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Mechanisms of anesthetic drug-induced sedation and unconsciousness are still 
incompletely understood. Functional neuroimaging modalities provide a window to study 
brain function changes during anesthesia allowing us to explore the sequence of neuro-
physiological changes associated with anesthesia. Cerebral perfusion change under an 
assumption of intact neurovascular coupling is an indicator of change in large-scale neural 
activity. In this experiment, we have investigated resting state cerebral blood flow (CBF) 
changes in the human brain during mild sedation, with propofol. Arterial spin labeling 
(ASL) provides a non-invasive, reliable, and robust means of measuring cerebral blood 
flow (CBF) and can therefore be used to investigate central drug effects. Mild propofol 
sedation-related CBF changes were studied at rest (n = 15), in a 3 T MR scanner using 
a PICORE-QUIPSS II ASL technique. CBF was reduced in bilateral paracingulate cortex, 
premotor cortex, Broca’s areas, right superior frontal gyrus and also the thalamus. This 
cerebral perfusion study demonstrates that propofol induces suppression of key cortical 
(frontal lobe) and subcortical (thalamus) regions during mild sedation.
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INTRODUCTION

Mechanisms of anesthetic drug-induced sedation and unconsciousness are still incompletely 
understood. While neuroimaging studies suggest a reduction of activity in a number of cortical 
and subcortical areas along with breakdown of functional connectivity of thalamo-cortical, 
frontoparietal, or default mode networks (DMNs), the sequence and specificity of these changes 
remain disputed (Lee et  al., 2009; Boveroux et  al., 2010). Apart from revealing systems-level 
mechanisms of anesthesia, understanding brain perfusion and its alterations with sedation/
anesthesia is thought to be  helpful in exploiting the neuroprotective effects of these drugs in 
brain-injured (traumatic or stroke) patients receiving sedation or those undergoing 
neuro-anesthesia.
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Techniques including Positron Emission Tomography and 
Blood Oxygen Level Dependent (BOLD) contrast-based 
Functional magnetic resonance imaging (fMRI) have been 
utilized to explore the neural correlates of anesthetic-related 
changes in consciousness and arousal. Recent improvements 
in arterial spin labeling (ASL) methodology, a measurement 
of tissue blood flow, render it practical to quantify 
pharmacological effects in the human brain. It is completely 
non-invasive, being based on an endogenous tracer (magnetically 
labeled arterial blood) and, since the perfusion signal is encoded 
in the difference between control and tagged images, it is 
minimally affected by baseline drift, making it suitable for 
long-term studies or those with low frequency changes. ASL-based 
techniques are, therefore, especially suited for physiological and 
pharmacological studies of brain activity.

Propofol, a GABA-ergic agonist compound, is an anesthetic 
drug widely used for sedation and anesthetic induction and 
maintenance. Recently, Qiu et  al. (2017) have shown perfusion 
changes with deep sedation (a state characterized by 
unresponsiveness to verbal commands) induced with propofol, 
in the frontoparietal, DMN, visual networks, and thalamus.

In this experiment, we  have used ASL to investigate resting 
state cerebral blood flow (CBF) changes in the human brain 
during mild sedation. We chose “mild” sedation as the earliest, 
objectively defined, step change in consciousness to evaluate 
the earliest changes in neural mechanisms associated with 
altered arousal. Based on previous observations from different 
imaging modalities, we  hypothesized alteration of CBF in the 
frontal cortex, thalamus, brainstem, and regions of the default 
mode network (Byas-Smith et  al., 2002; Gili et  al., 2013).

METHODS

Cardiff University’s School of Medicine Ethics Committee 
reviewed and approved the study. Fifteen right-handed, healthy, 
male volunteers (mean age 26  years; range 20–41  years) 
participated in this study after giving informed consent. They 
were recruited following a detailed screening procedure. Medical 
screening was performed to ensure that all subjects were in 
good physical and mental health and not on any medications 
(American Society of Anesthesiologists grade 1). Any volunteer 
with complaints of regular heartburn or hiatus hernia, known 
or suspected allergies to propofol (or its constituents), who 
was a regular smoker, or who snored frequently or excessively, 
or who had a potentially “difficult airway” was excluded. 
Volunteers were instructed to follow standard pre-anesthetic 
fasting guidelines. They avoided food for 6  h and any fluids 
for 2  h before the experiments. Following the experiments, 
they were monitored until they recovered from the effects of 
sedation and were discharged with safety advice after they 
fulfilled all day-case anesthesia discharge criteria. All participants 
underwent two fMRI scans within the same session, the first 
before and the second during intravenous propofol administration 
while remaining at rest. No behavioral task was presented 
apart from asking volunteers to remain still with their eyes 
closed and not to fall asleep.

Drug Administration
Propofol (Propofol-Lipuro 1%, Braun Ltd.) was administered 
using an Asena-PK infusion pump (Alaris Medical, CareFusion 
Ltd.) using a target-controlled infusion based on the Marsh 
pharmacokinetic model (Marsh et al., 1991). Infusion was started 
targeting an effect-site concentration of 0.6  μg  ml−1. Once the 
target was reached, 2  min were given for further equilibration. 
Drug infusion was increased in 0.2  μg  ml−1 increments until 
the desired level of sedation was achieved. Sedation level was 
assessed by an anesthetist, blinded to the level of propofol 
being administered, using the modified Observer’s assessment 
of alertness/sedation (OAA/S) (Chernik et al., 1990). The sedation 
endpoint was an OAA/S level of 4 (slurred speech with lethargic 
response to verbal commands). The average targeted propofol 
plasma concentration was 1.2 (SD 0.2) μg ml−1. All subjects 
were monitored throughout the experiments by two qualified 
anesthetists (Table  1). Heart rate, non-invasive blood pressure, 
oxygen saturation, and concentrations of expired (end-tidal) 
carbon dioxide were monitored using aVeris MR Vital Signs 
monitoring system (MEDRAD Radiology).

Magnetic Resonance Imaging
MRI data were collected at three T (General Electric, HDx) 
using an eight-channel receive-only head coil. CBF was estimated 
using single-shot, proximal inversion with a control for 
off-resonance effects – quantitative imaging of perfusion using 
single subtraction II (PICORE-QUIPSS II) (Wong et al., 1998). 
Imaging parameters were: TR/TE  =  2,200  ms/19.8  ms; 
TI  =  1,500  ms; field of view, 24  cm  ×  24  cm; 12 slices, 7  mm 
thick, with a 1-mm gap between slices; matrix, 64  ×  64. Each 
scan included 130 repetitions (65 pairs of tag-control images) 
over 4:46  min. With the same slice prescription, calibration 
scans were acquired to provide an estimate of M0 (fully relaxed 
blood water magnetization). T1-weighted whole-brain structural 
scan was also acquired (1  mm × 1  mm × 1  mm voxels). Our 
previous work has demonstrated the robustness and repeatability 
of this sequence in a within-session design of experiment such 
as presented here (Murphy et  al., 2011).

Preprocessing
ASL data were pre-processed as follows: correction for head 
motion and removal of non-brain voxels were performed using 
FSL: FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl. Head 
motion correction was performed using MCFLIRT employing 

TABLE 1 | Physiological data.

HR (bpm) SBP 
(mmHg)

DBP 
(mmHg)

MAP 
(mmHg)

SpO2(%)

Awake 56 (7) 123 (10) 71 (8) 95 (8) 98 (1)
Sedated 55 (7) 119 (9) 70 (8) 92 (7) 98 (1)

Mean (SD) across subjects of physiological recordings measured before and during 
sedation. Paired t-tests revealed no significant differences between awake and  
sedated states; SD, standard deviation; HR, heart rate; SBP, systolic blood pressure; 
DBP, diastolic blood pressure; MAP, mean arterial pressure; SpO2, oxygen saturation.
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the same reference volume for both tag and control images. 
CBF data were processed using surround subtraction of the 
ASL tag and control images (Liu and Wong, 2005). CBF was 
calculated using a standard single-compartment model (Buxton 
et  al., 1998). Data were then transformed first to individual 
subjects’ structural space using FLIRT (FMRIB’s Linear 
Registration Tool) and then to a standard space (Montreal 
Neurological Institute MNI152 standard map) using Advanced 
Normalization Tools (ANTS; Penn Image Computing & Science 
Lab, http://www.picsl.upenn.edu/ANTS/). The transformation 
was first applied to the individual subjects’ T1 image, and 
then the resulting warp vectors were applied to the CBF images.

Analysis
To examine the influence of propofol sedation, permutation-
based nonparametric within-subject paired t-tests (FSL 
randomize) were performed to identify areas where CBF varied 
significantly with the neurophysiological state (awake vs. sedated). 
The results were subject to threshold-free cluster enhancement 
and family-wise error (FWE) corrected for multiple comparisons 
by permutation testing using a significance level of p  <  0.05.

RESULTS

There were no significant differences in systemic hemodynamics 
or oxygen saturation between the awake and sedated groups 
(Table  1). We  compared head motion (relative volume to 
volume mean displacement) between awake and sedated groups, 
but there was no significant difference (two-tailed, paired t-test; 
p  =  0.39).

Figure  1 shows CBF awake > sedated (paired t test), 
demonstrating frontal regions indicating a decrease in perfusion 
with sedation. Specifically, these areas were Paracingulate cortex 
[bilaterally (6, 34, 33) and (–4, 34, 33) MNI space coordinates], 
left and right Broca’s areas [(–38, 10, 28) and (42, 10, 28) 
MNI space, respectively], left Insula [(–32, 24, 8), MNI space], 
Premotor cortex [bilaterally (–4, 20, 48) and (8, 16, 48) MNI 
space], and right Superior Frontal gyrus [(4, 48, 38) MNI 
space]. No significant changes were found in the opposite 
contrast awake < sedated.

To test our regional hypotheses concerning areas commonly 
reported in studies of arousal, we  calculated the paired t-test 
with a small volume FWE correction (p < 0.05), within thalamus, 
brainstem, and a set of regions (ventromedial prefrontal cortex, 
posterior cingulate cortex, left and right inferior parietal lobule) 
included in the default mode network (DMN) (Buckner et  al., 
2008). Only the thalamus bilaterally [(−3, −13, 4) and (7, 
−13, 4) MNI space coordinates] showed a reduction of perfusion 
passing from the awake condition to the sedated one (Figure 2).

DISCUSSION

In this experiment, we have used ASL-fMRI to demonstrate that 
mild propofol sedation is associated with a reduction in CBF 
in some of the key cortical (frontal lobe) and subcortical (thalamus) 

FIGURE 1 | Cerebral blood flow changes induced by propofol mild sedation. 
A paired t-test was calculated for the decrease (awake > sedated) of the 
cerebral blood flow. We report clusters that survived correction for multiple 
comparisons across space, via permutation testing, with FWE correction at 
p < 0.05. The axial coordinates are reported in MNI space (mm). The central 
plot shows quantitative cerebral blood flow calculated within the region 
resulting from the paired t-test contrast (awake > sedated, p < 0.05 FWE 
corr.) across subjects. The red values represent mean and standard deviation 
in the two conditions.

FIGURE 2 | Cerebral blood flow changes induced by propofol mild sedation. 
A paired t-test was calculated for the decrease (awake > sedated) of the 
cerebral blood flow. We report clusters that survived small volume correction 
for multiple comparisons across space, via permutation testing, with FWE 
correction at p < 0.05. Coordinates are reported in MNI space (mm). The 
central plot shows quantitative cerebral blood flow calculated within the 
portion of thalamus that showed significant decrease in the paired t-test 
across subjects. The red values represent mean and standard deviation in the 
two conditions.
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areas involved in modulating consciousness while the blood flow 
in the brainstem and the DMN remains broadly unaffected.

Previous quantitative studies of CBF changes have focused 
on anesthetic-induced unconsciousness, with only a few looking 
at mild sedation. In this study, we anticipated diminished 
regional perfusion of the frontal brain regions and thalamus 
based on previous anesthetic literature and the established 
role of these regions in attention, cognition, working memory, 
and consciousness. Mild sedation is characterized by alterations 
in attention, cognition, and memory. PET-based studies have 
demonstrated reduction in CBF of the frontal brain regions 
during both pharmacological sedation and anesthesia. Veselis 
et  al. (2004) found a reduction in CBF in the right sided 
anterior brain (inferior frontal gyrus, insula, and superior 
temporal gyrus) with propofol doses similar to those in our 
study. Sun et  al. (2008) also reported a reduction in frontal 
lobe metabolism by about 10 ± 3% and temporal lobe metabolism 
by 13 ± 2% during light propofol sedation but, simultaneously, 
a greater reduction in activity of the occipital lobe, an effect 
not found in our study. Occipital lobe has a high density of 
GABA receptors (similar to the frontal lobe), but its deactivation 
with sedation has not been universally reported. In our study, 
the subjects were instructed to keep their eyes closed, which 
may have contributed to a reduced baseline activation of the 
occipital lobe to restrict further significant changes. Byas-
Smith et  al. (2002) using propofol sedation (at doses higher 
than those in our study) showed a reduction in CBF of the 
middle and inferior frontal gyrus and additionally in the 
parietal lobe, posterior cingulate cortex, and also the thalamus.

We found reduced CBF, bilaterally, in the premotor cortex, 
paracingulate cortex, and Broca’s areas and right superior frontal 
gyrus. Prefrontal cortex plays an important role in attention 
and working memory. Dorsolateral prefrontal cortex is also 
functionally connected to parietal cortical regions forming the 
lateral frontoparietal attentional functional network, which 
becomes activated during executive tasks. Loss of frontoparietal 
feedback within these networks is associated with anesthetic-
induced unconsciousness (Lee et  al., 2009). Premotor cortex 
influences motor activity through its extensive connections with 
the primary motor cortex and also through the corticospinal 
and corticobulbar pathways. Anterior cingulate cortex plays 
an important role in cognitive processing, anticipation of 
incoming stimuli, attention and preparing and executing motor 
activity, both self-directed and in response to a verbal command. 
We  have previously reported an increased connectivity of left 
premotor cortex and right ACC with the brainstem while their 
connectivity with thalamus was reduced with mild propofol 
sedation (Gili et  al., 2013). Reduced perfusion of bilateral 
Broca’s areas (inferior frontal regions) was another expected 
finding as these are involved in language processing and 
perception; “slurred speech” being the hallmark of mild sedation 
(differentiating “no sedation” with “mild sedation” on the 
objective assessment of alertness/sedation scale).

We had hypothesized a reduction in CBF of the thalamus, 
brainstem, and regions involved in the DMN. Although we did 
not find significant CBF changes in the whole brain analysis 

in those areas, a small volume FWE corrected analysis, driven 
by our a priori regional hypothesis, revealed a reduction of 
thalamic perfusion. Most neuroimaging experiments investigating 
anesthesia have pointed toward a thalamic suppression along 
with a disruption of thalamocortical functional connectivity. 
At sedative concentrations of propofol, Byas-Smith et al. (2002) 
showed a dose-related reduction in regional perfusion of 
thalamus. Bonhomme et  al. (2001) also showed a dose-related 
reduction in BOLD response activity of the thalamus to a 
sensory stimulus with increasing doses of sedation. At deeper 
levels of propofol sedation, thalamic perfusion is reduced (Qiu 
et  al., 2017). It is therefore likely that the small doses of 
propofol required to produce mild sedation in our study affected 
the activity of brain networks in two steps: first a substantial 
reduction of blood perfusion in frontal areas as a consequence 
of local reduced metabolism associated with a small reduction 
of perfusion in the thalamus, followed by a progressive metabolic 
decrease, with increasing doses that leads to a gradual functional 
suppression of key node areas and their mutual interaction, 
resulting in anesthetic-induced unconsciousness.

We did not find any changes in regions involved in the 
DMN (including posterior cingulate, bilateral inferior parietal 
and medial prefrontal cortices). DMN functional connectivity 
has previously been shown to be preserved or partially maintained 
during propofol sedation (Boveroux et  al., 2010; Stamatakis 
et  al., 2010). Changes in functional connectivity of a set of 
areas may occur without any change in their mean activity 
levels. Functional connectivity between two regions is mainly 
related to the synchrony of the BOLD signal slow oscillations, 
rather than its magnitude of change. Similar to thalamic 
perfusion, CBF in the DMN decreased with increasing doses 
of propofol (Qiu et  al., 2017) suggesting a step-wise, dose-
related effect. We  had also predicted changes in brainstem 
perfusion based on the findings of our previous work (Gili 
et  al., 2013). There were no changes in brainstem perfusion 
changes observed. The low spatial resolution and limited coverage 
of the brainstem could be  a factor in this finding. Qiu et  al. 
(2017) also did not find brainstem perfusion changes with 
deeper levels of propofol sedation, suggesting that brainstem 
perfusion changes probably occur closer to anesthetic doses.

One of the challenges in deducing neural effects from cerebral 
blood flow changes is the potential confounding effect due to 
alterations of neurovascular coupling induced by physiological 
changes in blood oxygenation, CO2 concentration, and blood 
pressure, both as a consequence of drug effect on physiological 
variables and also the potential drug effect on neurovascular 
coupling per se. Propofol at sedative doses has been shown 
not to alter neurovascular coupling (Veselis et  al., 2005).

The fixed order of awake state followed by the sedated 
state could be  considered a limitation of the study design. 
However, within-session reproducibility of ASL measurements 
has previously been shown to be good, and better than between 
sessions, improving the power to detect drug effects with a 
within-session design (Murphy et  al., 2011). Future study 
designs exploiting simultaneous BOLD and ASL to study 
coupling between changes in BOLD-CBF may also be  useful 
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in studying effects of sedation through alterations in oxygen 
metabolism where drug effects on neurovascular coupling 
render difficult interpretations of BOLD or CBF signals alone 
(Merola et  al., 2017; Chiacchiaretta et  al., 2018).

To conclude, we  report the use of ASL to investigate the 
hemodynamic changes induced by mild propofol sedation. 
We  have shown that the level of propofol sedation considered 
is associated with a reduction of CBF in key frontal areas 
(including bilateral premotor cortex, bilateral paracingulate cortex, 
bilateral Broca’s areas and right superior frontal gyrus) and in 
the thalamus, while the CBF in the brainstem and regions of 
the DMN was not significantly affected during mild sedation.
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