
fphys-10-01535 January 20, 2020 Time: 15:55 # 1

ORIGINAL RESEARCH
published: 21 January 2020

doi: 10.3389/fphys.2019.01535

Edited by:
Paolo Bernardi,

University of Padua, Italy

Reviewed by:
Renée Ventura-Clapier,

Centre National de la Recherche
Scientifique (CNRS), France

Sonia Cortassa,
National Institutes of Health,

United States

*Correspondence:
Dunja Aksentijević
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Aim: Guanidinoacetate N-methyltransferase (GAMT) is the second essential enzyme
in creatine (Cr) biosynthesis. Short-term Cr deficiency is metabolically well tolerated
as GAMT−/− mice exhibit normal exercise capacity and response to ischemic heart
failure. However, we hypothesized long-term consequences of Cr deficiency and/or
accumulation of the Cr precursor guanidinoacetate (GA).

Methods: Cardiac function and metabolic profile were studied in GAMT−/− mice
>1 year.

Results: In vivo LV catheterization revealed lower heart rate and developed pressure
in aging GAMT−/− but normal lung weight and survival versus age-matched controls.
Electron microscopy indicated reduced mitochondrial volume density in GAMT−/−

hearts (P < 0.001), corroborated by lower mtDNA copy number (P < 0.004), and
citrate synthase activity (P < 0.05), however, without impaired mitochondrial respiration.
Furthermore, myocardial energy stores and key ATP homeostatic enzymes were barely
altered, while pathology was unrelated to oxidative stress since superoxide production
and protein carbonylation were unaffected. Gene expression of PGC-1α was 2.5-fold
higher in GAMT−/− hearts while downstream genes were not activated, implicating a
dysfunction in mitochondrial biogenesis signaling. This was normalized by 10 days of
dietary Cr supplementation, as were all in vivo functional parameters, however, it was not
possible to differentiate whether relief from Cr deficiency or GA toxicity was causative.

Conclusion: Long-term Cr deficiency in GAMT−/− mice reduces mitochondrial volume
without affecting respiratory function, most likely due to impaired biogenesis. This is
associated with hemodynamic changes without evidence of heart failure, which may
represent an acceptable functional compromise in return for reduced energy demand in
aging mice.
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INTRODUCTION

Creatine (Cr) is a nitrogenous organic acid derived from glycine,
L-arginine and S-adenosyl-L methionine in a two-step reaction
catalyzed by enzymes L-arginine:glycine amidino transferase
(AGAT) in the kidney and guanidinoacetate N-methyltransferase
(GAMT) in the liver (Lygate et al., 2013). In organs with
high energy demand such as the heart, creatine is taken up
by cardiomyocytes via a specific membrane transporter (CrT),
whereupon it is interconverted to phosphocreatine (PCr), under
the control of creatine kinase (CK). This system functions
as a short-term energy buffer, maintains thermodynamically
favorable levels of local reactants, and shuttles high-energy
phosphates from mitochondria to sites of utilization such as
the myofibril (Wyss and Kaddurah-Daouk, 2000; Ingwall and
Weiss, 2004; Schlattner et al., 2006; Brosnan and Brosnan,
2007). An impaired PCr/CK system has been implicated in
the pathophysiology of heart failure, with key components
consistently down-regulated in both human and animal models
of heart failure, regardless of etiology (Ingwall and Weiss, 2004;
Ventura-Clapier et al., 2004; Lygate et al., 2007).

However, whether such changes have a causative role
for the development of contractile dysfunction has been a
matter of debate (Neubauer, 2007). One way to address
this question is to determine whether loss-of-function models
recapitulate a heart failure phenotype. Feeding the creatine
analog β-guanidinopropionic acid (β-GPA) to rats has a profound
effect on energetic parameters including mitochondria, but
the effect on contractile function has been equivocal (e.g.,
Shoubridge et al., 1985; Kapelko et al., 1988; Mekhfi et al.,
1990; Neubauer et al., 1999). However, creatine analogs have
many limitations, such as pharmacological off-target effects,
and slow and incomplete creatine depletion. Genetic loss-of-
function mouse models circumvent these limitations and provide
a unique approach to assess the functional significance of
the PCr/CK system.

The creatine biosynthetic enzymes are not expressed in the
heart and therefore require global knockout. AGAT−/− mice
have undetectable levels of creatine and PCr with impaired
in vivo contraction and relaxation at rest. However, most of
this phenotype was attributable to homoarginine rather than
creatine deficiency (Faller et al., 2018). GAMT knockout mice
(GAMT−/−) fed a creatine-free diet have a chronic, and absolute,
deficiency of creatine and PCr (Schmidt et al., 2004; Lygate
et al., 2013), although they accumulate the creatine precursor
guanidinoacetate (GA), and phospho-guanidinoacetate (PGA).
GAMT−/− mice have a whole-body phenotype of greatly
reduced body weight, due to both lower fat and muscle mass,
which can also confound interpretation. We have previously
shown that GAMT−/− mice have normal LV ejection fraction
up to 1 year of age (Schneider et al., 2008), but with
mildly reduced systolic pressure development (Ten Hove et al.,
2005b). Under conditions of maximal β-adrenergic stimulation,
contractile reserve is reduced and GAMT−/− mice show
impaired functional recovery from ischemia, in keeping with
the prevailing view that the PCr/CK system is particularly
important under conditions of high workload and acute stress

(Wyss and Kaddurah-Daouk, 2000; Ingwall and Weiss, 2004).
However, when GAMT−/−mice were subject to chronic myocar-
dial infarction, these defects were not sufficient to negatively
impact on survival, in vivo cardiac function, or LV structural
remodeling, suggesting that loss of creatine does not exacerbate
contractile dysfunction in heart failure (Lygate et al., 2013).

The current study was borne out of the observation that LV
hemodynamic parameters in GAMT−/− declined beyond 1 year
of age compared to our historical data sets. We hypothesized that
unidentified compensatory adaptations may allow young adult
GAMT−/− hearts to compensate for chronic creatine deficiency,
but that these are not sustainable in the long-term. We therefore
sought to identify whether metabolic (mal)adaptations develop
in the aging (>1 year) GAMT−/− mice. Herein, we show for the
first time that prolonged and chronic creatine deficiency results in
reduced mitochondrial volume density and a shift in adaptations
from energy production to energy saving in older GAMT−/−

mice concomitant with a decline in cardiac function. Our study
underscores the plasticity and connectivity of energy generating
pathways and the need for compensatory strategies to adapt in
response to the aging heart.

RESULTS

In vivo Cardiac Function Declines With
Age in GAMT−/−

As expected, body weight was very low in 18 month old
GAMT−/− mice (Figure 1A), since creatine deficiency results in
low skeletal muscle mass and body fat. In vivo LV catheterization
demonstrated a hemodynamic profile in GAMT−/− consisting
of lower heart rate and LV systolic pressure, reduced pressure
generation (dP/dtmax) with prolonged tau of isovolumetric
relaxation (Figure 1). Absolute values for these parameters were
lower than observed in younger animals collected under identical
experimental conditions in our laboratory [previously published
in Ten Hove et al. (2005b) and Lygate et al. (2013)], whereas
WT values were comparable across studies. It is notable that, LV
end-diastolic pressure did not change, nor was there evidence
of pulmonary congestion or LV hypertrophy (lung, LV, and RV
weights were not elevated; Table 1). This suggests that the decline
in function is not associated with a heart failure phenotype
and hence we do not observe concomitant mortality at this age
(Supplementary Figure 1). This suggests that the decline in
function is not associated with a heart failure phenotype.

Metabolic Profile in GAMT−/− Hearts
1H NMRS metabolite analysis of extracted aging GAMT−/−

heart tissue confirmed complete depletion of creatine and PCr
and the resultant accumulation of GA and PGA (Table 1 and
Figure 2A). In the absence of a fully functioning PCr/CK system,
we assessed a range of alternative phosphotransfer enzymes,
energy stores and metabolic regulators. Young GAMT−/−

hearts exhibit reduced CK activity, normal adenylate kinase
(AK) activity and elevated activities for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and pyruvate kinase (PK)
(Lygate et al., 2013).
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FIGURE 1 | In vivo left ventricular hemodynamic function in WT and GAMT−/− mice at 18 months of age (A) GAMT−/− mice have lower body weight throughout
their life. (B) Heart rate, (C) LV systolic pressure (LVSP), (D) LV end-diastolic pressure (LVEDP), (E) maximal rate of pressure rise (dP/dtmax ) as a measure of
contractility, and (F) time constant of isovolumetric relaxation (tau). N = 12 (5F/7M) per genotype, **denotes P < 0.01, ***P < 0.0001 for WT versus KO at the same
age by unpaired t-test (A–D,F) and Welch’s t-test (E). All values are mean ± SEM.

In contrast, aging GAMT−/− hearts had 43% higher AK
activity compared to age-matched WT (Figure 2B; P < 0.008)
but the rest of metabolic profile differences were normalized:
CK, GAPDH, PK activities (Figures 2C,D), glycogen content
(Table 1 and Supplementary Table 1). Similarly, the maximal
activity of F1-ATP synthase was elevated in hearts from young
GAMT−/− mice (Supplementary Table 1), but normalized in
the aging animals (Figure 2E).

Activity of pyruvate dehydrogenase (PDH) was unchanged
irrespective of age (Supplementary Table 1 and Figure 2F),

suggesting that oxidative glycolytic contribution to the Krebs
cycle was unaltered. The total adenine nucleotide (TAN) pool
did not differ between GAMT−/− and WT regardless of age
(Table 1 and Supplementary Table 1), nor was there activation
of the AMP-activated protein kinase (AMPK), as measured
by total AMPKα expression (normalized to total protein WT
0.51 ± 0.07 vs. GAMT−/− 0.47 ± 0.01, P = 0.26) or in
phosphorylation status (Figure 2G). Since this is a whole-
body knockout, we measured circulating metabolites: lactate,
free fatty acids, 3-hydroxybutyrate, high density lipoprotein
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TABLE 1 | Morphometric parameters and metabolic analysis of aging
GAMT−/− mice.

WT GAMT−/−

Morphology

Age (weeks) 76 ± 0.9 76 ± 3.2

LV weight (mg) 106.1 ± 4.4 87.0 ± 5*

RV weight (mg) 27.2 ± 1 23.4 ± 2

Lung weight (mg) 163.1 ± 5 153.4 ± 1

Tibial length (mm) 18.7 ± 0.1 18.2 ± 0.1**

LV/Tibia Length (mg/mm) 5.6 ± 0.2 4.7 ± 0.3*

LV/Body Weight (mg/g) 2.6 ± 0.1 3.5 ± 0.1***

Myocardial energetic profile

TAN Pool (nmol/mg protein) 31.1 ± 2.7 40.1 ± 4.9

Creatine (µmol/g whw) 12.1 ± 0.6 0.07 ± 0.01***

Phosphocreatine (µmol/g whw) 0.8 ± 0.05 0.07 ± 0.02***

Guanidinoacetate (µmol/g whw) 0.3 ± 0.05 7.4 ± 0.8***

Phosphoguandinoacetate (µmol/g whw) 0.2 ± 0.12 3.5 ± 0.53***

Triacylglycerol (mM/whw) 0.05 ± 0.006 0.03 ± 0.002*

Glycogen (glycolsyl units/g whw) 4.3 ± 0.5 4.1 ± 0.83

Plasma metabolites

Free Fatty Acids (µmol/l) 541.7 ± 74.8 517.1 ± 57.86

3-hydroxybutyrate (µmol/l) 247.3 ± 32.05 249.6 ± 15.7

Cholesterol (mmol/l) 3.4 ± 0.6 2.0 ± 0.1*

Triglycerides (mmol/l) 1.6 ± 0.2 0.8 ± 0.1**

High Density Lipoprotein (mmol/l) 1.6 ± 0.3 0.9 ± 0.2

Low Density Lipoprotein (mmol/l) 1.1 ± 0.3 0.8 ± 0.1

Lactate (mmol/l) 10.2 ± 5.2 5.2 ± 2.6

Total Creatine Kinase (IU/l) 3404 ± 1275 936.5 ± 276

Lactate Dehydrogenase (IU/l) 714.0 ± 71.1 871.2 ± 240

Whw – wet heart weight, LV – left ventricle, RV – right ventricle, TAN –
total adenine nucleotide pool (ATP + ADP + AMP). Morphological parameters
(n = 12/group 5F/7M), energetic profile (n = 4–5/group 3F/2M), plasma metabolites
(n = 3–5/group 2F/3M). Concentrations of creatine, PCr, guanidinoacetate (GA),
and phospho-guanidinoacetate (P-GA) measured by 1H-NMR spectroscopy. Total
adenine nucleotide pool (TAN pool = ADP + AMP + ATP) assessed by HPLC. All
values are mean ± SEM. Comparisons were made by Student’s t-test. *P < 0.05,
**P < 0.01, ***P < 0.001.

and markers of muscle damage (lactate dehydrogenase, CK)
were not significantly different between genotypes (Table 1).
However, both serum and myocardial triacylglycerol content was
lower in GAMT−/− vs. WT irrespective of age (Table 1 and
Supplementary Table 1), probably reflecting lower total body fat
in knockout mice (Lygate et al., 2013).

Impact of GAMT−/− on Mitochondrial
Organization and Function
Short-term myocardial creatine depletion is known to impact
mitochondrial organization in terms of proliferation, function
(Wiesner et al., 1999; Chaturvedi et al., 2010) and shortening
of diffusion distances between mitochondria and myofilaments
(Kaasik et al., 2001). Thus, electron microscopy was used
in 1 year old WT and GAMT−/− hearts (n = 3/group)
to determine whether similar changes occur with prolonged
creatine deficiency (Figures 3A,B). Diffusion distance (distance
between the sarcomere M-line and the nearest mitochondrial
outer membrane) was not significantly different between WT

(0.54 ± 0.11 µm) and GAMT−/− (0.62 ± 0.23 µm). However,
the percentage of cell volume occupied by mitochondria in
GAMT−/− mice was lower (Figure 3C) and was corroborated by
lower mitochondrial DNA copy number (Figure 3D; P < 0.004),
lower activity of mitochondrial CK (Figure 2C) and by an
inverse correlation between citrate synthase activity and age
in GAMT−/− mice (Figure 3E). Creatine is reported to have
direct antioxidant activity (Lawler et al., 2002), whereas GA may
generate free radicals (Mori et al., 1996), therefore, GAMT−/−

may be more susceptible to oxidative stress. However, no
differences were observed in total protein carbonylation or
in superoxide production in homogenates from >1 year old
hearts (Figures 3F,G). Monoamine oxidases (MAO) are a major
source of reactive oxygen species (ROS), generating H2O2 via
deamination of intracellular amines (Di Lisa et al., 2009). It is
unknown whether creatine or GA are potential substrates that
could act to alter H2O2 production. However, this is an unlikely
mechanism as both acted as equally effective substrates for MAO
A in a cell-free assay and did not affect the preferential utilization
of primary amines, e.g., tyramine (Figure 3H).

PGC1-α is thought to be a master regulator of mitochondrial
biogenesis (Finck and Kelly, 2007). In GAMT−/− mice
>1 year age, PGC1-α expression was paradoxically up-regulated
(2.5-fold), but without accompanying changes in up-stream
genes (Sirt1) or down-stream genes involved in mitochondrial
biogenesis (Nrf1, Nrf2, PGC1-β, Tfam) (Figure 3I). There was
a non-significant trend for increased expression of RIP140
corepressor of nuclear receptors which could act as a brake on
PCG1α transcriptional signaling (P < 0.056) (Figure 3I). There
were no differences in expression for genes involved in regulating
metabolic substrate uptake and utilization (GLUT4, GLUT1,
CPT1β, PPARα, PDK4), mitochondrial fission and fusion (Drp1,
Fis1, Mfn1, Mfn2, Opa1, Mff), or mitophagy (Parkin and Pink1)
(Figure 3I). The expression pattern for young mice is shown
in Supplementary Figure 2 and suggests that aberrant PGC1-α
signaling develops with age in GAMT−/− hearts. Protein
expression of uncoupling protein 3 was up-regulated in aging
GAMT−/− hearts, which could reflect mitochondrial proton leak
(Figure 3J). However, when mitochondrial oxygen consumption
was measured in isolated cardiac-fibers using a range of metabolic
substrates, the respiratory control ratios (RCR) were broadly
normal (Figure 4).

Mitochondrial respiration in the aging GAMT−/− mice was
indistinguishable from WT for the whole range of substrates
examined when O2 consumption was normalized to citrate
synthase activity to control for differences in total mitochondrial
volume (Figure 4) or dry fiber weight (Supplementary
Figure 3). This includes the ability to utilize fatty acids via
both CPT1 dependant and independent fatty acid metabolism
intermediates (Figures 4C,D).

Phenotype Rescue by Creatine
Supplementation
A key question is whether in vivo functional impairment
in GAMT−/− hearts is a consequence of chronic creatine
deficiency or due to toxicity from long term GA accumulation?
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FIGURE 2 | Cardiac energetic profile in >1 year GAMT−/− and wild type mice. (A) Representative 1H-NMR spectra showing metabolomic profile of WT and
GAMT−/− heart. Highlighted (dotted line) is the complete absence of PCr and Cr but presence of P-GA and GA in GAMT−/− sample versus WT. Enzyme activities
for (B) adenylate kinase (AK) (WT n = 9 5F/4M, GAMT−/− n = 5 2F/3M), (C) creatine kinase – Total (WT n = 15 GAMT−/− n = 12), mitochondrial CK (Mito), MM, MB,
and BB isoforms (WT n = 6 GAMT−/− n = 7), (D) glycolytic enzymes glycerlaldehyde-3-phosphate dehydrogenase (GAPDH) (WT n = 9 5F/4M GAMT−/− n = 4
2F/2M), 3-phosphoglycerate kinase (PGK) (WT n = 5 2F/3M GAMT−/− n = 5 2F/3M), pyruvate kinase (PK) (WT n = 9 5F/4M GAMT−/− n = 5 2F/3M), (E) F1F0 ATP
Synthase (mitochondrial electron transport chain complex V) (WT n = 4 1F/3M GAMT−/− n = 5 3F/2M), (F) pyruvate dehydrogenase total (PDHt), active (PDHa), and
ratio of total to active (PDHt/PDHa) as an indicator of the extent of enzyme complex activation (n = 5/group 3F/2M), and (G) AMPK protein expression (n = 4/group)
*Denotes P < 0.05, **P < 0.01, ***P < 0.001 for GAMT−/− versus wild type by unpaired t-test. Mouse mean age-84 weeks. All values are mean ± SEM.
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Aging GAMT−/− mice were given normal chow or chow
supplemented with creatine monohydrate (0.75% w/w) for
10 days. A small cohort (n = 4) of WT mice were also fed creatine
to provide baseline reference values, but were not used in the
comparison since we had insufficient aged mice to provide
statistical power. Replenishing creatine in GAMT−/− mice did
not affect body weight (Figure 5A), but improved hemodynamic
parameters, correcting the deficits in LV systolic pressure
(Figure 5B) and contractile reserve (Figure 5C) (Supplementary
Table 2). Furthermore, creatine replenishment reverted
myocardial PGC1-α gene expression to WT levels (Figure 5D).
1H-NMR spectroscopy in LV homogenates (Figure 5E)
confirmed that creatine supplementation completely restored
myocardial total creatine levels in GAMT−/− mice (Figure 5F).
However, tissue concentrations of GA and P-GA were also
unexpectedly normalized. Unsupervised principal component
analysis (PCA) of all detected metabolites observed good
separation between the GAMT Cr-naïve group (GAMT−/−)
and the WT and GAMT−/− Cr-fed groups (Figures 5G,H),
while the Cr-fed groups were indistinguishable. Therefore,
although dietary creatine rescued the hemodynamic and
PGC1-α phenotypes, we were unable to disambiguate between
creatine-deficiency and GA-toxicity as the causative factor.

Theoretical Consideration of Myocardial
ATP Utilization in GAMT−/− Mice
We have shown that aging GAMT−/− hearts have hemodynamic
impairment, but without evidence of adverse LV remodeling or
congestive heart failure. Since the GAMT−/− hearts are de facto
performing less external work, it is useful to ask how this impacts
on cardiac energy requirements? This is not straightforward since
we have not measured oxygen consumption and the absence
of creatine precludes the calculation of free [ADP] from the
CK equilibrium reaction and hence ATP flux and 1GATP are
unknown. Instead, we have used our current and historical
datasets to calculate external work (minute work), then taken
literature values for ATP production rate and 1GATP in order
to calculate the percentage of energy production being used to
perform external work (akin to cardiac efficiency and providing
similar values (Westerhof, 2000; Table 2). These assumptions
are unlikely to be valid for GAMT−/− and we have therefore
calculated the energy required to maintain WT “efficiency” and
hence the relative energy saved by performing less external work.
This suggests that at 18 months of age the energy available from
ATP can be 33% lower in KO and they will still be able to
maintain their current systolic function. This argues for reduction
in external work as an adaptation to chronically impaired energy
production and/or utilization.

DISCUSSION

This is the first study to identify long-term consequences of
prolonged creatine deficiency and GA accumulation in the hearts
of GAMT−/− mice. We observed a progressive decline in in vivo
hemodynamic parameters that was temporally related to reduced
mitochondrial cell density, while mitochondrial function was

preserved. Myocardial PGC-1α mRNA levels were elevated, but
downstream effector genes were not, suggesting dysfunction in
the signaling pathway for mitochondrial biogenesis. Previous
changes in phosphotransfer pathways observed in young
GAMT−/− mice were no longer apparent in aging animals,
where instead, we observed an increase in maximal AK activity,
suggesting that compensatory adaptations are modified in
response to aging. Reintroduction of dietary creatine rescued
the in vivo functional deficit and normalized PGC-1α mRNA
levels. However, it was not possible to infer causation for creatine
deficiency since GA levels were simultaneously normalized,
which could also contribute to the phenotypic rescue.

Is the in vivo Functional Decline
Pathological or Adaptive?
By 18 months of age GAMT−/− mice exhibit a hemodynamic
profile, which consists of lower LV end-systolic pressure, heart
rate, and rates of contractility and relaxation compared to age-
matched controls. This is in contrast to 6 month old GAMT−/−

where only LVSP is reduced, suggesting a progressive decline with
age (Ten Hove et al., 2005b). It is therefore tempting to conclude
that these mice develop cardiomyopathy, however, the associated
pathological changes are absent. For example, LV end-diastolic
pressures were normal in aging GAMT−/−, as were RV and
lung weights indicating the absence of pulmonary congestion.
Nor was there evidence for progressive LV remodeling, since
indices of LV hypertrophy have not changed with age and we have
previously shown using cine-MRI that LV chamber diameters
are not altered at 1 year (Schneider et al., 2008). Nevertheless,
due to difference in body weight, GAMT−/− mice do have
elevated LV/body weight ratio throughout adulthood. Thus, in
GAMT−/− there is relatively more myocardial tissue available to
meet the metabolic demands of the body and this may represent
an additional compensatory mechanism to long-term creatine
deficiency. The observation that GAMT−/− did not increase
mortality (Supplementary Figure 1) and the rapid reversal of
hemodynamic phenotype with dietary creatine is inconsistent
with chronic pathological maladaptation. Instead, we propose
that reduced stroke work in GAMT−/− mice represents a
compensatory adaptation to reduce energy requirements, and
calculate that the GAMT−/− heart requires 33% less energy from
ATP to perform their external work (Table 2).

Why then only in aging mice? Mice are considered middle-
aged by 1 year and by 18 months are equivalent to 62 human
years, having past the reproductive phase and on the cusp of
senescence (Dutta and Sengupta, 2016). It is likely that potential
adaptations observed in young GAMT−/− mice, e.g., increased
glycolytic enzymes (Ten Hove et al., 2005b) are subject to age-
related decline and are therefore not sustainable in the long
term. For example, myocardial CK activity in rats has been
shown to fall by 25% at 16–24 months (Chesky et al., 1980).
This may explain why some enzyme activities were normalized
in the aging GAMT−/− heart, while others became elevated,
since the compensatory response must adapt to the aging heart.
In this context, saving energy via reduction in cardiac work
may represent an effective compensatory strategy, particularly in
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FIGURE 3 | Mitochondrial phenotype develops with age in GAMT−/− mice (A,B) Representative electron micrographs at 50 week age; 10000× magnification. (C)
Stereological analysis shows lower mitochondrial volume density in GAMT−/− compared to WT (n = 3). (D) Mitochondrial DNA copy number in a separate group of
mice (WT n = 6, GAMT−/− n = 5). (E) Citrate synthase activity inversely correlates with age in KO, but not in WT mice (n = 14/group 6F/8M). (F,G) Protein
carbonylation in LV homogenates from >1 year old mice was not different (n = 7–8) nor were there differences in superoxide production (n = 8). (H) Activity (AUC) of
purified monoamine oxidase (MAO) in presence of preferential substrate, tyramine (Tyr), is inhibited by monoamine oxidase inhibitor (MAOI). Creatine (Cr) and
guanidinoacetate (GA) are equally good substrates for MAO, but only in the absence of primary amines (n = 30/group). (I) mRNA expression of PGC-1α and its
upstream and downstream regulated genes by real-time quantitative PCR in LV from GAMT−/− and WT mice >1 year age (n = 4/group). Fold change normalized to
control concentration (WT levels = 1) with propagated errors (SEM). (J) Uncoupling protein 3 (UCP3) expression and representative western blot (n = 4/group
2F/2M). *Denotes P < 0.05, **P < 0.01, ***P < 0.001 versus WT by unpaired t-test. Pearson’s correlation coefficient was used to assess the relationship between
the variables. Mouse mean age 84 weeks (C–J). All values are mean ± SEM.
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FIGURE 4 | Mitochondrial oxygen consumption. Data from aging GAMT−/− and WT permeabilized LV fibers were normalized to citrate synthase activity to correct
for the reduced mitochondrial volume density observed in aging GAMT−/− hearts. The metabolic substrates chosen for mitochondrial respiration were physiological
in the presence of a functional Krebs’ cycle intermediate (malate) allowing mitochondrial OXPHOS to proceed normally, providing reduced intermediates (NADH + H+

and FADH2) individually to complexes I (pyruvate) (A) and II (succinate) (B), or combined complex I + II (fatty acid metabolism analogs palmitoyl-carnitine; palmitoyl
CoA + carnitine) (C,D) of the respiratory chain allowing the thermodynamic cascade through the Q-cycle and complex III to complex IV and O2. State 2 is basal
unstimulated respiration, State 3 is maximal ADP-stimulated respiration, State 4 is oligomycin uncoupled respiration (ATP synthase activity inhibited), RCR is
respiratory control ratio (State3/State4) (WT n = 6 3F/3M GAMT−/− n = 9 4F/5M). Mouse mean age 72 weeks. All values are mean ± SEM.

sedentary, post-reproductive lab mice, fed ad libitum and housed
in stable social groups, where it is essentially consequence-free.
Similar hemodynamic alterations have also been described in rats
depleted of creatine by β-GPA feeding. These had lower LVSP,
dP/dtmax, dP/dtmin, and heart rate at rest and during exercise,
yet exercise performance was unaffected, suggesting positive
adaptations akin to those seen with endurance training (Adams
et al., 1995). These include AMPK activation in sinoatrial cells,
which has been shown to lower resting heart rate in order to
reduce cardiac energy demand (Yavari et al., 2017). However, our
phenotype may have been even more robust if we had studied
mice older than 18 months.

Chronic Creatine Deficiency and
Mitochondrial Pathology
Creatine is functionally coupled to mitochondrial respiration,
while in the hearts of CK knockout mice, the mitochondria are
repositioned to minimize ATP diffusion distances (Kaasik et al.,
2001). Depletion of intracellular creatine by β-GPA in cultured rat
cardiomyocytes results in mitochondria that are morphologically

larger and rounder with “paracrystalline inclusions” within
the christae (Eppenberger-Eberhardt et al., 1991). Similar
mitochondrial morphology was described in skeletal muscle after
6 months of β-GPA feeding in rats (De Tata et al., 1993). However,
no such changes in mitochondrial organization or structure were
observed in hearts from GAMT−/− mice at 45 weeks of age
(Branovets et al., 2013), nor in the present study. Instead, electron
microscopy showed lower mitochondrial volume density in
knockout heart, which was confirmed by reduced mitochondrial
DNA and citrate synthase activity.

An important question is whether this is pathological or
adaptive? We did not observe differences in expression of
genes involved in mitophagy or in mitochondrial fusion and
fission. However, there are several hypothetical mechanisms for
increased oxidative damage in GAMT−/− mice, for example,
direct generation of hydroxyl radicals by GA has been described
(Mori et al., 1996), as has a direct antioxidant effect of
creatine, at least in vitro (Lawler et al., 2002; Aksentijevic et al.,
2014b). Creatine and/or GA have the potential to modify the
two largest sources of cellular ROS, i.e., superoxide anions
(O2
−) as a by-product of electron-transport chain activity
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creatine on (A) Body weight; (B) LV systolic pressure, LVSP; (C) contractile reserve, i.e., increase in dP/dtmax with maximal β-adrenergic stimulation. Dietary creatine
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TABLE 2 | Theoretical consideration of cardiac work and energy requirements with age.

WT GAMT−/−

4–6 months 8–10 months 12–18 months 4–6 months 8–10 months 12–18 months

Measured parameters

Stroke volume (µL) 34 38 38 32 32 34

LV developed pressure (mmHg) 94 98 93 86 79 74

Heart rate (BPM) 523 521 487 490 479 388

LV weight (mg) 85 97 106 69 77 88

LV work

Stroke work (mmHg µL) 3187 3730 3540 2795 2535 2507

Minute work (mmHg ml/min) 1663 1943 1731 1370 1221 969

Minute work (J/min)* 0.222 0.259 0.231 0.183 0.163 0.129

Energy production

ATP production rate for normal murine heart = 3.16 µMol/g/s**

ATP production per LV (µM/s) 0.269 0.305 0.335 0.216 0.243 0.279

1G for ATP hydrolysis = 57 kJ/mol***

Energy produced (J/min) 0.920 1.045 1.147 0.740 0.830 0.953

Minute work/Energy produced (%) 24.1 24.8 20.1 24.7 19.6 13.6

Energy required to maintain WT ratio (J/min) 0.920 1.045 1.147 0.758 0.656 0.642

Energy saved by reduced Work (%) n/a n/a n/a −2 21 33

Stroke work was approximated by multiplying LV developed pressure by stroke volume. *Conversion factor 1 mmHg ml = 0.0133322 cJ (Schramm, 2010); SV
measurements from Schneider et al. (2008). LVDP, HR, LV weight from Ten Hove et al. (2005b); Lygate et al. (2013) and this manuscript. **1G value from Lygate
et al. (2012). ***ATP production rate from Gupta et al. (2011) (WT n = 12, GAMT−/− n = 15/age group).

(Cadenas and Davies, 2000), and the production of hydrogen
peroxide (H2O2) by amine oxidases (Cadenas and Davies, 2000;
Agostinelli et al., 2004).

However, we were unable to detect any difference between WT
and GAMT−/− hearts in terms of myocardial O2

− generation,
protein carbonylation as a marker for cumulative oxidative
damage, or in mitochondrial respiration under baseline and
stimulated conditions. Although UCP3 expression was elevated
in GAMT−/− hearts, this was not reflected in altered RCR.
This is in contrast to young GAMT−/− where RCR was
impaired with no change in UCP3 expression. This suggests
the presence of compensatory adaptations that develop with
age, but unfortunately does not provide further mechanistic
insight. Finally, we demonstrated for the first time that both
creatine and GA are substrates for monoamine oxidase, however,
both are equally good substrates and they do not compete
significantly with primary amines which are the substrates of
choice. Overall our data does not support oxidative stress as
a mediator of cardiac mitochondrial pathology in GAMT−/−

hearts. Low mitochondrial cell density could also arise from
impaired biogenesis. We therefore measured gene expression of
the key regulator, PGC1-α, which was paradoxically up-regulated
2.5-fold in GAMT KO mice >1 year, but not in younger mice.
However, none of the downstream PGC1-α effector genes were
altered, including TFAM, which is involved in mtDNA gene
replication (Finck and Kelly, 2007).

In contrast, RIP140, which counteracts the effects of PGC1-α,
showed a trend to be higher in knockout hearts. This suggests that
aging GAMT−/− hearts have a dysfunction in PGC1-α signaling,
i.e., the signal for mitochondrial-biogenesis is switched on, but is
not propagated further.

Comparison With Other Models of
Creatine Depletion
Our findings are in contrast to previous studies that have depleted
creatine by feeding β-GPA. For example, rats treated with β-GPA
for 6 weeks had increased mitochondrial cell density in the heart,
associated with increased expression of mitochondrial proteins
and TFAM (Wiesner et al., 1999). In a similar protocol, β-GPA
also stimulated mitochondrial biogenesis pathways in skeletal
muscle via activation of AMPK, which lies upstream of PGC1-α,
although the effect was modulated in different muscle types by
the expression of RIP140 (Williams et al., 2009). It is notable that
an increase in mitochondrial biogenesis has also been described
in aging skeletal muscle, probably in response to accumulation
of mitochondrial DNA mutations and dysfunctional proteins
(Herbst et al., 2013). It is suggested that this promotes a
vicious cycle, since biogenesis results in more mutations, thereby
promoting dysfunction and further biogenesis. If the same thing
happens in heart, then the GAMT−/− would be uncoupled
from this cycle.

It seems likely that the consequences of creatine depletion
depend on whether ATP levels fall, for which the activation
of AMPK represents a biomarker. For example, β-GPA feeding
increased PGC1-α expression and mitochondrial biogenesis in
skeletal muscle of wild-type mice, but not in mutant mice
expressing non-functional AMPK (Zong et al., 2002). Notably,
myocardial ATP levels are preserved in GAMT−/− hearts and
AMPK is not activated (Lygate et al., 2013). This is also true
for creatine-free AGAT−/− mice, which exhibit contractile
dysfunction, but as a consequence of homoarginine deficiency
rather than creatine (Faller et al., 2018). In contrast, ATP is
depleted in AGAT−/− skeletal muscle with activation of AMPK,
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resulting in a severe skeletal muscle pathology that is completely
rescued by dietary creatine (Nabuurs et al., 2013; Faller et al.,
2018). A fall in myocardial ATP levels has also been described
in rat hearts after 12 weeks β-GPA, and although this was
associated with adaptations likely to improve energy efficiency,
they nevertheless developed cardiac hypertrophy (Mekhfi et al.,
1990), which isn’t observed in the genetic models.

Therefore, the preservation of myocardial ATP levels in
GAMT−/− and AGAT−/− hearts is likely to reflect chronic
compensatory adaptations, when compared to the β-GPA feeding
studies, which are relatively short-term, and result in gradual
and only partial creatine depletion. However, we cannot rule
out a role for differences in the potential toxicity of GA versus
β-GPA accumulation.

Creatine Rescue of the Aging GAMT−/−

Phenotype
GAMT−/− mice, in common with human GAMT deficiency,
have a unique metabolic fingerprint of zero creatine accompanied
by chronic GA/P-GA accumulation. The first human case was
described in 1994 (Stockler et al., 1994) with ∼80 cases recorded
to date (Akiyama et al., 2014; Stockler-Ipsiroglu et al., 2014). It
manifests at an early age in the form of developmental delay
and neurological symptoms, to an extent that the effect on the
heart has not been studied. Notably, human GAMT deficiency
is associated with severe epilepsy that does not improve with
creatine-supplementation, but does respond to GA lowering
strategies (Schulze, 2003). This has been confirmed in GAMT−/−

mice, which have a reduced seizure threshold normalized by
GA reduction (Schulze et al., 2016). Direct injection of GAA
into brain or exposure of brain samples has also demonstrated
acute toxicity independent of creatine levels, e.g., increasing
acetylcholinesterase activity to modify behavior (Zugno et al.,
2008a); reducing antioxidant capacity (Zugno et al., 2008b);
inhibition of the Na+, K+-ATPase (Zugno et al., 2003). Our
previous work has shown P-GA can be utilized under the extreme
conditions of prolonged ischemia, but is regenerated very slowly
(Ten Hove et al., 2005b). We measured CK flux using 31P-NMR
and showed that while P-GA does accumulate in GAMT−/−

heart (presumably via participation in the CK reaction), we were
unable to detect ATP generation from P-GA suggesting that
this is not a rapid or efficient mechanism under non-ischemic
conditions (Lygate et al., 2013).

We therefore sought to determine whether the changes
we observed in GAMT−/− hearts were driven by chronic
creatine deficiency or the toxic effects of GA accumulation.
By re-introducing dietary creatine we expected (and indeed
observed) a rapid restoration of myocardial creatine levels,
since GAMT−/− hearts are known to upregulate the creatine
transporter (CrT) (Ten Hove et al., 2008). Over the same
timeframe, our expectation was for GA levels to barely change,
since we assumed that cellular efflux would be slow and passive
as it is for creatine (Wyss and Kaddurah-Daouk, 2000).

However, GA levels fell to undetectable levels, meaning
that, although creatine supplementation normalized the
hemodynamic profile and PGC1-α gene expression, we were

unable to infer causation. We found this outcome highly
surprising as we fully expected that within this time-scale
creatine levels would go up, while GA levels would barely change,
which would have allowed us to assign causation.

With hindsight, we could have attempted phenotypic rescue
using dietary ornithine, a competitive inhibitor of AGAT, which
has been shown to lower plasma GA levels by 44% over 18 days in
GAMT−/− (Schulze et al., 2016). Whether this reduction would
be sufficient is moot, but it may feasibly have provided additional
insight into GA toxicity.

We have previously estimated creatine efflux from the heart
to be 2.7% per day via non-enzymatic degradation (Faller et al.,
2018), but GA efflux was evidently much more rapid. While
there may be some spontaneous hydrolysis of GA to urea and
glycine (which could explain the trend toward elevated glycine in
GAMT−/− hearts), there is no known active mechanism for GA
degradation as occurs in microorganisms (via guanidinoacetate
amidinohydrolase) (Shirokane et al., 1987). GA is a known
substrate for the CrT, but it is unlikely to work in reverse
under normal physiological conditions (Ten Hove et al., 2005a).
However, GA also appears to be a substrate for the taurine
transporter, at least at the blood-brain barrier (Tachikawa et al.,
2009), so one possibility is the taurine transporter working in
reverse to balance the osmotic effect of creatine entry (Han
et al., 2006). Creatine also exerts end-product inhibition on
AGAT (Derave et al., 2004), which means GA will not be
replenished during exogenous creatine supplementation. Finally,
in the absence of creatine, a significant proportion of GA
is phosphorylated and thereby membrane impermeable, but
creatine is the preferred substrate for CK, so as creatine enters
there will be progressively less GA in the phosphorylated form.

CONCLUSION

Creatine-deficient GAMT−/− hearts exhibit a blunted
hemodynamic profile with age that is associated with reduced
mitochondrial cell volume and aberrant PGC1-α signaling.
However, it was not possible to differentiate between creatine-
deficiency or guanidinoacetate toxicity as causative. Nevertheless,
mortality and mitochondrial respiration were normal, and the
absence of other markers of cardiomyopathy suggest these
changes are ultimately benign. This supports our previous data
in genetic mouse models that creatine-deficiency per se does
not directly cause heart failure, but suggests that compensatory
strategies may adapt to the aging heart. Since the lower cardiac
stroke work observed in aging GAMT−/− is energy saving, this
may, in fact, represent an acceptable compensatory trade-off in
sedentary mice that are past reproductive age.

MATERIALS AND METHODS

Animal Husbandry
Male and female GAMT knockout mice on a pure C57BL/6J
OlaHsd genetic background were genotyped as previously
described (Schmidt et al., 2004). Breeding was by heterozygous
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mating to provide littermates as wild type (WT) controls. Post-
weaning, GAMT−/− and WT mice were housed separately to
prevent creatine absorption via coprophagia. Mice were fed
standard chow (naturally creatine-free), water ad libitum and
kept in specific pathogen-free conditions, with 12h light–dark
cycle at 20–22◦C.

Compliance With Ethical Standards
This investigation was approved by the Committee for Animal
Care and Ethical Review at the University of Oxford and
conforms to the UK Animals (Scientific Procedures) Act, 1986
(Home Office project licence 30/3314), incorporating Directive
2010/63/EU of the European Parliament and conforms to
European Convention for the Protection of Vertebrate Animals
used for Experimental and other Scientific Purposes’ (Council of
Europe No 123, Strasbourg, 1985).

In vivo Cardiac Assessment
Mice aged 72 weeks were anesthetized with 4% isoflurane
in medical O2 and maintained on a nose-cone at 1–1.5%
for left ventricular (LV) hemodynamic measurements. LV was
cannulated via the right carotid artery using a 1.4F Millar
micro-tip cannula (SPR-839, Millar Instruments, Houston, TX,
United States). Measurements were obtained after 15 min
equilibration via a Powerlab 4SP data acquisition system (AD
Instruments, United Kingdom) (Aksentijevic et al., 2010). For
LV tissue collection, mice were euthanized by intra-peritoneal
injection of pentobarbitone 140 mg/kg. At the end of the
hemodynamic examination the hearts were removed under deep
isoflurane anesthesia.

Electron Microscopy
Hearts were excised from male mice aged 50 weeks (full details
in Supplementary Material) and 19–31 fields-of-view from LV
(n = 3 WT and GAMT−/−) were analyzed using ImageJ software
by a single operator blinded to genotype. Volume fractions
were calculated using a standard grid method and expressed as
percentage of total cell volume (Weibel et al., 1966).

Mitochondrial Function Experiments
Saponin–permeabilized cardiac fibers isolated from the LV
endocardium (age 72 weeks) were used to measure respiration
of the total mitochondrial population in situ using a Clark-type
oxygen electrode (Strathkelvin Instruments, United Kingdom)
(Lygate et al., 2013) (full details in the Supplementary Material).

Metabolic Profile Analysis
Snap frozen heart tissue (mean age 84 weeks) was used for
metabolic profiling using previously published protocols: high
resolution 1H NMR spectroscopy (Chung et al., 2017), creatine
kinase (Aksentijevic et al., 2014b) adenylate kinase (AKtotal,
isoforms AK1 and AKremnant) and glycolytic enzyme activities
[glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-
phosphoglycerate kinase (PGK), and pyruvate kinase (PK)]
assessments (Aksentijevic et al., 2010), pyruvate dehydrogenase
(PDH) assay, myocardial glycogen and triacylglycerol (TAG)
content assessment (Aksentijevic et al., 2014a), HPLC analysis

of the total adenine nucleotide pool (ATP + ADP + AMP),
creatine and phosphocreatine (PCr) (Aksentijevic et al., 2010).
Method for the spectrophotometric assessment of maximal
F1-ATPase hydrolytic activity in isolated mitochondria was
developed for the purpose of this study (Supplementary
Material). Plasma was collected from terminally anesthetized
non-fasting mice and metabolic profile analyzed as described in
Supplementary Material.

In vitro Activity of Monoamine Oxidase A
The potential involvement of creatine and guanidinoacetate
in H2O2 production via MAO-A (Sigma Aldrich Poole,
United Kingdom) was evaluated using Amplex R© red reagent
hydrogen peroxide/peroxidase fluorescence assay kit (Invitrogen,
Paisley, United Kingdom). It was previously shown that
the use of MAO-A substrate tyramine allows evaluation of
H2O2 production in substrate concentration dependant manner
(Mazzio and Soliman, 2004) and this effect is irreversibly
inhibited by phenelzine (Riederer et al., 2004; Youdim et al., 2006;
Di Lisa et al., 2009).

Gene and Protein Expression Analysis
Total protein was extracted from snap-frozen LV tissue and
analyzed by immunoblotting as described previously (Lygate
et al., 2013). For carbonylation, 20 µg of protein were derivatized
using a protocol adapted from Divald et al. (2010), as previously
reported (Aksentijevic et al., 2014b) (Supplementary Material).
Messenger RNA expression levels were tested by qRT-PCR
for 3 panels of gene groups, namely mitochondrial biogenesis,
metabolic substrate utilization and fusion/fission genes as
described in Supplementary Table 3.

Dietary Creatine Supplementation Study
Standard laboratory chow (Teklad global 16% rodent diet)
was powdered and re-formed into “cookies” with, or without,
addition of creatine monohydrate 0.75% w/w and using a small
quantity of water to bind. A cohort of 60 week old GAMT−/−

and matching WT controls were first fed creatine-free cookies
for 2–3 days to accustom mice to the change in food appearance
and texture, then maintained on creatine-free or switched to
creatine-supplemented cookies for a further 10 days. Creatine
dose was based on Kan et al. (2007) assuming a 20 g mouse
eating 4 g chow per day. It is also the dose that was previously
shown to correct LV creatine levels in GAMT−/− mice (Lygate
et al., 2013). A small number of WT mice were included to
determine any effect of creatine-supplementation unrelated to
correcting creatine deficiency. At the end of the feeding protocol
in vivo LV hemodynamic measurements were performed under
isoflurane anesthesia at baseline and with maximal β-adrenergic
stimulation using dobutamine 16 ng/g body weight/min as
described previously (Lygate et al., 2013).

Data Analysis
All data was analyzed blind to genotype. Comparison between
two groups was by Student’s t-test (Gaussian data distribution),
Welch’s t-test (non-equal standard deviation distribution) and
between 3 groups by one-way analysis of variance (ANOVA)
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using Bonferroni’s correction for multiple comparisons. Pearson’s
correlation coefficient was used to assess the relationship between
the variables. Data are presented as mean ± SEM. Statistical
analysis was carried out using GraphPad Prism software, v.8.0.
Differences were considered significant when P < 0.05.
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