, 2019). Therefore, we
compared our performance with them in both cross-validation
and independent test. Table 2 shows the performance results by
highlighting the higher values for each metrics. It is clear that
on average, our method outperforms the previous model in all
measurement metrics. Therefore, we are able to generate effective
features for identifying SNAREs with a better performance than
PSSM profiles which had been used in the previous work.

DISCUSSION

Based on the outstanding results of word embeddings in
NLP, applying it to protein function prediction is an essential
concern for biological researchers. In this study, we have
approached a method using word embedding and deep learning
for identifying SNARE proteins. Our structure is a combination
between fastText (to train vectors model) and 1D CNN (to
train deep learning model from the generated vectors). By using
fastText, the protein sequences have been interpreted via different

TABLE 1 | Performance results on identifying SNAREs with different n-gram levels.

Cross validation Independent

n-gram Sens Spec Acc MCC Sens Spec Acc MCC

1 83.8 88.7 86.3 0.73 39.4 94.6 67 0.41

2 93.7 91.6 92.6 0.85 83.1 87.4 85.2 0.71

3 95.8 97.6 96.7 0.93 87.4 95 91.2 0.83

4 96.7 98.1 97.4 0.95 88.7 96.4 92.6 0.85

5 96.6 98.4 97.5 0.95 88.5 97 92.8 0.86

TABLE 2 | Comparative performance of predicting SNAREs between the proposed method and the previous published work.

Cross validation Independent

Predictor Sens Spec Acc MCC Sens Spec Acc MCC

SNARE-CNN 76.6 93.5 89.7 0.7 65.8 90.3 87.9 0.46

Ours 96.6 98.4 97.5 0.95 88.5 97 92.8 0.86

The bold values is to show the significant values for each metric.
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representations and we could generate the hidden information
of them. While the other NLP models do not have sub-
word information, it is an advantage of fastText that can
help to improve this problem. Benefits of fastText when
comparing to the other features have been also proven in
the previous works based on their results (Do and Khanh
Le, 2019; Le, 2019; Le et al., 2019b). We used 5-fold cross-
validation set to train our model and an independent set to
examine the performance results. Compared to the state-of-
the-art predictor, our method produced superior performance
in all the typical measurement metrics. Through this study,
biologists can use our model to identify SNARE proteins with
high accuracy and use them as necessary information for drug
development. In addition, we contribute a method to interpret
the information of protein sequences and further research is
able to apply in bioinformatics research, especially in protein
function prediction.

Furthermore, we provided our source codes and datasets
at https://github.com/khanhlee/fastSNARE. The readers and
biologists are able to reproduce our results as well as
perform their classifications according our method. We also
hope that our future research would be able to provide
a web-server for the method of prediction as presented
in this paper. Moreover, a limitation of using language
model is that it could not consider mutations and SNPs in
SNARE sequence. Therefore, further studies could integrate
these information into fastText model to improve the
predictive performance.
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